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Abstract: The synergistic use of remote sensing and unsupervised machine learning has emerged as
a potential tool for addressing a variety of environmental monitoring applications, such as detecting
disaster-affected areas and deforestation. This paper proposes a new machine-intelligent approach
to detecting and characterizing spatio-temporal changes on the Earth’s surface by using remote
sensing data and unsupervised learning. Our framework was designed to be fully automatic by
integrating unsupervised anomaly detection models, remote sensing image series, and open data
extracted from the Google Earth Engine platform. The methodology was evaluated by taking both
simulated and real-world environmental data acquired from several imaging sensors, including
Landsat-8 OLI, Sentinel-2 MSI, and Terra MODIS. The experimental results were measured with
the kappa and F1-score metrics, and they indicated an assertiveness level of 0.85 for the change
detection task, demonstrating the accuracy and robustness of the proposed approach when addressing
distinct environmental monitoring applications, including the detection of disaster-affected areas and
deforestation mapping.

Keywords: anomaly detection; time series; landscape dynamics; framework

1. Introduction

Preservation is crucial for the maintenance of human life on the planet, as the en-
vironment is constantly changing due to anthropogenic actions [1]. Among the biggest
global environmental challenges, we can cite the emission of greenhouse gases, massive
deforestation, and other critical disturbing disasters that have been catalyzed by the un-
bridled consumption of natural resources [2]. Concerned with the world environmental
scenario, the “United Nations 2030 Agenda” brings a transversal, multidimensional, and
holistic vision of this issue; the sustainable development goals dictate how to make human
wellbeing, economic prosperity, and environmental protection coexist by supporting public
policies for mitigating and coping with the impacts on the environment [3].

Considering the environmental context, Brazil has been at the center of debates, es-
pecially because of the Amazon forest, which is the largest tropical forest in the world.
Indeed, this biome plays an essential role in maintaining global climate dynamics and regu-
lation [4], as it has undergone intensive deforestation since 2010, thus resulting in landscape
disturbances [5]. Additionally, the El Niño–Southern Oscillation (ENSO) events have raised
the concentration of CO2 in the atmosphere, increasing the planet’s surface temperature
and the burning occurrences in the Amazon forest [6]. La Niña is another genuine example
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of a phenomenon that leads to landscape disturbance, as it promotes high precipitation
and evapotranspiration in the Amazon basin [7], thus causing regional flooding disasters.
Finally, there are also landscape disturbances that are caused by catastrophic failures, such
as the one that occurred in Brazil because of the collapses of mining dams in the towns of
Mariana [8] and Brumadinho [9].

In order to successfully deal with events of environmental change such as those
mentioned above, the development of new tools for the constant observation of biomes
and humanmade structures is critically important; this includes the creation of new remote-
sensing-based technologies. In addition to capturing reflected radiation at different spectral
wavelengths, remote sensing has enabled the spatio-temporal tracking of large areas [10,11],
which can be computationally performed by using different strategies, such as spectral
indices [12]. Another powerful and well-established tool in this context is machine learning,
as it allows the design of new algorithms for extracting information and knowledge from
large databases [13]. For example, Holloway et al. [14] demonstrated several applications
of machine learning methods, which included classification, clustering, and regression
models, for the creation of new approaches to achieving the United Nations Sustainable
Development Goals.

Anomaly detection (AD) comprises a category of unsupervised machine learning that
aims at identifying elements that do not follow an expected behavior [15]. Several studies in
the scientific literature have been supported by anomaly detection methods, which include
recent applications in domains such as health sciences [16], social monitoring [17], and
psychology [18]. Furthermore, anomaly detection methods also appear in the context of
remote sensing, e.g., to detect temporal changes on the Earth’s surface [19–21].

In contrast to conventional image classification techniques, anomaly detection methods
can simultaneously deal with seasonal and atmospheric interferences that may impact
the targets’ behavior when distinguishing changes in the Earth’s surface, such as those
caused by deforestation [22], technological disasters [23], and wildfires [21]. However,
due to limitations imposed by the spatial resolution of remote sensing data [24,25] and
considering that anomalies comprise a small portion of the data, algorithms purely based
on anomaly detection tend to overestimate the false positive errors [26]. Since seasonal
trends and the target’s spectral variability are relevant features that must be preserved
when applying anomaly detection methods on remote sensing image series, the use of more
sophisticated approaches involving machine learning tasks can improve the discrimination
of transient data in time series, thus producing data-driven models that are capable of
overcoming these issues.

In light of the above-presented discussions, this paper proposes a new framework that
combines anomaly detection models and remote sensing image series, which are expressed
in terms of spectral indices, to identify and characterize regions with high spectral–temporal
dynamics. Our approach uses the Google Earth Engine (GEE) platform to collect fresh data,
allowing the training of data-driven models to discriminate among the transient features of
time series of remotely sensed images. Beyond integrating the GEE platform and AD-based
methods, the proposed methodology is designed for the mapping of areas with recurrent
temporal changes (i.e., highly dynamic areas) in a fully unsupervised way. To the best of
the authors’ knowledge, there is no similar proposal that takes as input a time series of
remote sensing images and, following an entirely unsupervised process, delivers decision
rules for identifying anomalies in remote sensing scenes extracted from a sensor that has
been selected. Moreover, in contrast to other methods in the general literature that make
use of anomaly detection to identify specific targets or produce susceptibility maps for very
particular events, our approach focuses on the good fitting capabilities of unsupervised
AD-based models that are adapted to the context of remote sensing for the characterization
and identification of recurrent changes of an arbitrary nature. As a result, our framework
is flexible enough to be applied in the context of the monitoring of anthropogenic actions,
including deforestation and agriculture applications, as well as the analysis of landscape
changes caused by disaster events, such as dam failures.
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Experiments with simulated data and case studies with actual remote sensing images
of regions affected by intense deforestation, as well as technological disasters, were carried
out in order to demonstrate the effectiveness and robustness of the proposed methodology.

This paper is organized as follows: Section 2 presents the basic notations, anomaly
detection models, and spectral indices; Section 3 proposes our framework for mapping
spatio-temporal disturbances; Section 4 covers an extensive set of experiments that used
synthetic and actual remote sensing data, and discussions are found in Section 5. Finally,
Section 6 concludes our research.

Finally, the aim and hypothesis of this study are given as follows:

• Aim: “Developing an accurate and flexible machine-learning-based method that
detects and maps spatio-temporal dynamics by assuming only a time series of remotely
sensed images as input.”

• Hypothesis: “Regions subject to frequent disturbances are mapped as anomalies in
remote sensing image series.”

2. Theoretical Background
2.1. Preliminary Notations

Let I be a matrix representing a remotely sensed image. Each pixel/position of I is
expressed by s, which is defined over a regular grid S ⊂ N2. The radiance reflected by the
Earth’s surface and recorded by the remote sensor is usually expressed by a vector x, which
is characterized as an element of the attribute space X . Therefore, I(s) = x represents
the behavior of I with respect to position s, which is given by the d-dimensional vector
x = [x1, x2, . . . , xd].

Among the different applications supported by remote sensing images, distinguishing
targets on the Earth’s surface through machine learning techniques for classification is a
typical approach. A classification process stands for applying a function F : X → Y on the
attribute vector x of each s ∈ S so as to associate a class y ∈ Y = {1, . . . , c}.

The different classification techniques proposed in the literature comprise specific
ways of modeling F. Moreover, the learning paradigm dictates the approach to obtaining
F. Supervised and unsupervised methods are the usual strategies for learning from data,
and they are used for classification purposes [27–30]. Supervised methods perform the
modeling by gathering and analyzing labeled data that are available in a training set
D = {(xi, yi) ∈ X ×Y : i = 1, . . . , m}. On the other hand, unsupervised methods are not
supported by training ground-truth sets to model F. Consequently, such methods are not
able to define a label (with semantic meaning) for the input data. In this case, the learning
process relies on analogies that are found when the dataset is explored. As a result, clusters
of similar elements are determined without a particular semantic meaning.

An anomaly detection process comprises a particular case of unsupervised classifica-
tion, which splits the data into “regular” and “anomalous” elements [31].

2.2. Anomaly Detection

Among a variety of techniques that permeate the machine learning field, anomaly
detection methods consist of a useful approach to identifying elements with significantly
distinct behavior compared to other observations. In a broad context, anomalies and
outliers share similar characteristics, as they stand for elements that present a distinct
behavior in comparison to other pixel clusters and segments in an image [23,32,33].

Anomaly detection techniques have been effectively applied to detect bank frauds
and intruders in security systems, as well as to support medical analysis [34]. Beyond these
applications, anomaly detection methods are also known as a potential tool for environ-
mental monitoring [35,36]. The Local Outlier Factor [37], Elliptic Envelope [38], One-Class
Support Vector Machine (OC-SVM) [39], and Isolation Forest (IF) [40] are representatives of
anomaly detection methods that are commonly found in the scientific literature. In par-
ticular, the OC-SVM and IF methods have been successfully employed in remote sensing
studies [21,41,42].
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As a variant of the Support Vector Machine (SVM) method, the OC-SVM provides a
model for distinguishing the “regular objects” of a set Z with probability ν of false-positive
occurrence. Formally, the OC-SVM comprises a function F : X → {+1,−1} that returns
+1 when the input data belong to Z , or −1 otherwise. This function is given by:

F(x) = sgn

(
n

∑
i=1

αiK(x, xi)− b

)
(1)

where b = ∑n
j=1 αjK(xi, xj), xi ∈ Z , and K(·, ·) stands for a kernel function. The coefficients

αi, i = 1, . . . , n, are obtained by solving the following optimization problem:

min
α1,...,αn

∑n
i,j=1 αiαjK(xi, xj)

s.t.
{

αi ∈ [0, 1
νn ]

∑n
i=1 αi = 1

(2)

It is worth noting that the OC-SVM is parameterized by ν ∈ [0, 1] and depends on the
adopted kernel function. Further details on kernel functions are discussed in [43].

The Isolation Forest (IF) method comprises a low-computational-cost alternative for
anomaly detection in large databases. This method has been used in remote sensing
studies [44] and analyses involving digital image processing [45]. In summary, the IF
method relies on an ensemble of decision trees called “isolated trees” (ITs). According to the
conceptual idea behind this method, when the data/objects are submitted to classification
in a decision tree scheme, the anomalies tend to present a short path to the root node. The
expected length of this path is strictly dependent on both the number of decision trees
(nTrees) in the ensemble and the dataset size [46].

The definition of an IT starts from a sample set {x1, . . . , xm}, where xi = [xi1, . . . , xid]
T ∈

R
d, with the components expressing a specific attribute. This vector set may also be repre-

sented by a matrix X whose columns are the vectors xi, i = 1, . . . , m. The nodes of a given
IT may be either internal or external. While the earlier has two descendants, the external
one has no descendent, and it is called a “leaf”. According to this structure, the IT randomly
selects a value p from the q-th attribute to split X into two descendants. After recursively
performing this process, the IT is determined. As stopping criteria for the IT expansion,
the following are considered: (i) The IT reaches its length limit, (ii) |X| =1, or (iii) all of the
columns of X are equal.

Regarding the IT structure, the anomaly detection process is performed by taking
scores assigned to each xi according to the root-to-leaf path length that this vector takes to
pass through the IT, which is herein represented by h(xi). The average values of h(xi) for
the external nodes proceed similarly to an unsuccessful search in a Binary Search Tree, and
they are given by:

C(m) = 2H(m− 1)− 2(m− 1)
m

(3)

where H(z) = ln(z) + 0.5772156649 is a harmonic number [47] and C(m) is the average of
h(·) concerning the m observations. In turn, the anomaly score is expressed as follows:

S(xi, m) = 2−
(

E(h(xi))
C(m)

)
(4)

where E(h(xi)) =
1
q ∑

q
i=1 h(xi) is the mean of h(xi) from a collection of ITs.

Therefore, it can be inferred that if E(h(xi)) tends to zero, the score tends to 1, thus
representing an anomaly. On the other hand, when h(xi) tends to m− 1, S(xi, m) tends to 0,
representing data that are very likely regular. Furthermore, when E(h(xi)) tends to C(m),
S(xi, m) should tend to 0.5, resulting in there being no anomaly distinction.
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2.3. Spectral Indices

A spectral index combines two or more spectral bands to better characterize specific
targets observed on the Earth’s surface. Among the many spectral indices found in the lit-
erature, vegetation indices consider the spectral response of chlorophyll targets concerning
electromagnetic radiation from the sun [48,49]. An ordinary vegetation index for canopy
characterization is the normalized difference vegetation index (NDVI) [50], which uses
the red and infrared bands as input data. This index has various application purposes,
such as monitoring and mapping crops, droughts, pest damage, agricultural productivity,
hydrological modeling, and others [51].

The normalized difference water index (NDWI) [52] comprises a spectral index based
on the region of the electromagnetic spectrum that is sensitive to the presence of water.
It allows the detection of particulate matter and suspended sediments in water columns.
Complementarily, the global vegetation moisture index (GVMI) [53,54] quantifies the water
pattern at the canopy level and compares the local values to the global scale. This index
has successfully been adopted for vegetation monitoring purposes [55,56].

Formally, let us consider I(s) = x, with components xGreen, xRed, xNIR, and xSWIR
standing for the radiometric response at the green, red, near-infrared, and shortwave-
infrared wavelengths. The resulting NDVI, NDWI, and GVMI images are given by:

INDVI =
xNIR − xRed
xNIR + xRed

INDWI =
xGreen − xNIR
xGreen + xNIR

IGVMI =
(xNIR + 0.1)− (xSWIR + 0.02)
(xNIR + 0.1) + (xSWIR + 0.02)

3. Anomaly-Detection-Based Framework for Mapping Landscape Disturbances
3.1. Conceptual Formalization

Figure 1 depicts a general overview of the proposed framework for mapping temporal
landscape disturbances. As a first step, our approach takes the region of interest (ROI) and
the period of analysis (POA) in which the analysis takes place. Other specifications are also
requested in this initial stage, and these include the choice of a sensor, a cloud/shadow
coverage threshold for distinguishing valid images, a spectral index, an envelope width (α)
value for selecting training samples, and an anomaly detection method.

Google Earth
Engine

Analysis configuration
Region of interest (ROI)
Period of analysis (POA)
Sensor
Cloud coverage threshold
Spectral index
Envelope width ( )
Machine Learning core method

Trend
image

Cloud and
shadow
masks

Image
series

Pre-processing
Spectral index computing
Cloud/shadow masking
Trend subtraction
Sample selection 

Anomaly detection model (ADM)
Parameter selection
Model training

Landscape disturbance mapping
Apply the ADM on POA
Map the anomalies

Figure 1. Overview of the proposed framework.

Once the ROI, POA, sensor, and cloud occurrence threshold are defined, a request is
submitted to the Google Earth Engine (GEE) platform [57], which returns an image series.
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A median image representing the global targets’ trend at each position inside the ROI is
then computed to represent the temporal trend on the ROI. This is properly performed by
computing the median value of each pixel with respect to all instants in the time series,
excluding the pixel positions affected by the occurrence of clouds or shadows.

It is worth stressing that the cloud/shadow threshold adopted during the data request
avoids the inclusion of non-informative images in the series; thus, images with a high
prevalence of clouds and shadows are discarded. Furthermore, since the selected images
may contain regions affected by clouds and shadows, it is necessary to disregard such
regions by building and applying individual masks.

Then, the selected spectral index is computed for the entire image series, including the
median image. After that, the spectral index image is subtracted from the median image,
thus generating a new image series with values floating around a null tendency.

As a consequence, regions without land-cover change tend to have their pixels/positions
assigned values that are close to zero. Conversely, when relevant land cover occurs in a
given instant, the spectral index in that and subsequent instants tends to substantially deviate
from the null tendency. In such cases, the land-cover changes will be mapped as distur-
bances/anomalies, as is expected. Areas affected by clouds and shadows are disregarded in
each image by using the previously defined mask.

By considering the image series that results from the previous processes—with the
null tendency and the clouds/shadows masked—an “envelope” of values [−ασ,+ασ] is
determined, where σ stands for the standard deviation computed from all pixels in the
image series, and α ∈ R∗+ is a scalar. In our approach, this envelope is applied to select the
non-anomalous examples (i.e., equivalent to Z or X, as discussed in Section 2.2), which are
used to model the anomaly detection function F that is present in OC-SVM and IF methods.

Next, the function F is applied on each image that comprises the time series, producing
a spatio-temporal disturbance map that holds the frequency of each position/location that
is characterized as an anomaly. The anomaly detection models are then built from non-
anomalous data to capture the occurrence of “anomalous fluctuations”. Notice that instants
at which regions are affected by clouds and shadows are not taken into account when
computing and mapping the frequency of anomalies.

It is important to point out that the anomaly detection scheme modeled in our approach
follows concepts that are similar to those behind other recently published methods [21,42],
which preserve anomalous patterns within a sequence of remote sensing images. In fact,
the created time series generates pixels whose values fluctuate around zero, regardless of
the target assigned to the pixels. Although seasonal factors may influence the fluctuation
of the null pixels, their intensities do not carry expressive changes. Moreover, even in the
most drastic case wherein such an issue may eventually occur, a tolerable limit (i.e., the
range [−ασ,+ασ]) is used when using our approach to ensure the selection of regular (i.e.,
non-anomalous) examples.

3.2. Implementation Details

The following implementation details complement the discussion regarding our pro-
posed framework. The code is freely available at https://github.com/vlsgino/DynaLand.

• Programming language and libraries: The framework was implemented with the
Python 3.8 programming language [58] and the Numpy [59], Pandas [60], Scikit-
Learn [61], and GDAL [62] libraries. These libraries were fundamental when ma-
nipulating matrix data, applying anomaly detection methods, and representing the
outputs.

• GEE Application Programming Interface (API): The Python-based version of GEE-
API [63] was employed to access remote sensing image catalogs and produce image
series according to the period, region, and sensor of interest, which included data
from Landsat-8 OLI, Sentinel-2 MSI, and Terra MODIS.

• Data structure: The Pandas dataframe structure was adopted to organize and manip-
ulate the image series obtained from GEE-API.

https://github.com/vlsgino/DynaLand
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• Output representation: Functions from the GDAL library were adopted to convert
the Pandas dataframes containing the landscape disturbance mapping into a “GeoTiff”
image representation.

4. Experiments and Results

In order to assess the proposed framework, this section presents an extensive set
of experiments with synthetic data and real-world remotely sensed images. Specifically,
Section 4.1 presents an experiment that used a synthetic image series with different anomaly
frequencies. This experiment aims to (i) provide an initial battery of tests with controlled
data to demonstrate that the proposed framework achieves the expected results in several
scenarios of applications (i.e., distinct anomaly frequencies) and (ii) point out the need to
tune the model with appropriate parameters. Afterward, Section 4.2 demonstrates three
case studies in which the framework was applied to distinct areas, periods, and sensors.
The kappa coefficient [64] and F1-score [65] were used to assess the results’ accuracy.

4.1. Synthetic Data

Firstly, the proposed framework was assessed by using a synthetic image series. Figure 2a
displays the conceptual structure for an image in this series, which was segmented into six
regions (red, green, blue, orange, cyan, and magenta). Formally, let I (i) be an image defined
on a support S , wherein for a given position s ∈ S , I (i)(s) = x ∈ [−1,+1]. Furthermore,
S was segmented in terms of the regions R1, . . . ,R6 according to the following criteria:
S =

⋃6
j=1Rj;

⋂6
j=1Rj = ∅; #Rj = #R`, ∀j, ` = 1, . . . , 6. From the structure obtained above,

an image series I (1), . . . , I (100) was synthesized, where the value x was drawn from a uniform
distribution according to the region to which s belonged. Moreover, the values x were drawn
while assuming the following: If s ∈ Rj, we had a total of (100− 20 · (j− 1)) instants where
I (i)(s) = x ∈ [−0.2,+0.2]; otherwise, x ∈ [−1,−0.2[ ∪ ] + 0.2,+1]. Figure 2b depicts
values of x as observed over the time series for randomly selected positions s in each region.

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

V
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-0.2

0
0.2
0.4
0.6
0.8
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-0.8
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-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

V
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0 20 40 60 80 100
Instant

(a) (b)

Figure 2. The synthesized image series. (a) The conceptual image structure. The regions
R1,R2,R3,R4,R5,R6 are represented in red, green, blue, orange, cyan, and magenta, respectively.
(b) Values x observed for positions s selected in each conceptual image’s region. The color of each
line assigns the selected position to one region.

After determining the image series, the proposed framework was applied to map
the temporal disturbances by considering both the OC-SVM and IF methods as anomaly
detection models. Based on the simulation process, we manually set the envelope to
[−0.2,+0.2] and used only pixels inside the regionR1 (i.e., free of anomalies) to model the
OC-SVM and IF methods. In our analysis, the following parameter configurations were
taken: ν ∈ {0.025, 0.05, 0.1, 0.25, 0.5}; nTree ∈ {20, 40, 60, 80, 100}. The RBF kernel function
was adopted in the OC-SVM method with γ = 0.01. The outputs were assessed in terms of
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the F1-score by using five “classes of disturbances”, which are represented herein by “very
low”, “low”, “medium”, “high”, and “very high” when the anomaly frequencies were in
the 1–20%, 21–40%, 41–60%, 61–80%, and 81–100% ranges, respectively. The most internal
region (R1—the red block in Figure 2a) was not taken into account when computing the
values of the F1-score.

Figure 3 shows the performance of OC-SVM and IF on each “class of disturbance”
when considering distinct parameters (ν and nTree). Regardless of the method or param-
eter, the “medium”, “high”, and “very high” classes were perfectly identified (i.e., with
F1-score = 1). Conversely, the choice of the method and parameter were relevant when
mapping the classes “very low” and “low”, where ν = 0.05 and nTree = 40, implying
good choices for OC-SVM and IF, respectively. The maps obtained with these parameter
configurations are shown in Figure 4.

Very Low Low Medium High Very High
Classes

0

0.2

0.4

0.6

0.8

1

F1
-S

co
re

OC-SVM nu:
0.025
0.05
0.1
0.25
0.5

Very Low Low Medium High Very High
Classes

0.75

0.8

0.85

0.9

0.95

1

F1
-S

co
re

IF nTree:
20
40
60
80
100

(a) (b)

Figure 3. Performance of OC-SVM and IF when identifying distinct anomaly frequency classes
according to distinct parameter configurations. (a) OC-SVM. (b) IF.

0%															25%									50%															75%								100%

OC-SVM                                            IF

Anomaly:

Figure 4. Output maps obtained by the OC-SVM (ν = 0.05) and IF (nTree = 40) methods when
applied to map the anomaly frequencies.

The results support the conclusion that both OC-SVM and IF allowed the segmentation
of the full synthetic image series according to the defined “anomaly frequency classes”. It
is worth noticing that the performance of the OC-SVM method was strongly influenced
by the parameter ν (Figure 3a). Conversely, the IF method showed good performance
in identifying the “medium”, “high”, and “very high” classes regardless of the choice of
parameter nTree (Figure 3b).

4.2. Real-World Applications

Experiments with actual remote sensing data are given and discussed in this section
by taking distinct study areas and images acquired by different remote sensors. The study
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areas and corresponding datasets are discussed in Section 4.2.1, followed by the results and
the analyses presented in Section 4.2.2.

In order to avoid having useless data while reducing the computational effort, we
eliminated the image series whose cloud/shadow occurrences exceeded 20% of the total
study area. Concerning the envelope width, after an extensive battery of experimental tests,
α = 0.5 was taken as a convenient choice for (i) defining the envelope [−ασ,+ασ] and (ii)
selecting valid samples for training the anomaly detection methods.

4.2.1. Study Areas and Datasets

Figure 5 presents the study area locations evaluated in this experiment. The first study
area (Area 1) comprised the region of Brumadinho, Minas Gerais, Brazil. This region was
deeply modified after a dam collapse on 25 January 2019. The second study area (Area 2)
contained the region of Mariana, Minas Gerais, which was also affected by a dam collapse
on 5 November 2015. Finally, the third area (Area 3) contained a portion of Altamira, Pará,
Brazil, a region under intense deforestation over the last decade. According to the Brazilian
Institute of Geography and Statistics (IBGE) [66], the deforested regions located in the
leftmost part of Area 3 have been continuously used for intensive cultivation/planting of
soybeans and wheat, causing significant spectral variations over time every year, especially
before the harvest, when the land cover is converted into bare soil. Notice that the recurrent
variability in the spectral indices found in those cropped areas presents a well-known
behavior, as discussed in previous applications [67,68].
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Figure 5. Spatial locations of the study areas.

Concerning the first area, a times series of 71 images acquired by the Operational Land
Imager (OLI) sensor on board the Landsat-8 satellite was employed. These images had a
30 m spatial resolution and were acquired between 1 January 2013 and 31 December 2021.
For Area 2, an image series of 62 instants was taken, ranging from 1 January 2016 to 31
December 2021 and obtained by the Multi-Spectral Instrument (MSI) on board the Sentinel-
2A/B satellites with 10 m of spatial resolution. Finally, for Area 3, images acquired by the
Moderate-Resolution Imaging Spectroradiometer (MODIS) product MOD13Q1.006 Terra
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Vegetation Indices 16-Day Global were adopted with 250 m of spatial resolution. Considering
the period of analysis from 1 January 2010 to 31 December 2021, a total of 276 images were
obtained. The NDVI, NDWI, and GVMI indices were considered for Areas 1, 2, and 3,
respectively. This choice focused on better distinguishing the targets found in each study
area—specifically, Area 1: soil and vegetation; Area 2: water, soil, and vegetation; Area 3:
high- and low-biomass areas.

In order to assess the results, ground-truth reference samples were collected after
a careful visual interpretation of Areas 1 and 2. These samples were divided into “non-
change” and “change” areas. On the other hand, since a constant deforestation process has
modified the third study area, we employed the polygons from the annual deforestation
inventory provided by the well-established Monitoring Program for the Amazon and Other
Biomes (PRODES) [69] as ground-truth samples. In this case, the samples were grouped into
four periods: 2010–2012, 2010–2015, 2010–2018, and 2010–2021; thereafter, they were used
to assess the periods 2010–2012, 2013–2015, 2016–2018, and 2019–2021. Figure 6 depicts the
selected ground-truth samples for each study area.
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Figure 6. Ground-truth reference samples for Areas 1, 2, and 3. The first two areas are represented
before and after the dam collapse events. (a) Area 1—Brumadinho; Landsat-8 OLI data. (b) Area
2—Mariana; Sentinel-2 MSI data. (c) Area 3—Altamira; MODIS/MOD13Q1.006 data.

4.2.2. Results

Considering the study areas, image series, and reference samples that were previously
described, the proposed framework was then applied to map the landscape disturbances.
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Similarly to the experiments with synthetic data, the OC-SVM and IF methods and the
distinct parameter configurations for ν and nTree were tested.

Figure 7 depicts the achieved results as measured with the kappa coefficient. Regard-
ing the OC-SVM method, one can conclude that ν = 0.001 led to a good parameter choice
for Areas 1 and 2. On the other hand, while nTree = 40 was shown to be a reasonable
parameter for IF in Area 2, the same was not observed for Area 1, where nTree = 100
delivered higher accuracy.

Given the most suitable parameters, as highlighted in Figure 7 (i.e., OC-SVM/ν equals
0.001 for Areas 1 and 2; IF/nTree equals 100 and 40 for Areas 1 and 2, respectively), the
respective landscape disturbance maps are shown in Figures 8 and 9. These maps exhibit
the temporal dynamics in terms of “anomaly detection percentages”.
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Figure 7. Kappa coefficient values obtained by the OC-SVM and IF methods for Areas 1 and 2 with
distinct parameters.
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Figure 8. Results for Area 1 obtained by applying the OC-SVM (left) and IF (right) methods with
parameter values of ν = 0.001 and nTree = 100, respectively.
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Figure 9. Results for Area 2 obtained by applying the OC-SVM (left) and IF (right) methods with
parameter values of ν = 0.001 and nTree = 40, respectively.

Complementarily, Figure 10 indicates the anomaly frequencies according to the “class
of disturbances” for Areas 1 and 2. By visually inspecting the results, one can verify that
both methods performed similarly in each study area. As expected, the non-changed areas
tended to be assigned to very low and low anomaly frequencies.

(a) (b)

(c) (d)

Figure 10. Anomaly frequencies concerning the “non-change” and “change” ground-truth samples
for Areas 1 and 2. The anomaly frequency classes are very low [0%, 20%], low [20%, 40%], medium
[40%, 60%], high [60%, 80%], and very high [80%, 100%]. (a) Area 1—OC-SVM (ν = 0.001). (b) Area
1—IF (nTree = 100). (c) Area 2—OC-SVM (ν = 0.001). (d) Area 2—IF (nTree = 40).

Regarding the third study area, Figure 11 presents the accuracy values in terms of the
F1-score for the periods 2010–2012, 2013–2015, 2016–2018, and 2019–2021. The OC-SVM
method performed better with ν = 0.1. Concerning the IF method, the most accurate results
were achieved with 40 trees. According to the adopted parameters, Figures 12 and 13
present the landscape disturbance maps obtained with the OC-SVM and IF methods. The
landscape disturbance maps agreed with the ground-truth samples in Figure 6c, mainly
when focusing on the lower-right region. As already observed for Areas 1 and 2, the
outputs of the OC-SVM and IF methods shared high similarities.
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Figure 11. F1-score values obtained by the OC-SVM and IF methods for Area 3 on each analyzed
period with distinct parameters.

In addition, the best parameter configurations observed for Area 3—OC-SVM/ν =
0.1 and IF/nTree = 40—were assigned to Figures 12 and 13 as anomaly count maps,
and the anomaly degree was divided into triennial periods according to the PRODES
deforestation data.
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Figure 12. Results for Area 3 obtained by applying the OC-SVM method with ν = 0.1. Periods:
(a) 2010–2012; (b) 2013–2015; (c) 2016–2018; (d) 2019–2021.
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Figure 13. Results for Area 3 obtained by applying the IF method with nTree = 40. Periods:
(a) 2010–2012; (b) 2013–2015; (c) 2016–2018; (d) 2019–2021.

5. Discussion

Remote sensing and machine learning tools have arisen as convenient approaches for
environmental monitoring and for supporting legal decisions. Although surveillance technolo-
gies have evolved significantly in Brazil, enforcement for mining dams and deforestation has
lagged since the middle of the 2010s due to the distribution and use of resources from public
institutions. Therefore, this study aimed to develop a data-driven anomaly-detection-based
framework for monitoring and mapping frequently disturbed areas.

In this sense, the proposed framework was applied to both the simulated dataset and
areas that were recently affected by dam collapses (Areas 1 and 2) and intense deforestation
(Area 3). Although the simulated dataset did not show seasonal trends, it presented
anomaly occurrences with different frequencies over distinct regions. It was observed that
the OC-SVM method was more sensitive to parameter changes. Given the convenient
parameterization, the methods performed similarly (Figure 3). Therefore, the synthetic
experiments responded as expected.

The same behavior was verified in the experiments with real-world remote sensing
applications. First, regarding Areas 1 and 2, both methods identified the areas affected after the
collapse of the dams (Area 1—center-bottom regions; Area 2—southeast region). Low-dynamic
regions, such as those with preserved vegetation and exposed soil, were also highlighted
when the proposed framework used the GVMI (Area 2) and NDWI (Area 3) indices.

Figures 12 and 13 show the “anomaly count” maps for each triennial period between
2010 and 2021. Considering that the deforested areas in this region hold agricultural
expansion purposes [66], leading to a recurrent crop-to-soil transition, it is expected that
such areas will present “high” and “very high” disturbance class profiles over the years.
In addition, one can notice that the recent agricultural activities (e.g., nearby coordinates
of 54.9W/7.89S) were correctly assigned as “medium” disturbances, as the mentioned
transition was not mature enough compared to that in other areas (e.g., the central-right
and central-left quadrants, which were deforested between 2012 and 2015 and before 2010,
respectively).

Regarding the differences observed in the outputs obtained when distinct models
were adopted, we should consider that the OC-SVM and IF models follow different iden-
tification/classification schemes. While the OC-SVM method is used to identify extreme
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(i.e., anomalous) cases with an occurrence probability of ν, the IF method exploits the
divergences observed in the data so as to create a decision tree ensemble that does not
necessarily establish a percentage of anomalies. Moreover, the models’ parameter tuning is
another procedure that may influence the definitive classifications.

Despite their flexibility and good fitting capabilities, AD-based models also have
limitations. Although anomaly-detection-driven methods allow for the mapping of concrete
changes by assuming only an image time series as input data, they may not successfully
capture changes under very specific circumstances, i.e., when concrete modifications occur
at the end of the time series. Since the number of representative images in a given time
series is an important parameter when training and modeling decision rules, a simple yet
effective strategy for circumventing this issue may be to expand the number of instants of
the analysis period in an effort to increase the number of anomalies to be quantified.

A practical aspect to be observed when using our approach is that there are no
conceptual barriers to applying the designed methodology for the mapping of spatio-
temporal dynamics in many other contexts—for example, identifying regions with recurrent
changes in urban areas and landscapes with complex configurations. In those cases, a
convenient spatial resolution and set of spectral indices would be provided to capture
the relevant changes in the images. For instance, one may consider high-resolution data
to improve the target’s discriminability—in the spirit of [70]—and then apply anomaly
detection models to accurately map temporal changes.

However, it is worth mentioning that the proposed methodology may not achieve op-
timal performance for regions composed of low-contrast targets or those that are extremely
dynamic, such as those observed in deserts and glaciers. Nonetheless, an appropriate
analysis can be made for the better circumvention of this expected drawback.

6. Conclusions

This paper introduced a fully unsupervised data-driven framework for mapping
landscape disturbances by combining remote sensing image series and anomaly detection
methods. Experiments with simulated and real-world remote sensing data were carried
out in order to demonstrate the effectiveness and robustness of the designed framework.

Based on the presented results, it was verified that the proposed methodology, which
was applied as an environmental monitoring system prototype, was capable of detecting
anomalies corresponding to targets with high spectral–temporal dynamics. Furthermore,
both tested anomaly detection methods performed similarly after a convenient parame-
ter choice.

In contrast to most of the methods discussed in the recent literature—e.g., the pre-
diction of forest dynamics via spatiotemporal data fusion from multiple sources [71],
multitemporal classification for agricultural landscape transformation [72], and the mon-
itoring of land-cover dynamics via deep learning and remote sensing images [73]—our
approach was designed to be data-efficient, as it does not require high-resolution or fused
data, nor large labeled datasets, as demanded by deep learning schemes. Moreover, the
methodology is not limited to monitoring only forest or agricultural areas. As a result, our
framework could contribute to the advancement of the debate on the protection, manage-
ment, and planning of landscapes, as promoted by the European Landscape Convention
(ELC) [74]. Furthermore, the framework’s versatility extends beyond forest and agricultural
monitoring, thus allowing researchers to gain a broader understanding of landscapes while
still detecting changes in other contexts, such as deforestation or disasters. This could
potentially encourage more transdisciplinary research on the impacts of landscapes in fields
such as ecology and geography.

In summary, the main contributions of this paper are the following:

• A fully unsupervised framework designed to detect regions that are subject to relevant
spatio-temporal disturbances. Our approach uses the Google Earth Engine platform
to collect fresh data, allowing the training of data-driven models while discriminating
the transient features present in time series of remotely sensed images.
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• Our approach is capable of accurately identifying and mapping concrete changes by
assuming only a time series of remotely sensed images as input data.

• The proposed methodology allows the use of distinct anomaly detection models, as
well as image time series acquired by various remote sensors, including Landsat-8
OLI, Sentinel-2 MSI, and Terra MODIS.

• An innovative conjunction of unsupervised machine learning concepts and remote
sensing techniques for the identification of recurrent changes of an arbitrary nature,
which is flexible enough to address a variety of anthropogenic actions, including
deforestation and landscape changes caused by disaster events, such as dam failures.

As a perspective for future work, we include (i) the assessment of the seasonal impacts,
randomness, and intensity, (ii) the investigation of other specific combinations of spectral
indices, including an extension for properly dealing with multiple attributes, (iii) the
analysis of other anomaly detection approaches, and (iv) the evaluation of additional remote
sensors, including synthetic aperture radars, hyperspectral instruments, and aerial photos.
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16. Racetin, I.; Krtalić, A. Systematic review of anomaly detection in hyperspectral remote sensing applications. Appl. Sci. 2021,
11, 4878. [CrossRef]

17. Marzuoli, A.; Liu, F. Monitoring of natural disasters through anomaly detection on mobile phone data. In Proceedings of the
2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 4089–4098.

18. Bijlani, N.; Nilforooshan, R.; Kouchaki, S. An Unsupervised Data-Driven Anomaly Detection Approach for Adverse Health
Conditions in People Living With Dementia: Cohort Study. JMIR Aging 2022, 5, e38211. [CrossRef]

19. Guo, Q.; Pu, R.; Cheng, J. Anomaly detection from hyperspectral remote sensing imagery. Geosciences 2016, 6, 56. [CrossRef]
20. Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big data for remote sensing: Challenges and opportunities. Proc.

IEEE 2016, 104, 2207–2219. [CrossRef]
21. Luz, A.E.O.; Negri, R.G.; Massi, K.G.; Colnago, M.; Silva, E.A.; Casaca, W. Mapping Fire Susceptibility in the Brazilian Amazon

Forests Using Multitemporal Remote Sensing and Time-Varying Unsupervised Anomaly Detection. Remote Sens. 2022, 14, 2429.
[CrossRef]

22. Hamunyela, E.; Brandt, P.; Shirima, D.; Do, H.T.T.; Herold, M.; Roman-Cuesta, R.M. Space-time detection of deforestation, forest
degradation and regeneration in montane forests of Eastern Tanzania. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102063. [CrossRef]

23. Dias, M.A.; Silva, E.A.D.; Azevedo, S.C.D.; Casaca, W.; Statella, T.; Negri, R.G. An Incongruence-Based Anomaly Detection
Strategy for Analyzing Water Pollution in Images from Remote Sensing. Remote Sens. 2020, 12, 43. [CrossRef]

24. Nasrabadi, N.M. Hyperspectral target detection: An overview of current and future challenges. IEEE Signal Process. Mag. 2013,
31, 34–44. [CrossRef]

25. Manolakis, D.; Shaw, G. Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 2002, 19, 29–43.
[CrossRef]

26. Kim, S.; Choi, K.; Choi, H.S.; Lee, B.; Yoon, S. Towards a Rigorous Evaluation of Time-Series Anomaly Detection. In Proceedings
of AAAI Conference on Artificial Intelligence, Palo Alto, CA, USA, 22 February–1 March 2022; Volume 36, pp. 7194–7201.

27. Bishop, C.M. Pattern Recognition and Machine Learning, 1st ed.; Springer: New York, NY, USA, 2007.
28. Webb, A.R.; Copsey, K.D. Statistical Pattern Recognition, 3rd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2011. [CrossRef]
29. Negri, R.G.; Frery, A.C.; Casaca, W.; Azevedo, S.; Dias, M.A.; Silva, E.A.; Alcântara, E.H. Spectral–Spatial-Aware Unsupervised

Change Detection With Stochastic Distances and Support Vector Machines. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2863–2876.
[CrossRef]

30. Yan, J.; Wang, X. Unsupervised and semi-supervised learning: The next frontier in machine learning for plant systems biology.
Plant J. 2022, 111, 1527–1538. [CrossRef] [PubMed]

31. Akoglu, L.; Tong, H.; Koutra, D. Graph based anomaly detection and description: A survey. Data Min. Knowl. Discov. 2015,
29, 626–688. [CrossRef]

32. Zhang, J.; Roy, D.; Devadiga, S.; Zheng, M. Anomaly detection in MODIS land products via time series analysis. Geo-Spat. Inf. Sci.
2007, 10, 44–50. [CrossRef]

33. Alvera-Azcárate, A.; Sirjacobs, D.; Barth, A.; Beckers, J.M. Outlier detection in satellite data using spatial coherence. Remote Sens.
Environ. 2012, 119, 84–91. [CrossRef]

34. Gu, J.; Wang, L.; Wang, H.; Wang, S. A novel approach to intrusion detection using SVM ensemble with feature augmentation.
Comput. Secur. 2019, 86, 53–62. [CrossRef]

35. Dereszynski, E.W.; Dietterich, T.G. Spatiotemporal models for data-anomaly detection in dynamic environmental monitoring
campaigns. ACM Trans. Sens. Netw. (TOSN) 2011, 8, 1–36. [CrossRef]

36. Ananias, P.H.M.; Negri, R.G.; Dias, M.A.; Silva, E.A.; Casaca, W. A Fully Unsupervised Machine Learning Framework for Algal
Bloom Forecasting in Inland Waters Using MODIS Time Series and Climatic Products. Remote Sens. 2022, 14, 4283. [CrossRef]

37. Ma, H.; Hu, Y.; Shi, H. Fault detection and identification based on the neighborhood standardized local outlier factor method.
Ind. Eng. Chem. Res. 2013, 52, 2389–2402. [CrossRef]

38. Hoyle, B.; Rau, M.M.; Paech, K.; Bonnett, C.; Seitz, S.; Weller, J. Anomaly detection for machine learning redshifts applied to SDSS
galaxies. Mon. Not. R. Astron. Soc. 2015, 452, 4183–4194. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2022.113198
http://dx.doi.org/10.1016/j.earscirev.2020.103187
http://dx.doi.org/10.1016/j.gsf.2015.07.003
http://dx.doi.org/10.3390/rs10091365
http://dx.doi.org/10.3390/app11114878
http://dx.doi.org/10.2196/38211
http://dx.doi.org/10.3390/geosciences6040056
http://dx.doi.org/10.1109/JPROC.2016.2598228
http://dx.doi.org/10.3390/rs14102429
http://dx.doi.org/10.1016/j.jag.2020.102063
http://dx.doi.org/10.3390/rs12010043
http://dx.doi.org/10.1109/MSP.2013.2278992
http://dx.doi.org/10.1109/79.974724
http://dx.doi.org/10.1002/9781119952954
http://dx.doi.org/10.1109/TGRS.2020.3009483
http://dx.doi.org/10.1111/tpj.15905
http://www.ncbi.nlm.nih.gov/pubmed/35821601
http://dx.doi.org/10.1007/s10618-014-0365-y
http://dx.doi.org/10.1007/s11806-007-0003-6
http://dx.doi.org/10.1016/j.rse.2011.12.009
http://dx.doi.org/10.1016/j.cose.2019.05.022
http://dx.doi.org/10.1145/1993042.1993045
http://dx.doi.org/10.3390/rs14174283
http://dx.doi.org/10.1021/ie302042c
http://dx.doi.org/10.1093/mnras/stv1551


Sustainability 2023, 15, 4725 18 of 19

39. SchÖlkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; Adaptive
computation and machine learning; MIT Press: Cambridge, MA, USA, 2002.

40. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422.

41. Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using low resolution satellite imagery for yield prediction and yield anomaly
detection. Remote Sens. 2013, 5, 1704–1733. [CrossRef]

42. Ananias, P.H.M.; Negri, R.G. Anomalous behaviour detection using one-class support vector machine and remote sensing images:
A case study of algal bloom occurrence in inland waters. Int. J. Digit. Earth 2021, 14, 921–942. [CrossRef]

43. Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis; Cambridge University Press: Cambridge, UK, 2004.
44. Li, S.; Zhang, K.; Duan, P.; Kang, X. Hyperspectral anomaly detection with kernel isolation forest. IEEE Trans. Geosci. Remote Sens.

2019, 58, 319–329. [CrossRef]
45. Alonso-Sarria, F.; Valdivieso-Ros, C.; Gomariz-Castillo, F. Isolation forests to evaluate class separability and the representativeness

of training and validation areas in land cover classification. Remote Sens. 2019, 11, 3000. [CrossRef]
46. Lesouple, J.; Baudoin, C.; Spigai, M.; Tourneret, J.Y. Generalized isolation forest for anomaly detection. Pattern Recognit. Lett.

2021, 149, 109–119. [CrossRef]
47. Havil, J. Gamma: Exploring Euler’s constant. Aust. Math. Soc. 2003, 250. Available online: http://www.jstor.org/stable/j.ctt7sd75

(accessed on 3 March 2023).
48. Moreira, R.D.C. Influência do Posicionamento e da Largura de Bandas de Sensores Remotos e dos Efeitos Atmosféricos na

Determinação de índices de Vegetação. Master’s Thesis, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil,
2000; 181p.

49. Kaur, R.; Pandey, P. A review on spectral indices for built-up area extraction using remote sensing technology. Arab. J. Geosci.
2022, 15, 1–22. [CrossRef]

50. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec.
Publ. 1974, 351, 309.

51. Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017,
2017, 1353691:1–1353691:17. [CrossRef]

52. Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens.
Environ. 1996, 58, 257–266. [CrossRef]

53. Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from
remote sensing data: Part 1: Theoretical approach. Remote Sens. Environ. 2002, 82, 188–197. [CrossRef]

54. Glenn, E.P.; Nagler, P.L.; Huete, A.R. Vegetation index methods for estimating evapotranspiration by remote sensing. Surv.
Geophys. 2010, 31, 531–555. [CrossRef]

55. Sow, M.; Mbow, C.; Hély, C.; Fensholt, R.; Sambou, B. Estimation of Herbaceous Fuel Moisture Content Using Vegetation Indices
and Land Surface Temperature from MODIS Data. Remote Sens. 2013, 5, 2617–2638. [CrossRef]

56. Zeng, J.; Zhang, R.; Qu, Y.; Bento, V.A.; Zhou, T.; Lin, Y.; Wu, X.; Qi, J.; Shui, W.; Wang, Q. Improving the drought monitoring
capability of VHI at the global scale via ensemble indices for various vegetation types from 2001 to 2018. Weather Clim. Extrem.
2022, 35, 100412. [CrossRef]

57. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

58. van Rossum, G.; Drake, F.L. The Python Language Reference Manual; Network Theory Ltd.: Surrey, UK 2011.
59. Van Der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy array: A structure for efficient numerical computation. Comput. Sci.

Eng. 2011, 13, 22. [CrossRef]
60. McKinney, W. Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference,

Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 51–56.
61. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
62. Warmerdam, F. The geospatial data abstraction library. In Open Source Approaches in Spatial Data Handling; Springer:

Berlin/Heidelberg, Germany, 2008; pp. 87–104.
63. GEE-API. Google Earth Engine API. 2022. Available online: https://developers.google.com/earth-engine (accessed on 29 October

2022).
64. Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2009; p. 183.
65. Rijsbergen, C.J.V. Information Retrieval, 2nd ed.; Butterworth-Heinemann: Ann Arbor, MI, USA, 1979.
66. IBGE. Monitoramento da Cobertura e Uso da Terra. 2022. Available online: https://www.ibge.gov.br/geociencias/cartas-e-

mapas/informacoes-ambientais/15831-cobertura-e-uso-da-terra-do-brasil.html (accessed on 29 October 2022).
67. Brovelli, M.A.; Sun, Y.; Yordanov, V. Monitoring Forest Change in the Amazon Using Multi-Temporal Remote Sensing Data and

Machine Learning Classification on Google Earth Engine. ISPRS Int. J. Geo-Inf. 2020, 9, 580. [CrossRef]
68. Nakalembe, C.; Becker-Reshef, I.; Bonifacio, R.; Hu, G.; Humber, M.L.; Justice, C.J.; Keniston, J.; Mwangi, K.; Rembold, F.; Shukla,

S.; et al. A review of satellite-based global agricultural monitoring systems available for Africa. Glob. Food Secur. 2021, 29, 100543.
[CrossRef]

http://dx.doi.org/10.3390/rs5041704
http://dx.doi.org/10.1080/17538947.2021.1907462
http://dx.doi.org/10.1109/TGRS.2019.2936308
http://dx.doi.org/10.3390/rs11243000
http://dx.doi.org/10.1016/j.patrec.2021.05.022
http://www.jstor.org/stable/j.ctt7sd75
http://dx.doi.org/10.1007/s12517-022-09688-x
http://dx.doi.org/10.1155/2017/1353691
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
http://dx.doi.org/10.1016/S0034-4257(02)00037-8
http://dx.doi.org/10.1007/s10712-010-9102-2
http://dx.doi.org/10.3390/rs5062617
http://dx.doi.org/10.1016/j.wace.2022.100412
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1109/MCSE.2011.37
https://developers.google.com/earth-engine
https://www.ibge.gov.br/geociencias/cartas-e-mapas/informacoes-ambientais/15831-cobertura-e-uso-da-terra-do-brasil.html
https://www.ibge.gov.br/geociencias/cartas-e-mapas/informacoes-ambientais/15831-cobertura-e-uso-da-terra-do-brasil.html
http://dx.doi.org/10.3390/ijgi9100580
http://dx.doi.org/10.1016/j.gfs.2021.100543


Sustainability 2023, 15, 4725 19 of 19

69. FG Assis, L.F.; Ferreira, K.R.; Vinhas, L.; Maurano, L.; Almeida, C.; Carvalho, A.; Rodrigues, J.; Maciel, A.; Camargo, C.
TerraBrasilis: A spatial data analytics infrastructure for large-scale thematic mapping. ISPRS Int. J. Geo-Inf. 2019, 8, 513.
[CrossRef]

70. Wang, X.; Liu, S.; Du, P.; Liang, H.; Xia, J.; Li, Y. Object-Based Change Detection in Urban Areas from High Spatial Resolution
Images Based on Multiple Features and Ensemble Learning. Remote Sens. 2018, 10, 276. [CrossRef]

71. Zhu, X.; Cai, F.; Tian, J.; Williams, T.K.A. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey,
Taxonomy, Principles, Applications, and Future Directions. Remote Sens. 2018, 10, 527. [CrossRef]

72. Wang, X.; Zhang, J.; Xun, L.; Wang, J.; Wu, Z.; Henchiri, M.; Zhang, S.; Zhang, S.; Bai, Y.; Yang, S.; et al. Evaluating the
Effectiveness of Machine Learning and Deep Learning Models Combined Time-Series Satellite Data for Multiple Crop Types
Classification over a Large-Scale Region. Remote Sens. 2022, 14, 2341. [CrossRef]

73. Jiang, H.; Peng, M.; Zhong, Y.; Xie, H.; Hao, Z.; Lin, J.; Ma, X.; Hu, X. A Survey on Deep Learning-Based Change Detection from
High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 1552. [CrossRef]
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