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Abstract: Traffic forecasting is essential in the development of intelligent transportation systems, as it
enables the formulation of effective traffic dispatching strategies and contributes to the reduction
of traffic congestion. The abundance of research focused on modeling complex spatiotemporal
correlations for accurate traffic prediction, however many of these prior works perform feature
extraction based solely on prior graph structures, thereby overlooking the latent graph connectivity
inherent in the data and degrading a decline in prediction accuracy. In this study, we present a
novel Attention-based Multiple Graph Convolutional Recurrent Network (AMGCRN) to capture
dynamic and latent spatiotemporal correlations in traffic data. The proposed model comprises
two spatial feature extraction modules. Firstly, a dot product attention mechanism is utilized to
construct an adaptive graph to extract the similarity of road structure. Secondly, the graph attention
mechanism is leveraged to enhance the extraction of local traffic flow features. The outputs of
these two spatial feature extraction modules are integrated through a gating mechanism and fed
into a Gated Recurrent Unit (GRU) to make spatiotemporal interaction predictions. Experimental
results on two real-world traffic datasets demonstrate the superiority of the proposed AMGCRN
over state-of-the-art baselines. The results suggest that the proposed model is effective in capturing
complex spatiotemporal correlations and achieving about 1% improvements in traffic forecasting.

Keywords: traffic forecasting; attention mechanism; multiple graphs

1. Introduction

The rapid pace of urbanization has resulted in increasing levels of traffic congestion,
highlighting the need for innovative solutions in transportation systems. Intelligent trans-
portation systems (ITS) have emerged as a promising solution to address various issues
including traffic congestion in the transportation industry. A critical component of ITS
deployment is traffic forecasting, which provides a crucial foundation for the formulation of
dispatching strategies and control measures. Accurate traffic forecasting not only affects the
safe and efficient travel of passengers but also plays a critical role in urban traffic planning.
Despite its importance, traffic forecasting remains a challenge due to the dynamic nature of
traffic patterns and the complexity of spatiotemporal correlations. These complex factors
make it difficult to accurately forecast traffic flow, which is still an ongoing challenge for
ITS [1].

Time correlation refers to the observation that similar flow patterns are likely to occur at
a given location in consecutive time steps [2]. However, relying solely on time correlation for
traffic forecasting is problematic, as unexpected events such as traffic accidents or temporary
road closures can disrupt traffic patterns and add noise to the prediction process [3].
Moreover, the ability of time series forecasting approaches is limited to model long-term
sequences, making it difficult to extract meaningful long-term time correlations. In contrast,
spatial correlation is more prevalent in road networks due to the circulation of vehicles. At
a macroscopic level, areas with similar functions are likely to exhibit similar traffic patterns,
regardless of whether the nodes are connected, indicating the similarity of road structures.
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From a microscopic perspective, there is a higher likelihood of traffic flow interactions
between connected or adjacent nodes. Spatial correlation is more complex and implicit
than temporal correlation [4,5]. Figure 1 provides a visual representation of a real road
network and the traffic flow at three road sections, highlighting the complex spatiotemporal
relationship in traffic flow. In the figure, for three randomly selected nodes, the horizontal
axis displays the traffic flow data collected by the sensor, aggregated every five seconds,
while the vertical axis represents the corresponding traffic flow.

Figure 1. Part of road nodes visualization of the PeMSD4 dataset collected in the San Francisco Bay
Area and traffic flow information for three of the nodes.

To process time correlation, various methods have been developed, such as Auto-
Regressive Integrated Moving Average (ARIMA [6]), Vector Auto-Regression (VAR) [7], and
Kalman Filters [8]. These methods primarily rely on manual feature engineering and have
relatively simple model structures, making it challenging to accurately extract the implicit
temporal characteristics of traffic flow. With the advancements of deep learning in various
engineering fields [9], researchers have started to explore its application in transportation.
Deep learning enables end-to-end learning of feature representations from raw traffic
data, overcoming the limitations of manual feature engineering. Some models based on
Recurrent Neural Networks (RNN), such as Long-Short Term Memory (LSTM) [10] and
Gated Recurrent Units (GRU) [2], have been used to extract long-term time correlation from
time series data. However, these methods are not designed to learn spatial correlations.
To capture spatial features, Ma et al. [11] represented traffic flow as a grid structure based
on real road network information, which can be easily processed by convolutional neural
networks. They applied convolution kernels to slide across the grid for feature extraction.

Due to the irregular structure of traffic which are non-Euclidean, it is crucial to con-
sider comprehensive spatiotemporal correlations for effective traffic forecasting. In recent
years, there has been an increasing trend in the application of Graph Neural Networks
(GNNs) for this purpose. Previous works such as [12,13] utilized pre-defined graphs to
learn spatial features. However, these graphs are static and primarily based on prior infor-
mation regarding road network distance, thus lacking the ability to reflect dynamic spatial
correlations. On the other hand, [14–17] constructed multi-graph convolutional networks
such as similarity graphs, correlation graphs, and topological graphs, thereby allowing for
the extraction of spatial features at different scales. Furthermore, [18,19] applied attention
mechanisms to temporal and spatial dimensions to adaptively capture the spatiotemporal
correlations from the traffic data.

Despite these advances, existing approaches fail to take into account the simultaneous
extraction of both global and local features. To address this issue, we propose a novel
Attention-based Multiple Graph Convolutional Recurrent Network (AMGCRN) for traffic
forecasting. The architecture of AMGCRN consists of two main components: a dynamic
multi-graph convolution module based on graph self-attention mechanisms and a time
series prediction module based on Gated Recurrent Units (GRU). The former module is
capable of learning both global and local spatial features, while the latter one increases
the receptive field in the time dimension. These two modules are integrated through
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an embedded approach, effectively fusing spatial and temporal features to improve the
accuracy of traffic flow forecasting.

The contributions of this work can be succinctly stated as follows:

• A novel AMGCRN model is proposed to capture the dynamic spatiotemporal correla-
tions of the traffic flow by simultaneously learning global and local spatial features.

• The AMGCRN models both global and local spatial features through the use of
attention mechanisms on node embeddings and input features, respectively.

• The proposed method can adaptively assign different learning weights to the neigh-
bors of nodes, without requiring prior knowledge of the road structure, thereby
improving the accuracy of traffic flow forecasting.

The remainder of this paper is organized as follows: Section 2 presents an overview
of the related works in this field. In Section 3, the preliminaries are discussed in detail.
The proposed method is described and explained in Section 4. The experimental setup
and results are presented and analyzed in Section 5. Section 6 presents the results of the
ablation studies performed. Finally, the conclusions and future directions for research are
discussed in Section 7.

2. Related Works
2.1. Traditional Methods

Traffic forecasting plays a crucial role in mitigating the challenges posed by urban
traffic congestion. In previous studies, researchers have predominantly relied on statistical
methods such as VAR [7] and ARIMA [6] for traffic flow prediction. However, these
methods are limited by certain basic assumptions and may not be capable of capturing
the complex spatiotemporal relationships inherent in traffic flow data. With the advent of
deep learning, there has been a growing trend in the application of deep learning models
in traffic prediction tasks. Researchers have leveraged LSTM, GRU, and other RNN based
models to capture long-term temporal dependencies in traffic flow data [2,10,20,21]. In
addition, Temporal Convolutional Network (TCN) has been proposed to model the time
dependence of longer sequences while reducing memory consumption during training [22].

Despite these advancements, existing methods have limitations in extracting spatial
features. In an effort to address this issue, Yao et al. [23] integrated Convolutional Neural
Network (CNN) and LSTM to extract both temporal and spatial features. However, the
process of transforming the data into a grid structure for network input can result in
information loss and errors in prediction.

2.2. Graph Based Methods

In recent years, graph structure-based deep learning has garnered significant attention
in various fields [24]. The graph structure is often utilized to process data with irregular
structures, such as molecular data, social networks, point cloud data, etc. [25]. In particular,
Graph Convolutional Networks (GCNs) has emerged as a leading method for spatial
feature extraction in data with non-Euclidean structures, such as road networks. GCNs can
be broadly categorized into two methods: spatial domain GCNs and spectral domain GCNs.
Spatial GCNs refer to convolution operations in the spatial domain and involve aggregation
of local spatial information from neighboring nodes. On the other hand, spectral GCNs
define convolution operations in the spectral domain, based on the properties of the graph
Laplacian matrix.

In the field of traffic prediction, dynamic graph convolution has been employed
to model spatiotemporal correlations [26]. The Attention-based Spatio-Temporal Graph
Convolutional Network (ASTGCN) [13] is proposed to apply temporal and spatial attention
mechanisms to capture dynamic spatiotemporal correlations in traffic flow. The Adaptive
Graph Convolutional Recurrent Network (AGCRN) [27] utilized a learning graph structure
with node embedding to extract spatial features adaptively. The Regularized Spatial-
Temporal Graph Learning (RSGL) [28] integrated the road topology graph and learned an
adaptive graph to extract both explicit and implicit representations of spatial features. The
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Gating Mechanism Attention Network (GMAN) [19] utilized temporal and spatial attention
to predict in a spatiotemporal parallel manner and then fused the prediction results using a
gating mechanism.

However, these existing methods fall short in their ability to capture both global
spatiotemporal correlations and dynamic local spatiotemporal correlations simultaneously.
To overcome these limitations, we aim to propose GCN based method, which is capable of
modeling both global and local spatiotemporal relations to achieve more accurate traffic
flow forecasting.

3. Preliminaries
3.1. Traffic Network

In this study, we define the road network’s non-Euclidean structure as an undirected
graph G = (V, E, A), where V = |N| represents the combination of nodes on the road, with
each node representing an observation point for collecting traffic flow information. The set
of edges E represents the connections between nodes, indicating the relationships between
road sections. The adjacency matrix A ∈ RN×N quantifies the proximity between nodes as
follows,

A(i, j) =

{
1 if (vi, vj) ∈ E
0 else

, for i, j = 1, . . . , N (1)

3.2. Traffic Flow Forecasting

We define traffic flow forecasting as a sequence-to-sequence mapping problem. For
the traffic network G with N nodes, the characteristics of the traffic flow sequence at time T
are denoted as XT ∈ {XT

1 , XT
2 , . . . , XT

N}. Specifically, XT
i ∈ RF indicates that each node has

F-dimensional characteristics at time T. The historical observation sequence χ of τ time
slices as input is defined as χ = {XT−τ+1

N , XT−τ+2
N , . . . , XT

N} ∈ Rτ×N×F. The purpose of
traffic flow forecasting is to find a mapping function F to fit the spatiotemporal correlations
between historical observation input and future traffic flow data. The traffic flow data of the
next P time slices are Y = {YT+1

N , YT+2
N , . . . , YT+P

N }. As a result, the traffic flow forecasting
problem is defined as:

{XT−τ+1
N , XT−τ+2

N , . . . , XT
N} F−→ {YT+1

N , YT+2
N , . . . , YT+P

N } (2)

4. Proposed Method

In this paper, we propose a new traffic flow forecasting model named AMGCRN,
which has an encoder-decoder structure. The overall structures of the AMGCRN and
AMGCN are shown in Figure 2. The AMGCN module in the AMGCRN model consists of
multiple graph convolution layers that capture both global and local spatial information. It
first extracts the global spatial features of the entire road network using the global graph
convolution operation and then captures the local spatial features of each node in the road
network by using the local graph convolution operation. The global graph convolution
operation uses the adjacency matrix of the entire graph as the convolution kernel to
perform convolution on all nodes in the graph. In contrast, the local graph convolution
operation uses the sub-adjacency matrix centered on each node as the convolution kernel to
perform convolution on the neighborhood of each node. By integrating the dynamic global
and local spatial information, the AMGCN module can effectively capture the complex
spatiotemporal correlations in traffic flow data. Finally, the decoder part of the AMGCRN
model uses the extracted traffic flow features to make predictions. It uses a series of
1D convolution layers with increasing kernel size to increase the receptive field of the
predicted data and further capture the correlations between the prediction and historical
observation data.
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Figure 2. The upper part is the overall framework of the AMGCRN and the lower part is the
architecture of AMGCN. AMGCN contains two spatial feature extraction modules, they are GGG
and LEGG.

4.1. Global Graph Generation

Previous GCN-based traffic forecasting approaches have utilized pre-defined graphs
to establish the correlation or similarity between road nodes. Some studies, such as Li
et al. [5], have employed geographical topology to calculate the distance between road
nodes in order to construct the graph matrix. However, this approach may introduce
noise and worsen the prediction accuracy. Other works, such as [27,29], have measured
the similarity or correlation of node series characteristics to determine node proximity.
Despite these efforts, these methods may not fully capture the complex implicit spatial
correlations and use static pre-defined graphs which are unable to represent dynamic
spatial correlations.

To address these challenges, we propose a novel approach that utilizes learnable node
embedding parameters, E ∈ RN×d, to represent the network structure of each node, instead
of solely considering its traffic characteristics. The dot product attention mechanism is
then applied to the node embedding parameter vectors to capture the similarity of node
network structures in the embedding space, described as:

Aglobal = softmax(ReLU(EET)) (3)

where ReLU is an activation function that enhances the model’s nonlinearity, to better
extract features from sparse data. The softmax function is used to normalize the Aglobal .
The global graph convolution operation can be formulated as:

Xglobal = (IN + Aglobal)XW + Wb (4)

where X is the input feature matrix, W and Wb are learnable parameters.

4.2. Local Enhancement Graph Generation

Due to temporary traffic controls and weather conditions, traffic flow exhibits local
implicit spatial correlations, which are complex and difficult to capture. To address this
challenge, we introduce the Local Enhancement Graph Generation (LEGG) module, to
enhance local spatial feature extraction. The LEGG module utilizes Graph Attention
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Networks (GAT) [30] to model the similarity of road node flow characteristics. The input to
the LEGG module is the traffic flow, XT ∈ XT

1 , XT
2 , . . . , XT

N , at time T, where N is the number
of road nodes and XT

i ∈ RF for i ∈ N. A learnable linear transformation, W, is applied to
the input feature to obtain a higher-level implicit representation, with a dimension of F′.
The attention score between two road nodes, i and j, is then defined as:

αij =
exp(LeakyReLU(~a[W ~XT

i ‖W ~XT
j ]))

∑k∈Ni
exp(LeakyReLU(~a[W ~XT

i ‖W ~XT
k ]))

(5)

where a is a single-layer feedforward neural network with parameter dimension of 2F′.
LeakyReLU activation function is applied to increase nonlinearity and ‖ represents the
concatenation operation. Each node can aggregate all normalized first-order neighbors’
information including its own. To make the learning process more stable, we use the
softmax function to normalize the attention scores. In addition, we propose a masking
mechanism to introduce road topology prior information for computing attention scores.
The adjacency matrix A obtained from the topological distance of different nodes (sensors)
is used as the mask judgment condition and the weight of the two connected nodes is
assigned as αij:

α′ij =

{
αij if A > 0
0 else

, for i, j = 1, . . . , N (6)

after obtaining the attention scores that aggregate the flow features, the output feature of
each node is expressed as:

Xi
local = σ

(
∑j∈Ni

α′ijW
~XT

j

)
(7)

where σ is the elu activation.

4.3. Graph Fusion Mechanism

The adaptive gating network is designed to learn the relationship between the outputs
of the two spatial feature extraction modules and determine the importance of each module
for the final prediction. The gating weight Wg is calculated as a function of the output from
the two spatial feature extraction modules, represented as Xlocal and Xglobal , respectively.
The gating weight is then used to calculate the weighted sum of the two features, producing
the final fused output. Formally, the gating weight Wg can be expressed as:

Wg = σ[Wg2(ReLU(Wg1Xo + b1)) + b2] (8)

where Wg1 and Wg2 are learnable weight matrices and σ is the sigmoid activation function.
The final fused output can then be represented as:

Xspa = WgG � Xglobal + WgL � Xlocal (9)

where � represents element-wise multiplication. This graph fusion mechanism allows the
network to weigh the importance of each spatial feature extraction module for the final
prediction and effectively captures both local and global traffic flow patterns to improve
traffic prediction.

4.4. Spatio-Temporal Fusion Mechanism

The GRU architecture allows the model to capture long-term dependencies in time,
while still preserving the most recent information. Additionally, the use of the AMGCN
as the gating mechanism provides a unique fusion of temporal and spatial information,
which can lead to better results compared to other models that only rely on traditional
GRU structures or use MLP layers for gating. The final output of the spatiotemporal fusion
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mechanism is the hidden state ht, which is used to make predictions for future traffic flow.
Specifically:

zt = σ(FG([X0:t, ht−1]))

rt = σ(FG([X0:t, ht−1]))

ĥt = tanh(FG([X0:t, rt � ht−1]))

ht = zt � ht−1 + (1− zt)� ĥt

(10)

where FG refers to the two graph generation and graph fusion operations mentioned above.
zt and rt are the update gate and reset gate in GRU, respectively, which are used to filter
past information. ĥt is the candidate hidden state calculated according to Equation (9) and
the h0 tensor is initialized to 0.

5. Experiments
5.1. Datasets

To evaluate the performance of the proposed model, we conduct experiments on
two real-world datasets, PeMSD4 [13] and PeMSD8 [17] consisting of 307 sensors and 170
sensors, respectively. The detailed information of these datasets is presented in Table 1. To
test the performance of the model, we randomly split the nodes of each class into three
parts, with a 6:2:2 ratio, for training, validation, and testing, respectively. We focus on
short-term traffic forecasting, e.g., one hour prediction, in which we predict the traffic of
the next hour given the historical traffic data of the past hour.

Table 1. Details of PeMSD4 and PeMSD8.

Datasets Nodes Edges Time Steps Time Range

PeMSD4 307 340 16992 01/01/2018–02/28/2018
PeMSD8 170 295 17856 07/01/2016–08/31/2016

5.2. Baselines

To evaluate the performance of the proposed method, we compare the experimental
results with several traditional methods and graph-based models, which are as follows:

• HA: Historical Average is based on integrating and averaging historical information
to predict future information.

• VAR [7]: Vector Auto-Regression predicts interconnected time series by capturing
hidden relationships in time series.

• SVR [31]: Support Vector Regression is a supervised learning model with a related
learning algorithm, which is used to analyze data used for classification and regression
analysis.

• LSTM [32]: Long Short Term Memory networks are a special recurrent neural net-
work, which solves the problem of long-term dependence in time series prediction by
introducing forgetting gates.

• TCN [22]: Temporal Convolutional Neural Network achieves the effect of capturing
long-term dependent information through causal convolution.

• DCRNN [5]: Diffusion Convolutional Recurrent Neural Network is a sequence-to-
sequence structure that models traffic flow as a diffusion process on a directed graph,
capable of capturing both spatial and temporal correlations.

• STGCN [4]: Spatio-Temporal Graph Convolutional Network combines graph convolu-
tion and gated time convolution, which can extract the most useful spatial features
and continuously capture the most basic time features.

• ASTGCN [13]: Attention-based Spatio-Temporal Graph Convolutional Network de-
signs a spatial attention mechanism and a temporal attention mechanism to simulta-
neously extract spatiotemporal correlation.
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• STSGCN [17]: Spatial-Temporal Synchronous Graph Convolutional Network uses
multiple local spatiotemporal feature extraction modules to capture the heterogeneity
of long-term spatiotemporal network data.

• AGCRN [27]: Adaptive Graph Convolutional Recurrent Network proposes a method
for adaptively constructing spatial correlation and adopting spatiotemporal embed-
ding method for traffic prediction.

5.3. Metrics

We adopt multiple performance metrics to jointly evaluate the model performance,
including Mean Absolute Errors (MAE), Mean Absolute Percentage Errors (MAPE), and
Root Mean Square Errors (RMSE). The calculation of each evaluation metric is as follows:

MAE =
1
N

N

∑
i=1
|YTi −YPi|

MAPE =
100%

N

N

∑
i=1
|YTi −YPi

YTi
|

RMSE =

√√√√ 1
N

N

∑
i=1

(YTi −YPi)2

(11)

where YP is the predicted value and YT is the ground truth and N is the number of nodes.
The smaller the error value, the better the model performance. These metrics provide a
comprehensive evaluation of the model’s performance, taking into account the magnitude
and percentage of prediction errors, as well as the square error of prediction values.

5.4. Experiment Settings

• Data Preprocessing: The collected traffic data from the sensors is processed by being
windowed and aggregated into 5-min intervals. For the purpose of predicting the traf-
fic flow of the next hour based on the input data of the previous hour, the dimensions
of each input and label data instance are N × 12× 1, where N represents the number
of nodes.

• Loss Function: In order to train the model, we adopt L1 loss function and apply Adam
optimizer to optimize its convergence. The batch size is set as 32 for PeMSD4 dataset
and 64 for PeMSD8 dataset, respectively. The learning rate is set to 0.003. The model
is trained for 200 epochs on PeMSD4 and 300 epochs on PeMSD8.

• Hardware Support: The proposed model is implemented on a combination of one
GeForce RTX 2080 Ti GPU and one Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz.

5.5. Results

We evaluate the proposed model against ten baseline models in terms of MAE, RMSE,
and MAPE on both PeMSD4 and PeMSD8 datasets. Table 2 summarizes the average
results of traffic flow forecasting performance in the next hour separated as 12 time steps.
Numerical results show that: (1) The GCN-based methods exhibit better performance than
traditional methods (HA, VAR, and SVR) and deep learning methods (LSTM and TCN),
demonstrating the importance of spatial feature extraction for traffic flow prediction tasks
and the suitability of GCN for this task. (2) The designed multiple graph convolution
module in the proposed model can effectively extract and integrate spatial features from
multiple attributes, leading to better modeling of spatial correlation and spatiotemporal
dependencies.

The proposed model demonstrates significantly improvement performance on the
PeMSD4 dataset and a slight improvement in MAE on PeMSD8 dataset, compared to other
models. To further illustrate the results, we display the forecasting performance of five
GCN-based baselines at each horizon on both PeMSD4 and PeMSD8 datasets in Figure 3.
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Table 2. Average performance comparison of different models on PeMSD4 and PeMSD8. Our model
significantly improved prediction accuracy on PeMSD4 and we also achieved a slight improvement
in MAE on PeMSD8. Ours metrics are highlighted in the table.

Model
Dataset PeMSD4 PeMSD8

Metrics MAE RMSE MAPE MAE RMSE MAPE

HA 38.03 59.24 27.88% 34.86 52.04 24.07%

VAR 24.54 38.61 17.24% 19.19 29.81 13.10%

SVR 28.70 44.56 19.20% 23.25 36.16 14.64%

LSTM 26.77 40.65 18.23% 23.09 35.17 14.99%

TCN 23.22 37.26 15.59% 22.72 35.79 14.03%

DCRNN 21.22 33.44 14.17% 16.82 26.36 10.92%

STGCN 21.16 34.89 13.83% 17.50 27.09 11.29%

ASTGCN 22.93 35.22 16.56% 18.25 28.06 11.64%

STSGCN 21.19 33.65 13.90% 17.13 26.86 10.96%

AGCRN 19.83 32.26 12.97% 15.95 25.22 10.09%

AMGCRN (ours) 19.52 31.76 12.90% 15.85 25.32 10.18%

Figure 3. Forecasting performance at each horizon comparing with other baselines. AMGCRN
achieved the slowest rise and the most stable prediction performance.

6. Ablation Study

In order to assess the contribution of each component in the proposed model, we
conduct an ablation study on both the PeMSD4 and PeMSD8 datasets. The ablation study
removes two components of the AMGCRN model: (1) w/Global: The GGG module is
removed from AMGCRN. (2) w/Local: The LEGG module is removed from AMGCRN.
Table 3 summarizes the average results of the ablation study, and the forecasting perfor-
mance at each horizon is further displayed in Figure 4.

The results of ablation study further demonstrate the validity of the model design,
highlighting the importance of both the GGG and LEGG modules in improving the pre-
diction performance. The proposed AMGCRN model offers a new solution for effectively
modeling complex spatiotemporal correlations in traffic flow forecasting.
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Table 3. Average performance comparison of ablation study on PeMSD4 and PeMSD8. The proposed
GGG and LEGG can jointly improve the accuracy of traffic flow forecasting.

Model Dataset PeMSD4 PeMSD8

Metrics MAE RMSE MAPE MAE RMSE MAPE

w/Global 20.20 32.63 13.30% 18.55 29.57 12.60%

w/Local 19.83 32.26 12.97% 15.95 25.22 10.09%

AMGCRN (ours) 19.52 31.76 12.90% 15.85 25.32 10.18%

Figure 4. Forecasting performance of the ablation study at each horizon. The proposed GGG and
LEGG can significantly reduce the prediction error at each horizon.

7. Conclusions

In this work, we proposed a novel and innovative model of AMGCRN for modeling
complex spatiotemporal correlations in traffic flow forecasting. The AMGCRN model effec-
tively captures the global road network structure similarity and the local features of traffic
flow through the integration of two distinct spatial feature extraction modules of GGG
and LEGG, which are combined through an adaptive gating mechanism and embedded
into a GRU-based time series prediction network. Empirical results from extensive experi-
ments on two real-world datasets demonstrate the superiority of the proposed AMGCRN
model compared to other state-of-the-art baselines in terms of performance. These results
highlight the effectiveness and feasibility of the proposed approach in modeling complex
spatiotemporal correlations in traffic flow forecasting.

In future work, we aim to explore incorporating external factors such as weather and
POIs into the AMGCRN model to further enhance its accuracy in traffic prediction tasks.
Furthermore, the proposed AMGCRN model has the potential to be adapted and applied
to other traffic prediction problems, such as Origin-Destination (OD) prediction, thereby
demonstrating its versatility and wide-ranging impact.
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