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Abstract: The goals of sustainable development are constantly negatively impacted by infrastructure
initiatives. The importance of these projects in advancing the economic, social, and civilizational
growth of the country will, however, prevent their construction from being stopped. The overall
construction of the project is related to the scientific and unbiased assessment of an infrastructure
project’s sustainability throughout the decision-making stage. Based on the references documents,
this paper establishes an index system for evaluating an infrastructure project’s sustainability from
three aspects: environment, economy, and society. In the assessment process, the cloud model was
used to describe the various attribute values of infrastructure project sustainability, which achieved
the uncertainty measures for infrastructure project sustainability, and a cloud model-based assess-
ment method for infrastructure project sustainability was proposed by modifying the attribute value
by the penalty factor. Finally, an assessment method for infrastructure project sustainability based
on the cloud model was proposed after the attribute values were modified by using a continuous
interval argument ordered weighted average (C-OWA) operator. The model carries out an over-
all sustainability assessment by generating a synthesized cloud with the weight to calculate the
similarity of assessment factors, which takes the randomness, fuzziness, and uncertainty of expert
qualitative assessment into account, and uses the analytic hierarchy process (AHP) method and the
C-OWA operator to determine the weight of the sustainable index and the aggregation of the expert
scoring interval. A case study was conducted to clarify how this strategy was applied. The study
provides a valuable and useful tool for the operational stage to assess the achievability of municipal
infrastructure projects.

Keywords: municipal infrastructure projects; sustainability evaluation; entropy cloud model; continuous
interval argument ordered weighted average (C-OWA)

1. Introduction

It is a well-known truth that municipal infrastructure projects are an essential reflection
of the nation’s regional modernization since they play a crucial role in generating and sus-
taining a suitable standard of life [1]. The benefits of these municipal infrastructure projects
in terms of flood management, alleviating water shortages, producing renewable energy,
ensuring food security, and general economic development have been immense [2–4]. How-
ever, the advantages come at a steep price. With large-scale infrastructure construction,
many problems have arisen: lack of foresight in infrastructure planning [5], investors’ focus
on short-term interests and neglect of long-term interests [6], over-emphasis on construction
and contempt for maintenance [7], low level of operation [8], degradation of freshwater and
soil ecosystems [9,10], soil and river erosion [4,11], and large population resettlements [12].
In addition, infrastructure projects often require significant land use and long-term invest-
ment; therefore, it often leads to problems related to noise pollution, ground and water
pollution, disturbance to human life and ecosystems, habitat fragmentation, and resources
consumption [11].
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These problems have not only led to a severe waste of resources but have also impeded
the development of municipal infrastructure projects and lost the original intention to
improve the living standards of local residents and promote economic development [4,13].
These are concrete manifestations of the sustainability of the project, which are rooted in
neglecting to evaluate the sustainability dimension in the feasibility study of a project and
the lack of sustainability awareness in these infrastructure-construction and management
procedures [14].

The above-mentioned problem is a manifestation of unsustainable municipal infras-
tructure projects. It can be attributed to the lack of a comprehensive and systematic
understanding of the factors involved in the sustainability evaluation of municipal in-
frastructure projects. In addition, sustainability evaluation of municipal infrastructure
projects does not adequately consider the relationship between various factors and lacks a
systematic approach to sustainability evaluation [10]. Therefore, it is essential to evaluate
the sustainability of infrastructure efforts after they are implemented.

It has also brought the issue of the sustainability of municipal infrastructure projects
to the attention of numerous experts and academics. Shen et al. [15] revealed the relative
dispersion of project sustainability assessment indicators and helped decision makers to
identify the most appropriate solutions based on key assessment indicators (KAIs). This
study proposes an alternative method for assessing the sustainability performance of mu-
nicipal infrastructure projects. Fernandez-Sanchez et al. [16] developed a methodology for
identifying, classifying, and defining sustainability indicators and a selected set of indica-
tors based on risk management criteria. In addition, this study highlights the high time
and cost problems of the proposed methodology when applied to municipal infrastructure
projects in Spain.

Banihashemi et al. [17] identified the critical success factors (CSFs) of the triple bottom
line of sustainability (environmental, social, and economic) and proposed project man-
agement practices for incorporating sustainability into developing country construction
projects after the model had been verified using questionnaire surveys utilizing the analyti-
cal technique of partial least squares structural equation modeling (PLS-SEM). According
to Aimbavboa et al. [18], the main challenge for sustainable practices in the South African
construction industry is the additional cost consumption during construction.

These evaluation methods solve the problem of infrastructure project sustainability
evaluation to some extent; however, they mainly focus on one dimension of infrastructure
project sustainability or a particular industry, and there is a less systematic evaluation of
infrastructure sustainability. At the same time, these evaluation methods are still deficient
in measuring and presenting infrastructure project sustainability. Most of them ignore
the uncertainty of infrastructure project sustainability, such as fuzziness and randomness.
Additionally, most evaluation processes use precise mathematical theory to describe and
measure sustainability or classify the evaluation results in a threshold way. The sustainabil-
ity evaluation often varies from person to person, and the evaluation results have certain
randomness and fuzziness.

The cloud model has significant advantages in evaluating things because it handles
qualitative concepts and quantitative descriptions in an uncertain way. To reflect the degree
of cloud droplet dispersion and the assessment’s actual circumstances, the cloud model was
used in the evaluation, this paper uses the amount of entropy (En) to reflect the randomness
and fuzziness and combines the expectation (Ex) and the excess entropy (He) to avoid
the fuzziness and uncertainty in the evaluation. Then, the Analytic Hierarchy Process
(AHP) and C-OWA operator are used to calculate the weight of the sustainable index
and the aggregation of the expert scoring interval. Finally, the overall sustainability has
been evaluated using a synthesized cloud which the weights rebirth into to calculate the
similarity of the evaluation factor.

The following is an overview of the paper’s main parts: In Section 2, 42 critical factors
that affect infrastructure project sustainability are examined through a literature review,
and index systems are developed; Section 3 deals with the preliminary questions; Section 4
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presents a model for evaluating the sustainability of infrastructure based on cloud model
and C-OWA aggregation; Section 5 gives a real-world case study that demonstrates how
this approach might be used for municipal infrastructure projects; Section 6 provides
discussion and the conclusion.

2. Establishment of Sustainable Indicators

For the duration of an infrastructure project’s life cycle, sustainability indicates urban
economic, social, and environmental growth. Science and operations should be considered
in the design of the positive, sustainable evaluation index system of municipal infrastruc-
ture projects, as well as layered and systematic, qualitative and quantitative, and objective
and comprehensive. Evaluation index systems are developed based on the nature of a
project and are established as a process from individual to general. Examining the lit-
erature and specific case studies and inviting educators are all good ways to obtain the
sustainability impact of municipal infrastructure projects. After further consultation with
experts, the evaluation index system took availability and maneuverability into considera-
tion. This paper summarized 42 factors affecting infrastructure project sustainability by
frequency analysis and theoretical analysis after consultation with experts and combing
and summarizing the literature of the infrastructure project sustainability study, as shown
in Table 1.

Table 1. Analysis of factors influencing sustainability of municipal infrastructure projects.

Index Influence Factors Explanation Reference

Environmental

Flooding risk Size and risk of potential floodplains area [19–23]

Energy consumption Consumption of energy resources such as
electricity, gas, and oil [15,24–30]

Raw materials
consumption

Consumption of materials used in all project
phases, such as cement, wood, steel, bitumen,

aggregate, bricks . . . etc.
[15,24–26,31]

Waste recycling
and reuse The utilization and recycling of waste. [15,24,25,32,33]

Energy conservation Energy conservation of construction technology,
equipment, material, etc. [26,34–37]

Using renewable
resources

The utilization of renewable resources, less
wastage, and contamination. [25,28–30,32,38–40]

Materials with low
health risk Utilization of materials with low health risk. [25,28]

Water pollution Water quality of the entire life cycle of municipal
infrastructure projects. [15,24,25,27,29,32,41–43]

Air pollution Air quality of the entire life cycle of municipal
infrastructure projects. [15,24,25,27,29,32,41–43]

Noise/acoustic
pollution

Noise decibels of the entire life cycle of municipal
infrastructure projects. [15,24,25,27,29,32]

Land use
Protection and rational development and

utilization of local cultural relics, natural water
systems and underground Spaces, etc.

[34,35,44]

Greening and
environment Plant diversity and green space ratio., etc. [6,25,34,35,45]

Energy performance

Energy performance of the technology in
construction and community equipment, use of
energy-saving materials, and material selection

that takes recycling performance into account, etc.

[34–36,46,47]

Environmental fusion The satisfaction of the public sphere
and environment. [15,24,25,29,32,42,48]

Environmental impact The impacts of pollutants, emissions, household
garbage, etc. on the environment. [25,32,34]

Eco-efficiency Less environmental footprints. [38,39,49]
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Table 1. Cont.

Index Influence Factors Explanation Reference

Biodiversity The increase in biodiversity and the attraction of
other species. [38,49]

Economy

Life cycle profits Profits of the entire life cycle of municipal
infrastructure projects. [32,50,51]

Payback period The number of years needed to recover the initial
cash outlay. [15]

Life cycle costs Costs of the entire life cycle of municipal
infrastructure projects. [37]

Opportunity costs
Investments in other municipal infrastructure

projects will be limited due to the fixed and liquid
capital bound to the project.

[25]

Operation costs Costs of operation of the infrastructure during the
operation period. [25,26,34,50,52,53]

Economic fusion The impacts of pollutants, emissions, household
garbage, etc. on the environment. [25,34]

Project budget Total project budget of the infrastructure. [15,24,25,27,34,54]

Business activity Business activities within and around the
municipal infrastructure projects. [34,55]

Financial returns Efficiencies in operation management contributed
to the increase in profits. [38,56,57]

Energy costs Costs associated with oil, gas, and
electricity consumption. [25]

Economic performance
The project increases the local economy’s

productivity and introduces economic benefits to
society as a whole.

[25]

Durability Service life of municipal infrastructure projects. [26,37,58]

Social

Government strategy High-level sustainable policies are being pursued
by the government. [31,35,38,59]

Cultural continuity Practices, materials, and styles associated with
tradition, such as vernacular architecture. [24,34,42,45,60–62]

Stakeholder
involvement

Relationship management among stakeholders
and participation of stakeholders. [38,39,63]

Social adjustment Settlement intentions, discrimination levels, social
references, etc. [34]

Public interests Public consultations, social security, health care,
enrollment of children, etc. [6,34,60,61,64–67]

Workers’ Safety
and Health

A safety and health care plan is implemented
during the implementation of the project to ensure

the safety of the working staff.
[25,37]

Safety standards Provision of safety features and amenities for users
on built-in infrastructure to lower accident rates [25,61,68]

Social satisfaction Participation in activities and satisfaction with the
community among residents [34,62]

Productivity
improvement of
industries and
communities

Construction of infrastructure enhances efficiency
and productivity in all industries

and communities.
[38,69]

Employment provision
Project implementation adheres to safety and

health care principles for protecting the
working staff.

[24,25,27,28,32,34,35,43,48,61]

Adaptability
Capacity of infrastructure to withstand and adapt

to external environmental disturbances and
changing public requirements.

[70–72]

Livability of
communities

Application of infrastructure for improving the
quality of life for people. [38,39,62]

Supply capacity of
public infrastructure

Improved drainage, parking, service level,
capacity, electrical, warning systems, etc. [24,25,32]
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According to Table 1, the classification of indicators can be seen, but the weight of each
index in each category and the importance of each index in each specific case is different,
so it is necessary to analyze specific issues, use numbers to reflect the importance, and then
reflect the sustainability of the project. Entropy is a state parameter that can well reflect the
randomness and fuzziness of the concept, so this paper analyzes the parameter values of
each index in the specific case by cloud model.

3. Methodology
3.1. Cloud Model

Cloud is the uncertainty transformation model described in language values between
a qualitative concept and its numerical representation; or simply, the cloud model is the
uncertainty model for qualitative and quantitative interconversion.

Let U be a domain, expressed in exact numbers, and let A be an equivalent qualitative
concept in U. For an element X in the domain that is a random instantiation of a concept A,
there exists a random number y ∈ [0, 1] with a stable trend called the degree of determina-
tion of X relative to A, i.e., the degree of affiliation. The membership cloud refers to the
distribution of membership within the domain, often referred to as the cloud. The cloud is
made up of many hazy droplets. As opposed to the cloud droplet, which is a quantitative
depiction of the qualitative notion, the cloud’s overall form represents critical features of
the qualitative concept. In the generation process of cloud droplets, the qualitative concept
is mapped onto a quantitative value to demonstrate uncertainty mapping.

The cloud model represents the primitives in natural language–language values. The
mathematical properties of the linguistic values are represented by the numerical features
of the cloud—expected Ex, entropy En, and excess entropy He.

Expectation Ex: The most representative point of the qualitative concept as well as the
most representative sample of the quantitative concept is thought to be an expectation of
the spatial distribution of cloud droplets in the domain.

Entropy En: The “entropy” concept was first used in thermodynamics as a state
parameter and has since been introduced to measure the degree of uncertainty in statistical
physics, information theory, complex systems, etc. The cloud model represents qualitative
concepts by entropy, which represents their granularity. As entropy increases, the concept
becomes more macroscopic. Furthermore, it serves as a measure of the uncertainty of
qualitative conceptions, which is dictated by the concepts’ unpredictability and fuzziness.
En can be seen as a measure of the qualitative concept’s unpredictability. It reflects the
dispersion of cloud droplets that can be interpreted as a qualitative concept. On the other
hand, a concept inside a domain space can accept a vast number of cloud droplets. As well
as qualitative concepts, it measures the range of cloud droplets that can be accepted by a
particular concept. The same numeric feature reflecting randomness and fuzziness will
inevitably reflect the relevance of both.

Excess entropy He: The unpredictability and fuzziness of entropy, which is the level
of cohesiveness between cloud droplets, influence the uncertainty measurement of entropy,
known as entropy-of-entropy. Excess entropy indicates greater dispersion, randomness,
and thickness of the cloud.

Cloud generator (CG) or cloud production algorithm can be implemented through
software with modular components or hardware treated with a cure. This research applied
the mathematical software MATLAB to implement the cloud generator. By function, cloud
generators can be divided into forward cloud generators and backward cloud generators.

Forward Cloud Generator: Forward cloud generators combine the digital features of
3 clouds (Ex, En, He) in a forward, direct process and the number of cloud drops needed,
along with the coordinates of each droplet in the domain and the probability of each cloud
drop representing the concept. The principle and occurrence are shown in Figure 1.

Backward Cloud Generator: The backward cloud generator puts a model for changing
quantitative quantities into qualitative notions into practice. It may transform a certain
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volume of precise data into a qualitative concept conveyed in a digital feature (Ex, En, He).
The principle and occurrence are shown in Figure 2.
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The most prevalent and significant cloud model is the forward cloud. Taking the
one-dimensional forward cloud as an example, its algorithm for generating cloud droplets
is as follows:

Input: the numerical eigenvalues of the qualitative concept (Ex, En, He) are the digital
representation of the cloud model, as well as the number of cloud droplets;

Output: the quantitative value of cloud droplets; that is, the certainty of cloud droplets
for qualitative concepts.

Generate the normal random number Eni = NORM(En, He) with En as expectation
and He as variance. Eni is the generating function of the normal random number, with En
as the expectation and He as the variance;

Generate the normal random number xi = NORM(Ex, Eni) with En as the expectation
and Eni as the standard deviation;

Calculate the certainty of xi

µ(xi) = e
− (xi−Ex)2

2(Eni)
2 ; (1)

Set µ(xi) expressed as the conceptual, quantitative certainty of cloud droplets xi;
Repeat (1)~(4) until a cloud droplet is generated to form a cloud model.

3.2. Continuous Interval Argument Ordered Weighted Average (C-OWA)

Ordered Weighted Average (OWA) operator is mainly used to describe and deal
with multi-criteria aggregation problems and form an overall decision function [73]. This
conceptualization highlights the importance of OWA weighting vectors for influencing
decision-makers’ attitudes [74]. Research on operators has gained significant attention in
recent years due to its multi-field and multi-angle nature [75]. The OWA operator was
employed in this study to resolve the decision scheme’s ranking difficulty and to condense
the judgment-related data.

An OWA operator of n dimension is a mapping f : Rn → R with the ith position of

a set of order weights w = w1, w2, · · · , wn such that wj ∈ [0, 1], j = 1, 2, · · · , n,
n
∑

i=0
wi = 1,

and the definition of aggregation function is as follows [73,76]:

f (a1, a2, · · · , an) =
n

∑
i=1

wibi (2)

where bi is the i-th largest element of the collection of aggregated objects a1, a2, · · · , an. OWA
is a unified framework for decision-making under uncertainty. The following qualities
are required for it to be chosen w [77]: (1) there is an order to the weights; that means
wn ≤ · · · ≤ w2 ≤ w1 or 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn; (2) in summary data, the weights do not
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depend on the size of the sets but on the order in which they are sorted b1, b2, · · · , bn and
the degree of optimism of the decision maker.

On the basis of this definition, process weight assembling and rank data ai
(i = 1, 2, · · · , n) down sequencing, since ai and wi are non-correlated, wi can be defined
in advance as it only relates to the ith position. Different OWA operators correspond to
various weight vectors as a result.

Due to OWA operators only being suitable for the aggregation of discrete data, a new
continuous interval data information aggregation operator was proposed [78]:

Let [a, b] be the interval number, and fρ([a, b]) =
∫ 1

0
dρ(y)

dy (b− y(b− a))dy, which
ρ : [0, 1]→ [0, 1] is a function with the following properties: (1) ρ(0) = 0; (2) ρ(1) = 1;
(3) if x > y, then ρ(x) ≥ ρ(y). Then f is called Continuous Interval Argument Ordered
Weighted Average (C-OWA) and ρ is called Basic Unit-interval Monotonic (BUM) function.

This definition defines the interval [a, b] of definite uncertainty after the function of
the C-OWA operator f ; it is transformed into a deterministic value, which integrates each
interval data.

Set the level of optimism among policymakers to λ =
∫ 1

0 ρ(y)dy(0 ≤ λ ≤ 1),
then it can be obtained: fρ([a, b]) = λb + (1 − λ)a. For any BUM function ρ, there is
a ≤ fρ([a, b]) ≤ b. In the special case, if ρ(y) = yr(r ≥ 0), then fρ([a, b]) = b+ra

r+1 . Among
them, the value of parameter r can express the risk attitude of decision makers. When
r = 1, the decision maker is risk neutral. When r ∈ [0, 1), the decision maker is risk
preference (optimistic). In addition, when r ∈ (1,+∞), the decision maker is risk aversion
(pessimism). When different values of r are taken, then (1) r → 0 , fρ([a, b]) = b; (2) r = 1,
fρ([a, b]) = (a + b)/2; (3) r → +∞ , fρ([a, b]) = a. The computational flow of the C-OWA
operator is shown in Figure 3.
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4. Establishment of a Sustainability Evaluation Model of Infrastructure Based on the
Cloud Model
4.1. Sustainable Evaluation of Municipal Infrastructure Projects Based on the Cloud Model

The digital attributes of the cloud model are introduced in accordance with the char-
acteristics of randomness, fuzziness, and other uncertainties of infrastructure project sus-
tainability, as well as the attribute state preferences of decision-makers in the evaluation



Sustainability 2023, 15, 4706 8 of 23

process, using the expectation, entropy, and excess entropy to describe the attribute values
of infrastructure project sustainability, reflecting the uncertainty measure of infrastructure
project sustainability. Combining fuzziness, randomness, and discreteness organically
enables the transformation between uncertainty language and quantitative value. The
evaluation process is as follows:

(1) Based on the sustainable development level of each indicator, the importance of each
indicator is judged on the basis of dividing the sustainable development level, and the
weight of each indicator is determined by applying AHP for a two-by-two comparison;

(2) The evaluation interval of each secondary evaluation factor is determined by combin-
ing expert judgment and expert inquiry, and the C-OWA operator is applied to obtain
each index cloud’s digital eigenvalues;

(3) The cloud model for each primary evaluation factor is generated from the cloud
digital features of the secondary evaluation factors;

(4) In similarity calculation, the digital eigenvalues of the first-order evaluation factor
are compared, with each standard sustainability sub-cloud corresponding to the
evaluation factor to calculate the similarity;

(5) We use the similarity of the obtained first-order evaluation factor for overall sustain-
ability assessment.

Figure 4 illustrates the sustainability assessment process in this study.
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4.2. Generation of Sustainability Standard Cloud

In order to evaluate, a series of standard clouds need to be pre-set in the system. As a
reference for entity evaluation, each standard cloud corresponds to an evaluation factor
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indicating the corresponding sustainable level. Assuming that the range of sustainable
evaluation scores for municipal infrastructure projects is [0, 10], the interval is divided into
n sub-intervals [Rmin, Rmax], corresponding to their respective levels of sustainability. The
calculation of the standard cloud is as follows [79]:

(1) Calculate the expectation according to the upper Rmax
i and lower Rmin

i of the
i interval:

Exi =


Rmin

(i), i = 1
Rmin

(i)+Rmax
(i)

2 , 1 < i < n;
Rmax

(i), i = n

(3)

(2) Calculate entropy based on the results in (1):

Eni =
Exi+1 − Exi

3
; (4)

(3) Computational excess entropy Hei = ki.

He = k reflects the randomness of sustainability, the value should not be too large be-
cause the larger the He, the greater error of Ex, the greater the randomness of sustainability,
and the more difficult to determine the results. There is currently no extremely developed
approach for figuring out the value of He that can be chosen based on the real circumstance
and practical experience.

The forward cloud generator and the semi-cloud generator produce the standard
clouds of each evaluation factor in accordance with the cloud model’s identified digital
eigenvalues (Ex, En, He) (rising and falling clouds).

4.3. Cloud Processing of Attribute Values

In evaluating the sustainability of municipal infrastructure projects, experts can often
only give qualitative knowledge of each attribute because it is difficult to provide the digital
eigenvalues of the cloud directly. Therefore, this paper adopts the group decision-making
method. The expert individual gives the score interval number of the attribute value and
then transforms the clustered interval number into the cloud model. The specific steps of
the algorithm are as follows:

Step 1: According to the actual situation of the project, the experts give the evaluation
interval of the attribute on the domain [0, 10] in the light of a certain scale;

Step 2: The C-OWA operator is used to assemble the evaluation interval number of
each expert;

Step 3: Using the OWA operator for integration based on Step 2, the assembly interval
number is obtained;

Step 4: The resulting assembly interval number is transformed into the cloud model.
In Step 3, the OWA operator is slightly modified as follows: sort according to the

numerical size obtained in Step 2, but when the OWA operator is integrated, the interval
number is used as the basic data of operation. The addition and multiplication operations
involved are defined as follows:

If the interval number is [a, b] and [n, m], τ ∈ R+, the addition and multiplication of
the interval number are determined as follows:

[a, b]⊕ [n, m] = [a + n, b + m]; (5)

τ[a, b] = [τa, τb]. (6)

The calculation method of transforming the interval number into the cloud model in
step (4) are as follows: Use the Formula (1) to calculate the expectation Exi; calculate the
entropy and the excess entropy according to the formulas En = Rmax−Rmin

6 and Hei = k.
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4.4. Formation of First-Order Assessment Factor Cloud

After the cluster interval number obtained from the C-OWA operator is transformed
into a cloud model, the digital eigenvalue of the secondary evaluation factor can be calcu-
lated first with the help of the synthesized cloud theory in the virtual cloud, and then the
calculated digital eigenvalue can be used to generate the Cloud Model of each primary
evaluation factor. The formula is as follows:

Ex = Ex1×En1×ω1+Ex2×En2×ω2+···+Exn×Enn×ωn
En1×ω1+En2×ω2+···+Enn×ωn

En = En1 ×ω1 + En2 ×ω2 + · · ·+ Enn ×ωn

He = He1×En1×ω1+He2×En2×ω2+···+Hen×Enn×ωn
En1×ω1+En2×ω2+···+Enn×ωn

. (7)

Among them, the expectation of each secondary evaluation factor is Ex1, Ex2, . . . . . . ,
Exn, the entropy of each secondary evaluation factor is En1, En2, . . . . . . , Enn, the super
entropy of each secondary evaluation factor is He1, He2, . . . . . . , Hen, and n is the number
of secondary factors under this primary evaluation factor.

4.5. Comprehensive Evaluation of the Sustainability of Municipal Infrastructure Projects

In order to better evaluate the sustainability of municipal infrastructure projects,
economic, social, and environmental aspects of municipal infrastructure projects can be
evaluated separately by the following process.

Using the Formula (7), the numerical eigenvalues of the first-order evaluation factor
(Ex, En, He) are obtained, compared with the standard sustainability sub-cloud of the
evaluation factors, and the similarity is calculated to find the standard sub-cloud that is
closest to it. The sustainability level corresponding to the standard sub-cloud is the entity’s
sustainability level.

Respectively, set the synthesized cloud and standard cloud as MYC1(Ex1, En1, He1)
and MYC2(Ex2, En2, He2). The satisfaction cloud MYC1 was passed through the forward
cloud generator of the Cloud Model to generate a cloud droplet xi. If the determination of
x in the satisfaction cloud MYC2 is µ, the mean is the similarity of the satisfaction cloud
MYC1 and the satisfaction cloud MYC2, recorded as δ.

Input: MYC1(Ex1, En1, He1), MYC2(Ex2, En2, He2);
Output: output δ (the resemblance between the synthesized cloud and the stan-

dard cloud).
The specific steps of the algorithm are as follows:

(1) A random normal number with En1 as expectation and He1 as standard deviation is
generated in the synthesized cloud MYC1;

En1
′ = normrnd(En1

′He1
2) (8)

(2) A random normal number with Ex1 as expectation and En1
′ as standard deviation is

generated in the synthesized cloud MYC1;

X1 = normrnd(Ex1, En1
′2) (9)

(3) The determination degree is calculated by substituting X1 into the standard cloud
MYC2;

µi
′ = e

− (xi−Ex)2

2(Eni)
2 (10)

(4) Repeat steps 2 and 3 until n determinations (µi
′) are generated;

(5) Calculation of similarity:

δ =
1
n∑ µi

′. (11)

The calculated synthesized cloud and standard cloud are calculated for cloud model
similarity to find the highest grade of similarity. The overall sustainability is then evaluated
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using the similarity of the obtained first-level evaluation factor, and the certainty (πj) of
the jth evaluation grade for infrastructure project sustainability is calculated, with the
largest evaluation grade being the final overall sustainability evaluation grade for the
infrastructure project.

πj = ∑ δij ×ωi (12)

5. Case Analysis

Take the Second Ring Road Expressway renovation project in City A as an example.
The total length of the Second Ring Road Expressway project is 65.31 km, with a total invest-
ment of approximately RMB 22.39 billion, of which the construction cost is approximately
RMB 17.89 billion (approximately RMB 15.83 billion for main works and RMB 2.06 billion
for ancillary works). The project is divided into 14 tender sections. The main works include
13 interchanges, 6 river bridges, 12 cross-line bridges, 45 flyovers, and 2 graben passages.
According to the actual situation of the project, the relevant government departments used
the AHP method to determine the weight of each sustainable index of the project according
to the real situation of the project and then evaluated each index based on the C-OWA
operator. Five decision-making experts were first engaged in rating the sustainability
indicators of the project based on actual project information, as shown in Table 2.

Table 2. Sustainability evaluation of a highway project in a city.

First
Evaluation

Factor
Weight Second Evaluation Factor Weight Five Expert Scores

Environment 0.49

Flooding risk 0.11 [7, 8] [8, 9] [7, 8] [8, 8.5] [7, 8]
Energy consumption 0.05 [5, 5.5] [8, 9] [8, 9] [8.5, 9] [7, 8]

Raw materials consumption 0.09 [6, 7] [7.5, 8.5] [7, 8.5] [8.5, 9.5] [7, 8]
Waste recycling and reuse 0.03 [5, 5.5] [6, 8] [8, 8.5] [8, 8.5] [6, 7]

Energy conservation 0.07 [6, 7] [8, 9] [8, 9] [7, 8.5] [8, 9]
Using renewable resources 0.12 [7, 8] [7, 9] [7, 8] [8, 9] [8, 9]

Materials with low health risk 0.06 [6, 7] [6, 8] [7, 8] [7, 8.5] [8, 9]
Water pollution 0.08 [7, 7.5] [7, 8] [7, 8] [6.5, 8.5] [6, 7]

Air pollution 0.03 [5, 5.5] [6, 8] [7, 8.5] [8, 8.5] [5, 6]
Noise/acoustic pollution 0.03 [5, 5.5] [7, 8] [8, 8.5] [8, 9] [6, 7]

Land use 0.12 [8, 9] [8, 8.5] [8, 9.5] [8, 9] [5.5, 6.5]
Greening and environment 0.10 [7, 8] [7, 8] [8, 9.5] [7, 8.5] [8, 9]

Energy performance 0.01 [5, 6] [7, 9] [9, 9.5] [7, 8] [8, 9]
Environmental fusion 0.03 [6, 6.5] [7, 8.5] [7, 8] [6.5.7.5] [5, 6]
Environmental impact 0.03 [6, 8] [6, 8] [8, 8.5] [8, 8.5] [4, 5]

Eco-efficiency 0.03 [6, 6.5] [7, 9] [7, 8] [7.5, 8.5] [6, 7]
Biodiversity 0.05 [7, 8] [8, 9] [8, 8.5] [6, 5, 7.5] [4, 5]

Economy 0.29

Life cycle profits 0.08 [7, 7.5] [7, 8] [9, 9.5] [8, 8.5] [7, 8]
Payback period 0.13 [7, 9] [7, 8.5] [8, 9.5] [7, 8] [6, 7]
Life cycle cost 0.03 [5, 6] [6, 8] [8, 9.5] [7.5, 8.5] [8, 9]

Opportunity costs 0.07 [6, 7] [7, 9] [8, 9] [6.5, 8.5] [7, 8]
Operation costs 0.13 [8, 9] [7, 8.5] [8, 8.5] [7, 9] [6, 7]
Economic fusion 0.07 [6, 7] [7, 8] [8, 9] [8, 8.5] [5, 6]
Program budget 0.13 [8, 8.5] [6, 8] [8, 8.5] [8, 8.5] [6, 7]
Business activity 0.04 [6, 7] [7, 8.5] [7, 8.5] [7.5, 8.5] [5.5, 6.5]
Financial returns 0.07 [7, 8] [7, 8] [6, 7] [8, 9] [4, 5]

Energy costs 0.07 [7, 8] [6, 8] [7, 8.5] [7.5, 9] [4, 5]
Economic performance 0.04 [5, 6] [8, 9] [8, 9] [8, 9] [5, 6]

Durability 0.13 [8, 9] [8, 8.5] [8, 9] [7, 8] [6, 7]

Social 0.22

Government strategy 0.04 [5, 5.5] [8, 9] [7, 7.5] [8.5, 9] [5, 6]
Cultural continuity 0.18 [9, 9.5] [7, 8] [9, 9.5] [8, 8.5] [7, 8]

Stakeholder involvement 0.05 [5, 6] [7, 8.5] [7, 7.5] [6.5, 8.5] [6, 7]
Social adjustment 0.13 [7, 8] [7.5, 8.5] [7, 8] [7.5, 9] [7, 8]
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Table 2. Cont.

First
Evaluation

Factor
Weight Second Evaluation Factor Weight Five Expert Scores

Public interests 0.03 [5, 6] [8, 8.5] [8, 9] [8, 8.5] [6, 7]
Workers’ Safety and Health 0.08 [6, 7] [8, 9] [8, 9] [8, 9] [6, 7]

Safety standards 0.13 [7, 8] [7.5, 8.5] [9, 9.5] [8.5, 9] [6, 7]
Social satisfaction 0.02 [5, 6] [7, 8] [9, 9.5] [8.5, 9] [8, 9]

Productivity improvement of industries
and communities 0.04 [6, 7] [8, 9] [8, 9] [7.5, 8] [6, 7]

Employment provision 0.09 [7, 7.5] [7, 8.5] [7, 8.5] [8, 9] [6, 7]
Adaptability 0.08 [5, 7] [7, 8.5] [7, 8] [8, 8.5] [6, 7]

Livability of communities 0.08 [5, 6.5] [7.5, 8.5] [7, 8] [8.5, 9] [7, 8]
Supply capacity of public infrastructure 0.04 [6, 8] [8, 9] [8, 9] [8.5, 9] [7, 8]

The decision-making steps are as follows:
Step 1: Evaluation factor standard cloud generation
This stage categorizes infrastructure sustainability into four categories: excellent, good,

medium, and bad. The corresponding scoring interval and cloud model digital eigenvalues
are shown in the table. Let the rating interval with the optimal sustainability grade be
[9, 10], the desired value ex is 10 according to Formula (3), the entropy is 0.5 according
to Formula (4), and the excess entropy value is 0.05. In the same way, the numerical
eigenvalues of the sustainable evaluation grade are good, medium, and poor. As shown
in Table 3.

Table 3. Digital eigenvalues of the standard cloud.

Sustainability
Levels Score Interval

Digital Eigenvalues of Cloud Models (Ex, En, He)

Economy Social Environment

Excellent [9, 10] (10.0, 0.5, 0.05) (10.0, 0.5, 0.05) (10.0, 0.5, 0.05)
Good [8, 9] (8.5, 0.5, 0.05) (8.5, 0.5, 0.05) (8.5, 0.5, 0.05)

Medium [6, 8] (7.0, 0.5, 0.05) (7.0, 0.5, 0.05) (7.0, 0.5, 0.05)
Bad [0, 6] (0, 2.33, 0.23) (0, 2.33, 0.23) (0, 2.33, 0.23)

Step 2: Use the C-OWA operator to find the aggregation interval
This step combines the indicators of the five invited experts rated based on years

of engineering experience. The experts are conservative in the sustainable assessment of
the project, so the BUM function is taken as ρ(y) = y2. The interval after aggregation is
indicated by [A, B], as shown in Table 4.

Table 4. Integration intervals by using C-OWA operators.

Indicator a b f A B

Flooding risk

8 9 8.33

7.3 8.2
8 8.5 8.17
7 8 7.33
7 8 7.33
7 8 7.33

Energy consumption

8.5 9 8.67

7.6 8.5
8 9 8.33
8 9 8.33
7 8 7.33
5 5.5 5.17
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Table 4. Cont.

Indicator a b f A B

Raw materials consumption

8.5 9.5 8.83

7.2 8.3
7.5 8.5 7.83
7 8.5 7.50
7 8 7.33
6 7 6.33

Waste recycling and reuse

8 8.5 8.17

6.6 7.8
8 8.5 8.17
6 8 6.67
6 7 6.33
5 5.5 5.17

Energy conservation

8 9 8.33

7.6 8.8
8 9 8.33
8 9 8.33
7 8.5 7.50
6 7 6.33

Using renewable resources

8 9 8.33

7.3 8.7
8 9 8.33
7 9 7.67
7 8 7.33
7 8 7.33

Materials with low health risk

8 9 8.33

6.8 8.1
7 8.5 7.50
7 8 7.33
6 8 6.67
6 7 6.33

Water pollution

7 8 7.33

6.8 7.9
7 8 7.33
7 7.5 7.17

6.5 8.5 7.17
6 7 6.33

Air pollution

8 8.5 8.17

6.1 7.5
7 8.5 7.50
6 8 6.67
5 6 5.33
5 5.5 5.17

Noise/acoustic pollution

8 9 8.33

6.9 7.8
8 8.5 8.17
7 8 7.33
6 7 6.33
5 5.5 5.17

Land use

8 9.5 8.50

7.8 8.8
8 9 8.33
8 9 8.33
8 8.5 8.17

5.5 6.5 5.83

Greening and environment

8 9.5 8.50

7.3 8.5
8 9 8.33
7 8.5 7.50
7 8 7.33
7 8 7.33

Energy performance

9 9.5 9.17

7.3 8.6
8 9 8.33
7 9 7.67
7 8 7.33
5 6 5.33
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Table 4. Cont.

Indicator a b f A B

Environmental fusion

7 8.5 7.50

6.4 7.3
7 8 7.33

6.5 7.5 6.83
6 6.5 6.17
5 6 5.33

Environmental impact

8 8.5 8.17

6.5 8.0
8 8.5 8.17
6 8 6.67
6 8 6.67
4 5 4.33

Eco-efficiency

7.5 8.5 7.83

6.7 7.9
7 9 7.67
7 8 7.33
6 7 6.33
6 6.5 6.17

Biodiversity

8 9 8.33

7.0 7.9
8 8.5 8.17
7 8 7.33

6.5 7.5 6.83
4 5 4.33

Life cycle profits

9 9.5 9.17

7.4 8.2
8 8.5 8.17
7 8 7.33
7 8 7.33
7 7.5 7.17

Payback period

8 9.5 8.50

7.0 8.5
7 9 7.67
7 8.5 7.50
7 8 7.33
6 7 6.33

Life cycle cost

8 9.5 8.50

7.1 8.4
8 9 8.33

7.5 8.5 7.83
6 8 6.67
5 6 5.33

Opportunity costs

8 9 8.33

6.9 8.4
7 9 7.67
7 8 7.33

6.5 8.5 7.17
6 7 6.33

Operation costs

8 9 8.33

7.3 8.6
8 8.5 8.17
7 9 7.67
7 8.5 7.50
6 7 6.33

Economic fusion

8 9 8.33

6.9 7.8
8 8.5 8.17
7 8 7.33
6 7 6.33
5 6 5.33

Program budget

8 8.5 8.17

7.4 8.3
8 8.5 8.17
8 8.5 8.17
6 8 6.67
6 7 6.33
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Table 4. Cont.

Indicator a b f A B

Business activity

7.5 8.5 7.83

6.7 8.0
7 8.5 7.50
7 8.5 7.50
6 7 6.33

5.5 6.5 5.83

Financial returns

8 9 8.33

6.6 7.6
7 8 7.33
7 8 7.33
6 7 6.33
4 5 4.33

Energy costs

7.5 9 8.00

6.6 8.0
7 8.5 7.50
7 8 7.33
6 8 6.67
4 5 4.33

Economic performance

8 9 8.33

7.1 8.1
8 9 8.33
8 9 8.33
5 6 5.33
5 6 5.33

Durability

8 9 8.33

7.6 8.4
8 9 8.33
8 8.5 8.17
7 8 7.33
6 7 6.33

Government strategy

8.5 9 8.67

6.7 7.5
8 9 8.33
7 7.5 7.17
5 6 5.33
5 5.5 5.17

Cultural continuity

9 9.5 9.17

8.0 8.7
9 9.5 9.17
8 8.5 8.17
7 8 7.33
7 8 7.33

Stakeholder involvement

7 8.5 7.50

6.4 7.7
7 7.5 7.17

6.5 8.5 7.17
6 7 6.33
5 6 5.33

Social adjustment

7.5 9 8.00

7.2 8.2
7.5 8.5 7.83
7 8 7.33
7 8 7.33
7 8 7.33

Public interests

8 9 8.33

7.3 8.0
8 8.5 8.17
8 8.5 8.17
6 7 6.33
5 6 5.33

Workers’ Safety and Health

8 9 8.33

7.4 8.4
8 9 8.33
8 9 8.33
6 7 6.33
6 7 6.33
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Table 4. Cont.

Indicator a b f A B

Safety standards

9 9.5 9.17

7.6 8.5
8.5 9 8.67
7.5 8.5 7.83
7 8 7.33
6 7 6.33

Social satisfaction

9 9.5 9.17

7.8 8.6
8.5 9 8.67
8 9 8.33
7 8 7.33
5 6 5.33

Productivity improvement of
industries and communities

8 9 8.33

7.2 8.0
8 9 8.33

7.5 8 7.67
6 7 6.33
6 7 6.33

Employment provision

8 9 8.33

7.0 8.2
7 8.5 7.50
7 8.5 7.50
7 7.5 7.17
6 7 6.33

Adaptability

8 8.5 8.17

6.7 7.8
7 8.5 7.50
7 8 7.33
6 7 6.33
5 7 5.67

Livability of communities

8.5 9 8.67

7.1 8.1
7.5 8.5 7.83
7 8 7.33
7 8 7.33
5 6.5 5.50

Supply capacity of public
infrastructure

8.5 9 8.67

7.7 8.7
8 9 8.33
8 9 8.33
7 8 7.33
6 8 6.67

Step 3: Cloud processing of attribute value
Cloud processing is carried out for the evaluation interval after aggregation; that is,

the eigenvalue of the cloud model (Ex, En, He) is obtained according to the above formula,
as shown in Table 5.

Step 4: Use the weight in Table 2 to generate a synthesized cloud of first-level evalua-
tion factors, as shown in Table 6. The MATLAB 2016a software processing is undertaken
according to the data in Table 6, and the specific code is shown in Table 7. The sustainability
synthesized cloud is shown in Figure 5.

Step 5: Calculation of evaluation factor similarity
The similarities with the respective standard cloud are calculated based on the eco-

nomic, social, and environmental sustainability cloud models in Table 6, and the results are
shown in Table 8.
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Table 5. Cloudification results of sustainability indicators.

Indicator
Integration Interval Attribute Value

[A, B] (Ex, En, He)

Flooding risk [7.3, 8.2] (7.75, 0.15, 0.02)
Energy consumption [7.6, 8.5] (8.06, 0.16, 0.02)

Raw materials consumption [7.2, 8.3] (7.75, 0.20, 0.02)
Waste recycling and reuse [6.6, 7.8] (7.16, 0.20, 0.02)

Energy conservation [7.6, 8.8] (8.19, 0.19, 0.02)
Using renewable resources [7.3, 8.7] (8.00, 0.23, 0.02)

Materials with low health risk [6.8, 8.1] (7.44, 0.23, 0.02)
Water pollution [6.8, 7.9] (7.34, 0.28, 0.03)

Air pollution [6.1, 7.5] (6.78, 0.24, 0.02)
Noise/acoustic pollution [6.9, 7.8] (7.36, 0.14, 0.01)

Land use [7.8, 8.8] (8.30, 0.15, 0.02)
Greening and environment [7.3, 8.5] (7.92, 0.20, 0.02)

Energy performance [7.3, 8.6] (7.92, 0.22, 0.02)
Environmental fusion [6.4, 7.3] (6.89, 0.15, 0.02)
Environmental impact [6.5, 8.0] (7.23, 0.24, 0.02)

Eco-efficiency [6.7, 7.9] (7.33, 0.20, 0.02)
Biodiversity [7.0, 7.9] (7.44, 0.15, 0.02)

Life cycle profits [7.4, 8.2] (7.78, 0.14, 0.01)
Payback period [7.0, 8.5] (7.73, 0.24, 0.02)
Life cycle cost [7.1, 8.4] (7.77, 0.21, 0.02)

Opportunity costs [6.9, 8.4] (7.63, 0.25, 0.03)
Operation costs [7.3, 8.6] (7.94, 0.23, 0.02)
Economic fusion [6.9, 7.8] (7.38, 0.15, 0.02)
Program budget [7.4, 8.3] (7.83, 0.15, 0.02)
Business activity [6.7, 8.0] (7.34, 0.22, 0.02)
Financial returns [6.6, 7.6] (7.13, 0.17, 0.02)

Energy costs [6.6, 8.0] (7.30, 0.23, 0.02)
Economic performance [7.1, 8.0] (7.56, 0.17, 0.02)

Durability [7.6, 8.4] (8.03, 0.14, 0.01)
Government strategy [6.7, 7.5] (7.09, 0.13, 0.01)
Cultural continuity [8.0, 8.7] (8.33, 0.11, 0.01)

Stakeholder involvement [6.4, 7.7] (7.08, 0.21, 0.02)
Social adjustment [7.2, 8.2] (7.67, 0.17, 0.02)

Public interests [7.3, 8.0] (7.66, 0.11, 0.01)
Workers’ Safety and Health [7.4, 8.4] (7.88, 0.17, 0.02)

Safety standards [7.6, 8.5] (8.05, 0.14, 0.01)
Social satisfaction [7.8, 8.6] (8.17, 0.14, 0.01)

Productivity improvement of
industries and communities [7.2, 8.0] (7.59, 0.14, 0.01)

Employment provision [7.0, 8.2] (7.59, 0.20, 0.02)
Adaptability [6.7, 7.8] (7.27, 0.19, 0.02)

Livability of communities [7.1, 8.1] (7.59, 0.17, 0.02)
Supply capacity of public

infrastructure [7.7, 8.7] (8.17, 0.17, 0.02)

Table 6. Synthesized cloud for economic, social, and environmental sustainability.

First Evaluation
Factor

Economic
Sustainability Social Sustainability Environmental

Sustainability

(Ex, En, He) (7.679, 0.188, 0.019) (7.328, 0.163, 0.016) (7.705, 0.202, 0.021)

As can be seen from Table 8, the economic sustainability of the project is medium, the
social sustainability is medium, and the environmental sustainability is medium, but the
degree of its affiliation to the good is also high, which can be regarded as the upper middle.

Step 6: Overall sustainability assessment of the project
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Table 7. Synthesized cloud MATLAB code.

Economic Sustainability

Ex = 7.679; Ex, En, He
En = 0.188;
He = 0.019;
n = 3000;
X = zeros (1, n);
Y = zeros (1, n);
X (1: n)= normrnd (Ex, He, 1, n);
for i = 1: n
En_1 = normrnd (En, He, 1, 1);

X (1, i) = normrnd (Ex, En_1, 1);
Y (1, i) = exp (−(X (1, i) − Ex)ˆ2/(2*En_1ˆ2));
plot (X, Y, ‘>’, ‘MarkerEdgeColor’, ‘b’, ‘markersize’, 4);
grid on;
end
hold on;

Social sustainability:
Ex = 7.328;
En = 0.163;
He = 0.016;
n = 3000;
X = zeros (1, n);
Y = zeros (1, n);
X (1: n) = normrnd (Ex, He, 1, n);
for i = 1: n
En_1 = normrnd (En, He, 1, 1);
X (1, i) = normrnd (Ex, En_1, 1);
Y (1, i) = exp(−(X (1, i) − Ex)ˆ2/(2*En_1ˆ2));
plot (X, Y, ‘.’, ‘MarkerEdgeColor’, ‘k’, ‘markersize’, 4);
grid on;
end
hold on;

Environmental sustainability:
Ex = 7.705;
En = 0.202;
He = 0.021;
n = 3000;
X = zeros (1, n);
Y = zeros (1, n);
X (1: n) = normrnd (Ex, He, 1, n);
for i = 1: n
En_1 = normrnd (En, He, 1, 1);
X (1, i) = normrnd (Ex, En_1, 1);
Y (1, i) = exp (−(X (1, i) − Ex)ˆ2/(2*En_1ˆ2));
plot (X, Y, ‘*’, ‘MarkerEdgeColor’, ‘r’, ‘markersize’, 4);
grid on;
end

Table 8. Subordinate status of sustainability level of evaluation factors at each level.

Economic
Sustainability Social Sustainability Environmental

Sustainability

Excellent 0.00004 0 0.00003
Good 0.2782 0.0922 0.3376

Medium 0.4593 0.8082 0.4233
Bad 0.0044 0.0072 0.0038
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Using the Formula (12), the overall sustainability assessment of the project is as follows,
as shown in Table 9:

Table 9. Overall project sustainability assessment results.

Sustainability Level Excellent Good Medium Bad

Degree of membership 0.00003 0.2756 0.59923 0.00544

The infrastructure project has the highest overall sustainability level of medium mem-
bership. However, the degree of its subordinate to good is also high, so its sustainability
grade should be upper middle.

6. Discussion and Conclusions

Various initiatives in municipal infrastructure projects are having a negative impact
on the goal of sustainable development. Nevertheless, these projects will continue to grow
because they are essential for the economic, social, and environmental development of the
country. Therefore, this study develops a comprehensive sustainability evaluation indicator
system for the operational phase of municipal infrastructure projects that considers three
aspects: environmental, economic, and social. This research proposes a novel hybrid
evaluation method that combines cloud modeling theory with AHP and C-OWA operators
to analyze and evaluate the sustainability of municipal infrastructure projects. As a result
of this approach, the AHP method and the C-OWA operator are used to determine the
weights of sustainability indicators and the aggregation of expert scoring intervals to
eliminate the problems associated with randomness, ambiguity, and uncertainty in expert
qualitative evaluations. The cloud model theory describes various attributes related to the
sustainability of municipal infrastructure projects to measure the degree of uncertainty
associated with such projects. By modifying the attribute values with penalty factors, this
study proposes a cloud model-based evaluation method for the sustainability of municipal
infrastructure projects, and then evaluates the overall sustainability of such projects. To
demonstrate its feasibility, this paper illustrates the application of this evaluation system
and strategy using the Second Ring Expressway Improvement Project in City A as an
example. The indicator system proposed in this paper can facilitate a comprehensive
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analysis of the sustainability of municipal infrastructure in facility projects. In addition, it
can help solve the problem of ambiguous expert scores due to different levels of knowledge
and working experience, and effectively balance the different needs of quantitative and
qualitative indicators. The final evaluation of the improved municipal infrastructure
projects can also visualize environmental, economic, and social sustainability levels.

This research can be used as a reference for future municipal infrastructure projects in
establishing sustainability evaluation and indicator systems. However, there are still some
limitations. First, this paper attempts to assess the sustainability of municipal infrastructure
projects from a macro perspective, so there is still room for further improvement in terms
of specific indicators. In addition, the specific focus of sustainability assessment varies
from country to country and region to region. Since this paper is conducted in the context
of China, it is difficult to verify the extent of its evaluation methodology. Therefore,
it is recommended that in future research, more attention should be paid to refining
sustainability indicators for municipal infrastructure projects so that they can be more
widely applied.
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