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Abstract: Urbanisation is accelerating under the new economic development trend, but the global
warming exacerbated by greenhouse gases has caused a certain degree of constraint on the speed
and quality of economic development, among which anthropogenic emissions, mainly from trans-
portation, are more obvious. Therefore, based on the background of urbanisation and taking urban
agglomerations as the research object, this study investigates the spatial and temporal mechanisms
and dynamics of carbon emissions through the construction of carbon emission models, the iden-
tification of influencing factors, and the processing of spatial data and proposes relevant measures
for carbon emission control mechanisms. This study finds that the improvement of the per capita
economic level and the urbanisation rate will correspondingly lead to an increase in carbon emissions
and that the spatial distribution of carbon emissions under passenger and freight transport modes
shows a pattern of “low at the ends and high in the middle”, with the predicted carbon emission
levels remaining balanced over a long period of time, with a variation rate of less than 1%. The model
idea proposed in this study can effectively provide new perspectives and ideas for the differentiated
formulation of emission reduction policies, and the government ought to focus more on the dynamic
changes of urbanised carbon emissions in future development so as to realise the potential of urban
emission reduction.
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1. Introduction

The promotion of “double carbon” reduction (peak carbon and carbon neutral) is one
of the most important initiatives to reduce the challenges posed by resource and environ-
mental constraints and to accelerate sustainable development and economic structural
transformation. Since the Party Central Committee advised the strategic goal of achieving
peak and neutral carbon by 2030 and 2060, accelerating the process of carbon reduction
has gradually been put on an important strategic level. At the same time, cities, as an
important carrier form of economic development and civilisational activities, are the main
battleground for achieving the double carbon goal. The acceleration of China’s reform
process has also increased the corresponding urbanisation rate, with the average annual
growth rate of urbanisation reaching a maximum of two times that of the pre-1978 period,
while the total carbon emissions have increased by a factor of six [1,2]. Understanding
the evolution of carbon emissions in the urbanisation process can offer a basis for the
formulation of countermeasures, and at the same time, can ensure the high quality and
efficiency of economic development while improving environmental quality. Therefore,
this study took a coastal city group as the research target to analyse the potential of carbon
emission reduction under the urbanisation process, with a view to providing reference
ideas for the long-term effectiveness of a low-carbon economy.
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1.1. Analysis of the Evolution Mechanism of Urbanisation and Carbon Emission and the
Significance of Carbon Reduction Potential

When urbanisation reaches a certain level, it leads to a more intensive and productive
use of urban land, but the carbon reduction effect is much lower than the construction
content of carbon emissions. Exploring the mechanisms that influence urbanisation and
carbon emissions is an important objective in line with national strategic development goals
and the vision of a sustainable future for humanity [3]. Different scholars have presented
different views on the carbon reduction effect of urbanisation, among which Udemba
E N and others found a negative effect between economic growth and carbon emission
reduction by means of least squares and lagged regression analysis and suggested that
more renewable energy should be considered in the formulation of future carbon reduction
policies [4]. The dual carbon targets of carbon neutrality and carbon peaking have become
important external factors for China’s future energy use and economic restructuring [5].
The projection model is designed to simulate energy demand under different scenarios.
Zhang C studied and analysed the overall carbon emissions and related constraints of
the Yangtze River Economic Belt with the SFA model. The results showed a ‘U’ shape
between industrialisation and urbanisation and carbon emissions and efficiency levels and
that government intervention, regional trade, and energy consumption structure have a
negative incentive effect [6]. For the sake of increasing the productivity of carbon reduction
in the future, the government should insist on the restructuring of industries and the use of
innovative green technologies to provide endogenous motivation for green normalisation
to boost economic development.

1.2. The Impact of Urbanisation on the Spatio-Temporal Evolution Mechanism of Carbon Emissions
and Their Reduction Potential

As urbanisation continues to advance, the differences in the level of urbanisation
have led to the creation of urban agglomerations with a hierarchical structure and network
organisation in terms of geographical space, which, as the main form of urbanisation in
China, play a significant role in improving the level of industrialisation and the quality
of urban development. The control of carbon emission content and the maintenance of
economic growth speed will make this contradiction affect the development of a city in
a virtuous circle. Hu H’s team of scholars analysed the urban agglomerations in the
middle reaches of the Yangtze River; it turns out that carbon emissions still show a spatial
pattern of total hotness and coldness in the east. The contribution of the economic level
to the decoupling effect of carbon emissions exceeds 35%, and increasing energy intensity
will increase the pressure on carbon reduction [7]. Strengthening the restructuring of
energy consumption and developing green urbanism are important initiatives to effectively
leverage the carbon reduction effect. In the context of the dual carbon target, Sun J et al.
conducted a joint analysis of the variable influencing factors exhibited by differences in
electrification rates and carbon intensity, and the panel data results make clear that the
influencing factors are differentiated across regions, and different carbon intensity reduction
measures should be suggested for the actual situation of different regions [8].

The form of greenhouse gas emissions caused by global warming is more severe. Wang
W’s research team took the double carbon target as the research background and carried
out carbon emission prediction analysis with the help of the STIRPAT model and regression
analysis. They proposed regional governance mechanism and low carbonisation strategy
research on obtaining the spatial variability of carbon emissions [9]. Helping promote low-
carbon process can effectively ensure the coupling and coordination of urbanisation. Song Q
et al. conducted a study on low carbon development based on China’s provincial data and
the carbon emission–urbanisation system model, and the provincial footprint differences in
their low carbon development levels are obvious, as its coordination will be affected by
the geographical location [10]. In the context of international environmental constraints
on carbon emission reduction, Tang Y et al. analysed the quantile point regression model
of carbon emissions and found that there is an inverted U-shaped relationship between
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the level of urbanisation and the level of de-industrialisation and carbon emissions, and
that the differentiation of emission reduction measures should be focused on at different
urban development stages [11]. Meanwhile, Qi X’s empirical unpacking of the influence
of population urbanisation and trade openness suggests that scale structure, technology
level, and social effects can effectively play a mediating role, and that China should grasp
the application of the “inverted U” relationship in emission reduction control based on the
threshold effect [12]. Lv Q analysed the relationship between the drivers of freight carbon
emissions and regional urbanisation using a weighted regression model [13]. The results
showed that the above indicators had a non-linear relationship with the carbon emissions
per capita. Furthermore, population density is proportional to the degree of aging, with
a more significant reduction of carbon dioxide per capita [14]. Wang Q et al. explored
the nonlinear impact of population aging on carbon emissions with the help of the panel
threshold regression (PTR) model and set explanatory variables, threshold variables, and
control variables. The results showed that the intensification of population aging caused
an inverse U-shaped correlation between urbanisation and the carbon emissions of high-
income groups [15]. Xu B et al. carried out an empirical analysis of carbon dioxide in
the heavy industry with the help of a geographical weighted regression model and put
forward suggestions on carbon reduction measures for regional cities according to different
development conditions [16]. Qin H et al. conducted a dynamic analysis of the driving
process of China’s urban carbon dioxide emissions with the help of geographical weighted
regression and divided the impact degree of the driving factors by two-step clustering. The
results showed that the population density and the proportion of the secondary industry
were positively correlated with carbon dioxide emissions, while the number of buses per
10,000 people was negatively correlated with carbon dioxide emissions, and the spatial
heterogeneity of different influencing factors was more prominent [17]. Xu G and his
research team introduced the nonlinear autoregression with external input (NARX) model
to the problem of carbon emission peaking and predicted carbon dioxide emissions under
different scenarios with the help of a nonlinear artificial neural network. They ranked
the factors affecting carbon dioxide with the help of an average impact value and put
forward relevant suggestions and contents for carbon reduction [18]. Liu B explored the
correlation between the urbanisation process and carbon reduction efficiency and found
that population and economic effects had different impacts on carbon reduction efficiency
and that there are regional differences in their efficiency [19]. Therefore, the degree of
development of urban agglomerations and the mechanism of each effect should be taken
into account when improving carbon efficiency in the future.

1.3. Analysis of the Spatial and Temporal Evolution Mechanisms and Dynamics of Carbon
Emissions in the Context of Urbanisation
1.3.1. Model Construction for Measuring Carbon Emissions from Anthropogenic Sources

Carbon emission sources include natural carbon emission sources and anthropogenic
emission sources, which mainly describe the emission process of atmospheric carbon diox-
ide. Because of the wide range and complexity of its sources, the main carbon emissions that
cause changes in the greenhouse effect are currently anthropogenic sources. Figure 1 shows
the framework of the dynamics of the evolution of carbon emissions from anthropogenic
sources. It is significant to classify the factors influencing the generation of carbon emissions
from anthropogenic sources into different levels and to explore the interlinkages among
the influencing factors at different levels and their regulatory effects on carbon emissions
so as to effectively achieve the “right remedy” for carbon reduction and regulation.

The formulation of carbon reduction policy is one of the important measures to reduce
greenhouse gases. The STIRPAT model has been one of the main methods used to analyse
the impact factors of carbon emissions in recent years. The variable parameters in this
model include the impacts of the environment, population, GDP per capita, energy intensity,
and urbanisation rate on carbon emissions from energy consumption [20]. In this study,
the indicators in the model were replaced with anthropogenic source carbon emission
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variables, resident population, and carbon intensity to obtain the mathematical expression
of the extended STIRPAT model.

Yt = αXα1
1 Xα2

2 Xα3
3 Xα4

4 Xα5
5 (1)

where Y is the total amount of carbon emissions, X1, X2, X3, X4, and X5 are the drivers of
carbon emissions, representing the transport mode, carbon intensity, urbanisation level,
energy mix, and industrial mix respectively, and α1, α2, α3, α4, and α5 are the elasticity
factors of the indicator, and t is the year of time. The proportion of factors influencing
the level of carbon emissions varies from city to city, which in turn requires that the
carbon emission analysis is tailored to the local and temporal context. The interactions
among different driving factors can effectively reveal the dynamic pattern change of urban
agglomeration carbon emission efficiency [21]. In this study, spatial correlation coefficients
were introduced for the analysis of carbon emission efficiency, with Moran scatter plots
representing the spatial correlation of the data, where the correlation and aggregation
dynamics of the variable data are represented by the spatial distributivity and correlation
analysis. The mathematical expression is shown in Equation (2).

I =

[
n
∑

i=1

n
∑

j=1
Wij(xi − x)(xy − x)

]
/

[
S2

n
∑

i=1

n
∑

j=1
Wij

]
Ii = Zi

n
∑

j=1
WijZij

(2)

where I and Ii are the spatial autocorrelation and local autocorrelation, respectively, n is
the number of spatial cells, xi and xy are the carbon emissions of the city unit i, j and
x are the mean values of the variables, Wij is the contiguous space weight matrix, and
Z is the normalised form of the sample space. When two urban units are adjacent, the
spatial weight matrix has a value of 1 and vice versa, and when the local autocorrelation is
significantly positive, it indicates that the spatial difference between the urban unit and its
neighbouring city is small and vice versa. When its value is zero, it indicates that the spatial
distribution of the sample spatial units shows randomness. The coefficient of variation is
also used to express the relative differences among urban transport carbon emissions, and
its value is positively correlated with carbon emissions. Its formula is Equation (3).

S =

√√√√√ n
∑

i=1
(Yi − Y)

2

m
(3)

where m is the number of cities, and Y is the average carbon emissions. Distinct propel
factors have different carbon reduction effects, and strengthening carbon emission fore-
casting can be an effective way to analyse carbon budgets and their reduction potential
factors [22]. This study made use of the grey GM(1,1) model for carbon emission forecasting
analysis, i.e., the original data columns were cumulated and new series were generated
and differentiated to obtain the model GM(1,1), as in Equation (4).

X(1)(t) =
t

∑
k=1

X(0)(k)

dx(1)
dt + ax(1) = u

(4)

where X(1) and X(10) are the original and cumulative data columns, respectively, n
is the number of data points, n and a are the development factor and grey dosage,
respectively, and k is the number of samples in the series. The changes in the dynamic
characteristics of the different driver variables can be expressed by means of an im-
pulse response function, which effectively responds to the standard deviation shocks
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caused by the perturbation of the variables over a certain period of time, and whose
mathematical expression is shown in Equation (5).

Ynt = an1Ynt−1 + an2Ynt−1 + εnt (5)

where ε is the random perturbation value, and n is the number of periods.
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1.3.2. Analysis of Factors Influencing Carbon Emissions from Transport Sources and
Construction of Regression Models

Urban expansion is one of the manifestations of urbanisation, which is manifested
by an increase in construction land area, the accompanying improvement of transport
networks, the deployment of related infrastructure, and the positive effect of the increased
level of regional integration of urban agglomerations, which in turn leads to a spatial
displacement of anthropogenic carbon emissions. Petrol and diesel are still the dominant
fuels used in the transport system and have high carbon emission factors. The transport
system is also subject to changes in transport demand due to technology, socio-economic
development, and relevant policies [23]. The intensity of carbon emissions from different
modes of transport varies, with public transport and non-motorised vehicles producing
fewer carbon emissions, and adjusting the structure of intra-city passenger transport can
have an optimistic constraining influence on carbon emissions. In this study, the factors
that influence the carbon emissions of urban and internal transport were examined, and the
significance of the dependent variable was initially removed to obtain the relevant carbon
emission impact indicators.

The current mainstream transportation carbon emission measurement is the Intergov-
ernmental Panel on Climate Change (IPCC) mobile emission source measurement, which
mainly analyses the fuel data of regional transportation to obtain the carbon emissions, or
the total mileage travelled by a transportation mode multiplied by the fuel consumption
per unit distance travelled and then multiplied by the carbon emission factor to obtain the
total carbon emissions. With the increases in traffic demand and motorisation levels, the
conflict between energy saving and emission reduction in transport and the achievement of
sustainable goals for low carbon cities can be better resolved. The carbon emission model
for freight and passenger transport is shown in Equation (6).{

C f = Vi,k ∗ CFj,k ∗ rl
C = Si ∗ Mi ∗ Ni,l ∗ rl

(6)
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where C f and C are the transport carbon emissions of freight and passenger transport,
respectively, j and k are the mode and means of transport, respectively, Vi,k is the freight
transport turnover, CFj,k and C refer to the unit energy consumption of different vehicles
and the carbon emission coefficient of energy, respectively, Si is the number of i motor
vehicles, Mi is the mileage of motor vehicles, and Ni,l is the energy consumption mileage
of motor vehicles.

This study also took into account the spatial limitations of traditional linear regression
models in terms of independent variables and their easier fitting properties, which make
it difficult to produce better results for global estimates. Therefore, this study used the
least squares method (OLS) combined with the geographical weighted regression (GWR)
model to calculate the impact degree and spatial characteristics of traffic carbon emissions
by indicators [24,25]. The greater the spatial correlation of factors indicates their closer
proximity in terms of distance representation, and the mathematical model of the GWR
model is shown in Equation (7).

yi = β0(ui, vi) +
m

∑
j=1

β j(ui, vi)xij + εi (7)

where yi denotes the traffic carbon emissions of the city i, (ui, vi) are the spatial coordinates
of the city i, β0 denotes the constant term, xij denotes the city i and the characteristic
variable j, βj(ui, vi) is the regression coefficient of the characteristic variable, and εi denotes
the random error term that obeys normal distribution. At the same time, as the regression
parameters of the samples are different, the quantity of unknown parameters far outweighs
the quantity of sample points, so this study took weight values for minimising the sample
size bias by means of non-parametric smoothing estimation methods, where the distance
between points is inversely proportional to the weight value, i.e., the closer the distance,
the larger the weight value. The weighted least squares (WLS) method can minimise the
number of regression adoptions, and its mathematical expression is given in Equation (8).

m

∑
i=1

Wij(yi − β0(ui, vi)−
m

∑
j=1

β j(ui, vi)xij)
2 (8)

where W denotes the weighted correlation coefficient.
Equation (9) is the estimated value of the regression parameters.

β(ui, vi) = (XT
i W(ui, vi)Xi)

−1 ∗ XT
i W(ui, vi)Y (9)

where Xi and Y indicate the sets of Xlk and yi, respectively, and W(ui, vi) is the diagonal
matrix, with Wij as the diagonal element. The matrix is constructed to satisfy the basic
principle of spatial correlation, and theoretically, there is no optimal spatial matrix. The
setting of the weight values has a quantitative relationship with the spatial adjacency
analysis. The GWR model differs from the linear regression model in that the regression
parameters can vary with geographical location, and this study determined the degree of
influence between the sample points and the observation points with the help of the weight
function, whose mathematical expression is shown in Equation (10).

Wij =


[

1 −
( dij

b

)2
]2

, dij ≺ b

0 , dij � b
(10)

where Wij is the weight of the observation point i and the sample point j, dij is the distance,
and b is the non-negative decay parameter as a function between the distance and the
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weight. The performance of the GWR model was also tested using the information criterion
method, the mathematical expression of which is shown in Equation (11).

AIC = ln
(

RSS
n

)
+

n + k
n − k − 2

(11)

where k and n indicate the variables and samples, respectively, and RSS is the sum of the
squared residuals. Smaller AIC values indicate better model fit performance.

1.4. Analysis of the Spatial Change Mechanism of Carbon Emissions
1.4.1. Analysis of the Dynamics of Spatial Evolution

Common anthropogenic sources of carbon emissions include industrial energy mix,
transport mix, domestic carbon emissions, waste generation, etc. This study collected
statistical and analytical data on the response values of anthropogenic sources of carbon
emissions for different variable factors at different periods, and the experimental data were
collated through the Statistical Yearbook. The results are shown in Figure 2. The tracking
period of the response function was set to five years.
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their contribution.

Figure 2a shows the existential discrepancy in the changes in the response function
curves of the variables under different periods. Specifically, there was a small fluctuation in
the per capita GDP between the fourth and fifth periods, and the curve basically tended to
converge after seven periods, with the resultant value of the function stabilising at 2.5. The
trends of the values of the urbanisation rate, industrial investment structure, and urban
transport road network before the fourth period were upward and gradually tended to be
stable with the increase in the number of periods, at around 6.1, 4.8, and 7. The peak of
the curve for the industrial investment structure peaked in the third period, and then the
response to the shock gradually decreased after the ninth period, which was due to the high
carbon emission content because of the technological lag in the early stage of industrial
infrastructure construction, which gradually alleviated as the technology level rose. The
urban transport factor had two small peaks in the fourth and eighth periods, with values
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around 8 and 10, respectively, and still had a high response to shocks in the later periods. In
Figure 2b, the change in the contribution curve of all the indicators tended to level off after
the sixth period, except for the indicators of the GDP per capita and the urbanisation rate,
which each had a contribution of less than 30% in the later periods, and their values were
all greater than 40%. The contribution curves of the industrial structure and the structure
of the transport network show a high overall increase, and their degree of influence on
carbon emissions was more significant, with their contribution values reaching 44% and
65% respectively, and their average growth rates reaching 1.25% and 2.38%. Therefore,
controlling the carbon emission contents of transportation can validly decrease the carbon
footprint and improve the low-carbon effect. The regression model was then tested for fit,
where the dependent and independent variables were carbon emissions and impact factor
indicators (Table 1).

Table 1. Model test results of anthropogenic carbon emissions.

Variable Regression Model Least Squares Model

Particular Year Particular Year

2008 2019 2008 2019

R2 0.71426 0.83613 0.5872 0.6753
Correction value 0.61328 0.82149 0.5741 0.6184

AICc 100.236 132.206 112.615 146.451

The AIC is the Chichi information criterion, which can provide a standard to balance
the complexity of the estimation model and the goodness of the fitting data. The AIC
calculation is related to the parameter format and likelihood function of the model. The
model is too complex to cause data overfitting. The AIC was the smallest, which indicates
that it is less likely to be overfitted. The results in Table 1 show that the R2 of the regression
model proposed in this study was low, and the AICc values displayed by it reached 100.236
and 132.206 in 2008 and 2019, respectively, which are significantly smaller than the results
of the least squares model. This shows that the regression model proposed in this study
has good explanatory power for the variables and its fitting ability is good. An ADF test
was carried out on the influencing factors of carbon emissions, de-registering the data of
each variable, and a second-order difference calculation was carried out to test the stability
of the sequence. The results are shown in Table 2.

Table 2. ADF test results.

Variable ADF Test Value
Critical Value Stability of Critical Value

5% 10% 5% 10%

Ln-GDP per capita −5.8678 −4.1919 −3.5484 Stable Stable
Ln-Urbanisation rate −3.4121 −3.2975 −2.6712 Stable Stable
Ln-Construction of

traffic network −3.6344 −3.8696 −3.4366 Unstable Stable
Ln-Industrial structure −4.2687 −4.2361 −3.214 Stable Stable

Ln-Energy intensity −7.8535 −4.1941 −3.1383 Stable Stable
Ln-Carbon emissions −7.9128 −4.254 −3.1509 Stable Stable

In Table 2, Ln-Carbon emissions is the explanatory variable, and Ln-GDP per capita, Ln-
Urbanisation rate, Ln-Construction of traffic network, Ln-Construction of traffic network,
and Ln-Energy intensity are the explained variables. The ADF test expands on the DF test.
A time series is generated by the high-order autoregressive process. The ADF is a unit root
test, which refers to whether there is a unit root in the test sequence, because the existence
of a unit root indicates a non-stationary time series. Unit root refers to the unit root process.
It can be proved that if there is a unit root in the sequence, the process is unstable, which
will lead to false regression in the regression analysis. The regression results of different
variable factors in Table 2 were tested by ADF, and the values obtained were all critical
values under 5% and 10%, indicating that the corresponding variable difference sequence
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was a stationary sequence and convergent. The ADF test value of the explained variable
energy consumption was the smallest and stable at the critical value. The results in the
table show that energy consumption has the most obvious impact on carbon emissions.
The unit root test was then performed on the sequence of energy consumption, and the
results are shown in Table 3.

Table 3. Unit root test of sequence R.

Variable ADF Test Value
Critical Value Stability of Critical Value

5% 5%

R −5.9264 −4.1032 Stable

In Table 3, the calculation of the R code language with energy consumption as a variable
shows that the ADF test value had good stability at the 5% critical value, which indicates that
the data series under this variable passed the unit root test. Combining Tables 2 and 3, it can
be seen that the transportation industry has the largest elastic coefficient of energy carbon
emissions. The model was also analysed descriptively (Table 4).

Table 4. Description of statistical analysis results of anthropogenic carbon emission model.

Particular Year Indicator Variable Minimum Average Upper Quartile Median Lower Quartile

2008

GDP per capita 5.966984 7.234974 6.383695 7.278717 7.965187
Urbanisation rate 0.343585 0.443742 0.401038 0.444257 0.476837

Construction of traffic network −1.28616 −1.06545 −1.17016 −1.09939 −0.96977
Industrial structure −2.089422 −2.090591 −2.090026 −2.09048 −2.0909

Energy intensity 1.221207 1.222011 1.221458 1.221816 1.2224

2012

GDP per capita 1.88838 1.894461 1.892081 1.89517 1.896353
Urbanisation rate 0.102161 0.54444 0.347625 0.566481 0.686907

Construction of traffic network −3.025 −3.02132 −3.02274 −3.02119 −3.02004
Industrial structure 0.773384 1.172486 1.028765 1.20872 1367383

Energy intensity 1.453051 1.454019 1.453594 1.453968 1.454436

2016

GDP per capita 2.605258 3.205114 2.743477 3.190831 3.58422
Urbanisation rate 0.014337 0.023335 0.016208 0.021658 0.030056

Construction of traffic network 0.024088 0.029315 0.026246 0.029159 0.032167
Industrial structure 0.511129 0.511835 0.511538 0.511894 0.512102

Energy intensity 0.099268 0.107396 0.107185 0.117459 0.118547

2020

GDP per capita 0.01351 0.018718 0.00488 0.017537 0.044421
Urbanisation rate 2.586638 3.204158 2.895692 3.236121 3.458852

Construction of traffic network 1.076389 1.622078 1.186979 1.675626 2.012508
Industrial structure 0.026762 0.032784 0.030445 0.032254 0.036196

Energy intensity 0.0033 0.006264 0.002196 0.004966 0.010872

What can be seen in Table 4 is that in 2008 and 2012, the regression coefficients of the
transport road construction were negative, and their average values were −1.06545 and
−3.02132, respectively, while in 2016 and 2020, the regression coefficients of the transport
factor were positive, indicating that the positive effect of indicators on carbon emissions is
increasing. The regression coefficient of the industrial structure factor was negative only
in 2008, while the regression values of the GDP per capita, urbanisation rate, and energy
intensity indicators were positive, and there were differences in the extent of their positive
effects. The median values for the GDP per capita, urbanisation rate, and energy intensity
in 2020 were 0.017537, 3.236121, and 0.004966, respectively, while the mean values were
0.018718, 3.204158, and 0.006264. The variability of the coefficients indicates that the degree
of influence of the impact factors on carbon emissions is governed by the spatial location
of the different sample points. Therefore, the extent to which the spatiality of the impact
indicators affects carbon emissions should be considered in the urbanisation process.

To further analyse the spatial area of transport carbon emissions, the spatial correlation
between the two modes of transport was examined, and Table 5 was generated.

As can be seen in Table 5, the Moran index for the freight traffic carbon footprint in the
time dimension was between −0.4 and −0.2 and negative, with the corresponding p-values
below 10%, indicating a negative correlation between freight traffic carbon emissions and
urban space. This means that the carbon emissions from freight traffic decreased as time
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increased, while the increasing value of the Moran index also indicates that the spatial
variability of the freight traffic carbon footprint in the city decreased, and the spatial
interaction tended to increase significantly. The Moran index for passenger transport was
positive and exceeded 0.25, with a clear spatial aggregation effect and a positive correlation,
indicating that the spatial correlation of the passenger transport carbon footprint in the
city was more obvious. However, it is worth noting that the positive correlation shown
by passenger transport was weak, so further attention should be paid to the dynamics of
passenger transport carbon emissions for a positive effect. To further explore the spatial
regions of the transport carbon footprints, the experimental data were visualised and
analysed, and the results are shown in Figure 3.

Table 5. Spatial correlation test of carbon emissions from passenger and freight transport.

Mode of Transportation Particular Year Moran Index Variance Z Value p Value

Freight transport

2008 −0.365737 0.008912 3.808306 0.086382
2009 −0.387147 0.008898 4.034794 0.086349
2010 −0.393646 0.008894 4.103740 0.086344
2011 −0.360375 0.008897 3.754949 0.086344
2012 −0.328091 0.008881 3.415216 0.086396
2013 −0.320648 0.008886 3.342334 0.086590
2014 −0.351584 0.008869 3.665287 0.086675
2015 −0.342744 0.008827 3.576313 0.086425
2016 −0.243632 0.008804 4.644982 0.086367
2017 −0.25416 0.008800 4.761851 0.086331
2018 −0.267069 0.008800 4.898989 0.086331
2019 −0.267069 0.008800 4.898989 0.086330
2020 −0.267071 0.008805 4.898985 0.086310

Passenger transport

2008 0.270997 0.006923 2.808306 0.046347
2009 0.272891 0.006907 3.034794 0.046355
2010 0.277996 0.006905 3.103737 0.046368
2011 0.266091 0.006950 2.754949 0.046346
2012 0.263701 0.006920 2.415216 0.046480
2013 0.306428 0.006875 2.342334 0.046540
2014 0.327364 0.006930 2.665287 0.046367
2015 0.328524 0.006887 2.576313 0.046376
2016 0.349042 0.006853 3.644982 0.046341
2017 0.339905 0.006835 3.266723 0.046356
2018 0.349998 0.006789 2.898337 0.046331
2019 0.362062 0.006787 3.020208 0.046330
2020 0.371654 0.006891 3.012609 0.046325

As shown in Figure 3, the temporal changes in the carbon footprint of freight transport
in the urban agglomeration were mainly reflected in the higher carbon emission area
concentrated in the southwestern part of the urban agglomeration, where the overall
carbon emissions were lower, with average carbon emissions of 8.37 × 104 t, and the
spatial signature of the transport carbon emissions within the city show a decrease from the
centre to the surrounding area. The spatial agglomeration of the city is reflected in A1–A3,
where the spatial agglomeration of A1 changed from high–low (HL) agglomeration to no
significant change, and the spatial polarisation phenomenon was reduced. The spatial
agglomeration of A2 changed from no significant to low–low (LL) agglomeration, and a
certain degree of spatial characteristics is revealed, indicating that the spatial polarisation
was more pronounced in the neighbouring areas of the city, where the carbon emissions
from freight transport were higher than in this area. In the figure, the carbon footprint
of passenger transport shows a decreasing trend from the centre to the periphery over
time, with areas B1–B4, which had significant carbon emission changes and are mostly
situated in two regions, still maintaining a high agglomeration trend. The B3–B4 region
also changed from a non-agglomeration spatiality to HL and LH regions, indicating that
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there is an uneven spatial urban distribution of passenger transport, and two spatial effect
patterns of polarisation and diffusion exist.
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1.4.2. Analysis of Carbon Emission Projections and Reduction Potential

However, there is a certain degree of uncertainty and complexity in future develop-
ment, so in this study, scenarios were proposed for the future growth of urban agglomer-
ations, and their carbon reduction potential was analysed. For the prediction of carbon
emissions, this study processed the original data series, obtained the baseline series, and
designed a high-carbon scenario and a low-carbon scenario for data prediction. In this
study, 2015–2020 was set as the baseline scenario based on the outline of the plan, and the
urbanisation rate of this urban agglomeration was considered to be above 40%, assuming
high- and low-carbon scenarios for the baseline scenario. At the same time, the GM (1,1)
model is used to simulate the data, and the contents in Table 6 are obtained.

Table 6. Analysis of experimental data simulation results.

Test Number Actual Value Analogue Value Error (%)

1 20,943.256 20,939.889 0.582
2 21,522.169 21,521.802 0.236
3 23,281.647 23,279.281 0.227
4 25,403.166 25,416.799 0.136
5 25,432.648 25,398.281 0.248
6 26,073.214 26,066.847 0.273
7 26,613.897 2641.531 0.384

The results in Table 6 show that the error values between the experimentally simulated
scenarios and the actual values were relatively small, basically not exceeding 1%, and the
minimum error reached 0.136%, indicating that the model had a good ability to subsequently
simulate the data under different carbon emission scenarios, as shown in Table 7.

In Table 7, the projected carbon emissions of this urban agglomeration under the
high-carbon scenario show an increasing trend, with a relatively stable growth rate, and
reaching 344,482,500 tonnes in 2041; under the low-carbon scenario, the projected carbon
emissions of this urban agglomeration are less different from the baseline value, and the
carbon emission efficiency decreases under the time effect, reaching 314,995,700 tonnes
in 2031. The above results indicate that this urban agglomeration as a whole has a high
potential for emission reduction and can effectively contribute to the improvement of
environmental quality as a driving mechanism.
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Table 7. Anthropogenic source emissions under different forecast scenarios (10,000 tons).

Particular Year Baseline Scenario High-Carbon Scenario Low-Carbon Scenario

2017 29,181.94 28,337.26 28,765.90
2018 30,632.25 28,701.26 29,020.62
2019 31,169.14 29,055.36 29,437.65
2020 32,133.91 29,399.46 29,777.43
2021 33,127.63 29,733.54 30,111.93
2022 33,809.98 30,057.58 30,490.52
2023 34,331.97 30,371.60 30,680.21
2024 34,685.18 30,675.64 30,777.23
2025 35,041.93 30,969.77 30,875.73
2026 35,222.08 31,254.07 30,975.74
2027 35,311.61 31,528.66 31,077.29
2028 35,346.94 31,793.67 31,180.42
2029 35,377.49 32,049.24 31,285.15
2030 35,403.91 32,295.52 31,391.52
2031 35,426.73 32,532.70 31,499.57
2032 35,690.01 32,760.96 31,325.38
2033 35,139.81 32,980.49 31,061.21
2034 34,590.86 33,191.50 30,900.50
2035 33,793.65 33,394.20 30,875.79
2036 33,663.71 33,588.80 30,851.24
2037 32,534.95 33,775.54 30,826.87
2038 32,407.34 33,954.61 30,778.60
2039 32,280.88 34,126.28 30,754.71
2040 32,031.34 34,290.75 30,730.99
2041 31,908.23 34,448.25 30,707.42

1.4.3. Analysis of Carbon Emission Regulation Mechanisms and Study of Strategies

The analysis of the anthropogenic sources of urban agglomeration shows that there is
potential to reduce emissions by 25.402 million tonnes and 39.2716 million tonnes, and that
the adjustment of unreasonable structures can effectively regulate carbon emissions. With
the help of model decomposition, it can be seen that the contributions of industrial structure
and transport network structure to carbon emissions are 44% and 65%, respectively, with
average growth rates of 1.25% and 2%. At the same time, there is spatial variability in the
regression values of the GDP per capita, urbanisation rate, and energy intensity indicators,
and the negative effect of transport network construction on carbon emissions is more obvi-
ous. Therefore, this city cluster should actively facilitate the optimisation of the economic
structure and the application of high-tech means in the context of the development of
“carbon trading”, accelerating the clean utilisation of energy, and promoting the depth and
refinement of “carbon emission reduction” products. In the context of carbon emissions,
the sources of source carbon emissions are relatively extensive. Urban agglomerations
should not only take into account the environmental pressure caused by traffic carbon
emissions but also deepen technological upgrading, effectively control the consumption
of high-carbon energy, that is, strengthen the degree of interaction between the science
and technology industry and the service industry, and actively seek new manufacturing
industries at the high end of the value chain, with high technology content and high added
value. According to the geographical location and resource endowments of different cities,
the sub-regional analysis of a carbon emission reduction control strategy was carried out.
The consumption of fossil energy has become an important factor influencing the effec-
tiveness of carbon reduction in recent years. This study analysed the carbon emissions
from passenger and freight transport modes and found that the carbon emissions from
freight transport had a negative correlation with urban space, while the positive correlation
of carbon emissions from passenger transport had a significant spatial aggregation effect.
Moreover, there is a problem of uncoordinated spatial development of urban transportation
carbon emissions, and the polarisation effect of freight transportation is more prominent.
Therefore, in the formulation of future transportation emission reduction and control strate-
gies, the spatial nature of urban areas and the rationality of transportation road network
planning should be considered, and the use of new energy transportation modes should
be improved to reduce carbon emissions. The specific performance goal is to improve
manufacturing technology in terms of the vehicle fuel economy to reduce the unnecessary
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waste of engine thermal efficiency and rotating systems, to subsidise new energy vehicles
to expand the market share of new energy vehicles, to inhibit the role of carbon emissions
from the transportation industry a certain extent, and to achieve the construction and
perfection of an urban transportation system. At the same time, we will further optimise
the resource allocation of different inter-city transportation mode networks and realise
traffic convenience based on the carrying capacity of the resource environment and the
urban space volume ratio on the basis of improving the urban function distribution. This
can also balance the spatial distribution of traffic flow according to weather conditions and
high and low peak periods of travel, and reasonably allocate urban traffic resources. With
the continuous development of the integration of urban agglomeration, the connection of
intercity transport will be strengthened, and passenger transport will become the main
source of transport carbon emissions. Governments can regulate the selection of vehicle
types and vehicles by issuing policy documents and declaring certain policy preferences.
Each city should adjust their measures to the local conditions, formulate differentiated
transport carbon emission reduction plans, increase macro-control and local benefits, and
formulate different emission reduction plans according to the characteristics and current sit-
uation of urban development. The burgeoning of carbon reduction and control strategies in
the context of urbanisation should be based on the micro- and meso-levels of regional devel-
opment and the spatial nature of carbon emissions, for the reason of effectively accelerating
the realisation of the dual carbon goals and the promotion of a low-carbon economy.

1.5. Outlook

The development of infrastructure has contributed to China’s urbanisation and has
inevitably increased the burden of high consumption, with industry, construction, and
transport being the main carbon generators. At the same time, the carbon emissions from
waste caused by the increase in population cannot be underestimated, further making the
realisation of a low-carbon economy in China difficult and challenging. A possible method
to cut down carbon emissions is to accelerate the construction of low-carbon urbanisation.
Carbon emission impact indicators and their spatial dynamics can provide new inspiration
and ideas for the formulation of relevant strategies. This study took urban agglomeration
as the research object, and through model construction and spatial and temporal evolution
analysis, it was found that an increase in the urbanisation rate and the adjustment and
optimisation of transport structure can advance the achievement of the carbon reduction
goals. However, as there are many factors influencing carbon emissions, and the variability
and complexity of these factors vary over time, future research needs to refine the analysis
and account for the factors influencing carbon reduction. A wise measurement model
should be built with the help of multiple information tools in order to clarify regional
carbon reduction lists and the effectiveness of carbon reduction strategies. At the same
time, the endogenous carbon reduction mechanism of carbon trading can advance the
achievement of the dual carbon goals and sustainable economic development under the
urbanisation process.
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