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Abstract: The net ecosystem CO2 exchange (NEE) and water and energy fluxes at the alpine ecosystem
level were obtained through the eddy covariance technique in an alpine wetland of the Longbao
Region, Qinghai–Tibet Plateau. Our research used the NEE as the research object combined with
meteorological factors. The NEE prediction model was constructed using Reddyproc and machine
learning. Moreover, the effects of the data and features on the models and the selection of the model
parameters were discussed. The results revealed the following information: (1) After removing
the NEE outliers according to the friction wind speed thresholds of the different seasons, the NEE
interpolation accuracy (R2) reached 0.65. Additionally, the NEE data dispersion decreased after
removing the outliers, and the data quality improved effectively. (2) The decision coefficients (R2) of
the eight kinds of combined machine learning algorithm models varied from 0.22 to 0.62, and the
root mean square error (RMSE) ranged from 2.10 to 2.99 µmol s−1 m−2. Additionally, the multilayer
perceptron (MLP) model had the best stability and the best interpolation effect. (3) There was a
seasonal difference between the estimated values of Reddyproc and the estimated values of MLP. The
monthly mean values of January, February, March, and October were lower than the monthly mean
values of the latter, while the monthly mean values from April to September were higher than the
monthly mean values of the latter, indicating that the prediction of the machine learning algorithm
tends towards the carbon source in the cold season (nongrowing season) and tends towards the
carbon sink in the warm season (growing season). (4) Reddyproc detected the outliers through the
relationship between the night NEE and frictional wind speed, which made it possible to accurately
estimate the nighttime flux under the condition of determining the threshold of the night frictional
wind speed, thus obtaining a better NEE estimate with fewer input parameters. Before the training
and prediction of the MLP model, the NEE was detected for the time series outliers, and the prediction
accuracy was significantly improved, indicating that the elimination of the time series outliers is
essential for NEE model training and further indicating that the understanding of the potential
mechanism of the NEE is of great significance for the prediction model.

Keywords: alpine wetland eddy covariance; net ecosystem CO2 exchange (NEE); machine learn-
ing; Reddyproc

1. Introduction

The carbon cycle of terrestrial ecosystems is the core of the material and energy
cycles of these ecosystems and is the key process driving ecosystem change [1]. Hence,
the quantitative assessment of the carbon budget is an important task in the study of
ecosystems and global climate change [2,3]. Net ecosystem exchange (NEE) refers to the
change in ecosystem carbon storage caused by plant photosynthesis, the carbon storage
in the canopy air, and the carbon emissions from both biotic and abiotic respiration. It
mainly reflects the carbon budget of an ecosystem and determines the transition process
of the “Sink-source” or “Source-sink” of a surface ecosystem from the perspective of flux
observation [4]. As an important part of the Earth’s ecosystem, terrestrial ecosystems are
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not only the foundation of human survival and development but also play an important
role in the global carbon cycle [5]. An accurate assessment of the carbon budget of terrestrial
ecosystems not only provides a theoretical basis for understanding and predicting global
climate change but also provides a scientific basis for the government to make relevant
decisions to reduce greenhouse gas emissions and promote social sustainable development.

The Qinghai–Tibet Plateau ecosystems grow in extremely harsh environments char-
acterized by a low annual average temperature and low rainfall, a high solar radiation
and wind speed, a limited availability of soil nutrients and water, and short growing
seasons. Therefore, these alpine ecosystems are extremely fragile and sensitive to climate
change. Accurately measuring and estimating the carbon flux of the alpine ecosystems in
the Qinghai–Tibet Plateau under the background of climate change is crucial for the study
of the ecosystem carbon balance.

With the development of energy exchange and mass transfer and the urgent demand
for carbon emission reduction, the observation of the NEE has been paid more attention
by scholars through research. The vorticity covariance method is one of the most effective
methods for measuring the carbon budget between the atmosphere and various ecosystems
since the 1980s [6,7]. It has been widely used to measure the exchange of matter and
energy between the atmosphere and the Earth’s surface [6,7]. However, in the course of
observation, due to various reasons (rainfall, instrument failure, human error operation,
etc.) and due to part of the observation data going missing, the CO2 flux data measured
by the flux towers have a high rate of deletion [8]. Nearly 17–50% of the observed data is
deleted in a year [8], which brings difficulties to the application of the flux tower data. How
to establish an effective and reasonable data interpolation method to form the complete
and reliable data integration of CO2 flux data is a problem to be solved.

Currently, FLUXNET and the European flux network of Carbon Europe use the
marginal distribution sampling (MDS) of the mean interpolation method for the interpo-
lation of missing flux data and apply it to the FLUXNET 2015 dataset [9]. OzFlux, the
Australian National Ecosystem Research Network, employs an artificial neural network
algorithm to interpolate missing flux data [10,11]. However, up to now, the interpolation
methods for missing flux data have not been unified among flux networks, and most of them
are for the net ecosystem exchange. For example, Moffat [12] systematically discussed the
effectiveness of 15 data interpolation methods in the calculation of net ecosystem exchange
annual accumulation using 10 sets of observational data from 6 forest sites. The results
showed that the selection of an interpolation method has a significant influence on the cal-
culation of annual NEE cumulants and that the uncertainty is about ±25 g·C·m−2·y−1. The
generalized regression neural network (GRNN) and the extreme learning machine (ELM)
proposed by Xianming Dou [13] have a strong nonlinear processing ability to simulate
and predict the carbon and water fluxes in terrestrial ecosystems. These models have
achieved the highest simulation accuracy in the assessment of the carbon and water fluxes
in evergreen coniferous forests and deciduous broad-leaved forests but have given fewer
satisfying simulations in cropland ecosystems. Xiaobo Zhu [14] compared the performance
of three machine learning models based on a backpropagation artificial neural network (BP-
ANN), support vector regression (SVR), and random forests (RF) to estimate the ecosystem
respiration (Reco) of the grassland ecosystems in northern China. Among the three models,
the SVR model had the highest estimation performance followed by the RF model. The
BP-ANN model had the lowest estimation performance. At the same time, the research
showed that the estimation performance of the three machine learning models in alpine
grasslands was better than that in temperate grasslands. Shaoying Wang [1] used RF, SVR,
and an ANN to interpolate the NEE flux sequence of the Zoige alpine wetland ecosystem
research station in 2016. The results showed that the simulation ability of the RF algorithm
was better than that of the SVR and ANN algorithms. The simulation ability of the three
machine learning algorithms was relatively weak at night, sunrise, and sunset during
winter and spring. The selection of an interpolation method can cause a difference of −42 g
C·m−2 in the annual accumulation of the NEE.
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Since there is no standard filling method, this study evaluated the performance of the
two selected gap filling methods, including the Reddyproc algorithm in R language and
an author-developed machine learning algorithm, combined with meteorological factors,
including the shortwave downward radiation (RG, WM−2), vapor pressure deficit (VPD,
hPa), air temperature (Tair, ◦C), relative humidity (RH, %), soil temperature (Soil_T, ◦C),
soil heat flux (Soil_G, WM−2), soil moisture content (Soil_VWC, %), and wind velocity
(WS, MS−1). We constructed two NEE estimation models, discussed the influence of
the data and features on each model and the selection of the model parameters, and
verified the accuracy of the interpolation results. Our results provide a scientific basis
for the standardization of the data processing of the flux observatory/flux network and
the establishment of high-quality and representative databases. Meanwhile, it provides
a reference and data support for the study of the carbon and water cycles in an alpine
wetland of the Qinghai–Tibet Plateau.

2. Materials and Methods
2.1. Sampling Site and Data Survey

The experimental site was located at the Longbao Experimental Station (Longbao
Station for short) at the Qinghai China Meteorological Administration cold ecological
meteorological field science experimental base (Figure 1). Longbao Station is located in
the Longbao Wetland Nature Reserve, which is northwest of Yushu City, Yushu Prefecture,
Qinghai Province, China. It is 4167 m above mean sea level and is located at 96.55◦ E, 33.2◦

N, with an annual mean temperature of −0.4◦C and an annual precipitation of 731 mm [15].
The underlying vegetation type is typical alpine wetland. Kobresia Tibetica, K. pygmaea, and
K. humilis are the main herbage species in the plot. Kobresia Tibetica accounts for 60–70% of
forage species [15], and the soil type of the plot is mainly alpine marshland [15].
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Figure 1. Site introduction.

The Longbao Experimental Station was built in 2011, and its micrometeorological ob-
servation system was put into operation after the station was built in 2011. The vorticity flux
observation equipment was built and put into operation in July 2018. A high observation
tower of 2.5 m was set up at Longbao Station, and an open-circuit eddy correlation system
(Li-7500A, Li-cor, Logan, Lincoln, NE, USA) was installed to measure three-dimensional
wind speed and carbon dioxide and water vapor concentrations at 10 Hz. To process raw
data collection, the half-hour mean value of NEE and evapotranspiration (ET) were calcu-
lated after removing peaks, two-dimensional coordinate rotation, time-lag compensation,
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and density fluctuation correction using open-source software Eddypro 6.0 [16,17]. The
observation program also included micrometeorological forcings, including air pressure,
four-component radiation (1.5 m), photosynthetic effective radiation (1.5 m), wind speed
and wind direction of two layers (1 m/2 m), soil temperature and humidity of five layers
(0.05/0.1/0.2/0.3/0.4 m), two soil heat fluxes (8 cm/10 cm), precipitation (0.75 m), and
air temperature and humidity of two layers (1 m/2 m). The parameters of the power
supply and data acquisition accessories were three 20 W solar panels, a 65 AH colloid cell, a
CR1000 data acquisition device, and an AM16/32B Expansion Panel. The eddy correlation
observation system was equipped with three 80 W solar panels, one 100 AH colloidal cell,
and one 120 AH colloidal cell. The data were CR3000 and CR1000.

The data from Longbao Station were selected from the original data observed by
the vorticity correlation system from January to October in 2019; data quality levels were
chosen with QC = 0 and QC = 1 (QC of 0 indicates the highest data quality, 1 is average,
and 2 is poor). The data missing from the NEE observations are shown in Table 1, with a
missing data rate of 17.92 percent in 2019. Among them, 47.22% were grade 0 quality data,
24.26% were grade 1 quality data, and 10.60% were grade 2 quality data.

Table 1. Statistical table showing the absence of observed NEE in the study area.

Station Name Percentage of
Level 0

Percentage of
Level 1

Percentage of
Level 2 Missing Rate

Longbao 47.22 24.26 10.60 17.92

2.2. Studying Methods
2.2.1. Reddyproc Algorithm

The Reddyproc algorithm first performed quality checks and filters based on the
relationship between measured flux and friction velocity to discard biased data [2]. Second,
we filled in data gaps based on information from environmental conditions [18]. Finally,
the net flux of carbon dioxide was divided into its total flux into and out of the ecosystem
through night-based and day-based methods [19]. The core algorithm included four points:
First, median absolute deviation (MAD) was used to detect and eliminate the NEE outliers.
Second, the night friction wind speed threshold was calculated. The frictional wind speed
decreased, and the NEE measured with eddy correlation system was underestimated
when the atmospheric turbulence was weak at night [20,21]. To avoid systematic bias in
nighttime NEE data [2], it is usually necessary to determine the frictional wind velocity
threshold, thereby excluding NEE below the frictional wind velocity threshold [22]. Third,
NEE was interpolated. Filtered flux data with time series gaps and missing data need to
be interpolated using existing flux data and meteorological measurements after filtering
NEE data according to different seasonal friction wind speed thresholds. The interpolation
step used three kinds of meteorological data, e.g., RG, Tair, and VPD. (1) If all three
meteorological data were missing, lookup table (Lut) was used. (2) If Tair or VPD were
missing, only RG was used. (3) If all three meteorological data were missing, mean diurnal
course (MDC) was used. Finally, the flux was divided according to the relationship between
total primary productivity (GPP), ecosystem respiration (Reco), and NEE (NEE = Reco −
GPP) [18]. The nighttime NEE data splitting method assumes that Reco is only related
to temperature change and that nighttime vegetation is only respirable. Therefore, the
Reco change of daytime vegetation can be inferred from the response curve of nighttime
NEE to temperature, and the GPP can be calculated according to the above relationship.
The daytime NEE data splitting approach assumes the relationship between daytime
NEE and total radiation to be a composite of the effect of RG and VPD on GPP and the
effect of temperature on Reco [23,24]. These total fluxes are essential for understanding
land–air interactions.

Lookup tables (LUT) were created for each site so that missing values of NEE could
be looked up based on the environmental conditions associated with the missing data.
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Tables were created to represent changing environmental conditions based on either six
bimonthly periods or four seasonal periods. In mean diurnal course (MDC), a missing
observation was replaced by the mean for that time period (half hour) based on adjacent
days. The methods for derivation of mean diurnal pattern of bin-averaged (half-) hourly
measurements differed mainly in the length of the time interval of averaging (window
size of usually 4–15 days) (Figure 2). R and Rstudio from https://cloud.r-project.org/ and
https://www.rstudio.com/ (April 2020).
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2.2.2. Machine Learning Algorithm

The interpolation effect of machine learning algorithm was studied using the effective
meteorological factors of 30 min and NEE observations. The shortwave downward radia-
tion, saturated water pressure, air temperature, relative humidity, soil temperature, soil
heat flux, soil water content, and wind speed were measured with the micrometeorological
observation system for 30 min from January to October 2019. Using them as input variables,
the NEE observations of the corresponding time periods were taken as output variables.
Additionally, 80% of the observations were taken as training sets, and 20% were taken
as test sets for training. Machine learning regression algorithm was used to interpolate
the missing or discarded data to obtain the complete flux time series, and multiple linear
regression (MLR), classification regression tree (CART), random forest (RF), multilayer
perceptron (MLP), K-nearest neighbor (KNN), adaptive boosting (ADABOOST), gradient
boosting regression tree (GBRT), and extreme gradient boosting (XGBoost) were used in
this study.

The purpose of MLR is to construct a linear model on the existing data set through two
or more independent variables to fit the relationship between the components of the feature
vector of the data set and to find a straight line or a hyperplane to minimize the error
between the predicted value and the value [25,26]. CART is a tree structure where each
internal node represents a test on an attribute, each branch represents a test output, and
each leaf node represents a category. The decision tree adopts a top-down recursive method.
The basic idea is to construct a tree with the fastest entropy decrease based on information
entropy. The entropy at the leaf node is zero. At this time, the instances in each leaf node

https://cloud.r-project.org/
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belong to the same class [25–27]. The essence of random forest (RF) is to randomly select
k new self-help sample sets from the samples and to construct k classification regression
trees. The samples that are not extracted each time form K out-of-bag data. Each tree
grows to maximum without any cutting. The generated trees are composed of random
forests, and the new data are classified by random forests. The classification results depend
on the number of tree classifier votes [25–27]. Multilayer perceptron (MLP), also known
as artificial neural network, first randomly initializes all parameters and then iteratively
trains and continuously calculates the gradient and updates the parameters until a certain
condition is satisfied (such as the error being small enough and the number of iterations
being large enough); that is, it optimizes them [28–31]. K-nearest neighbor (KNN), given a
training data set, for a new input instance, finds k instances nearest to the instance in the
training set. The majority of these k instances belong to which class the instance belongs
to. KNN includes three important elements: distance measurement, k-value selection, and
classification decision rules. KNN distance measure generally uses the Euclidean distance
measure [28–31]. Adaboost is a boosting algorithm that learns multiple weak classifiers
by changing the weight of training samples and that linearly combines them into a strong
learner. Firstly, the weight of the wrong samples classified by the weak classifier in the
previous round is increased, and the weight of the correct samples is reduced. Secondly,
the linear combination of multiple weak classifiers is carried out to improve the weight of
weak classifiers with good classification effect and to reduce the weight of weak classifiers
with high classification error rate [25–27]. The gradient boosting decision tree (GBRT) first
gives an objective loss function whose domain is the set of all feasible weak functions (basis
functions). Then, through iteration, a basis function in the negative gradient direction
is selected to gradually approach the local minimum. This view of gradient boosting in
the function domain has a profound impact on many areas of machine learning [25–27].
Extreme gradient boosting (XGBoost) is an efficient, flexible, and portable machine learning
library implemented using the gradient boosting framework. It is a C++ implementation
of GBRT. XGBoost still belongs to the GBDT algorithm in essence, but it is superior to the
traditional GBDT algorithm in accuracy, speed, and generalization ability [31–33].

2.2.3. Model Evaluation Indicators

The goodness of fit (R2), root mean square error (RMSE), and mean absolute error
(MAE) were used to evaluate the computational effectiveness of machine learning:

R2 = [∑n
i=1(xi − x)(yi − y)/

√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2]

2
(1)

RMSE =

√
1
n ∑n

i=1(xi − yi)
2 (2)

MAE =
1
n ∑n

i=1|xi − yi| (3)

Among them, xi and yi are the measured values of NEE flux towers and the values of
machine learning algorithms. x and y are the arithmetic mean values, and N is the number
of data volumes. R2 is the goodness of fit; it reflects the influence proportion of input factor
on NEE. The closer the value is to 1, the greater the percentage change in NEE caused by
input factor is. RMSE is the arithmetic square root of mean square error, which is used to
measure the deviation of NEE prediction from the measured value. MAE is the average
absolute error, which reflects the absolute magnitude of the NEE prediction error. This
study used the sklearn module of Python to implement machine learning model training
and the matplotlib module to implement all chart generations.
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3. Results
3.1. Reddyproc Interpolation
3.1.1. NEE Outlier Detection and Elimination

The criterion for judging the abnormality of the NEE observations was that the night
friction velocity met the threshold condition; the critical value of friction velocity depended
on the distribution trend of the NEE with friction velocity, the amount of high-quality data,
the threshold value of the carbon flux, and rainfall. After these outliers were eliminated, the
missing data were interpolated [34]. The outlier detection algorithm was used to detect the
peak value according to the position of each half-hour value relative to the before and after
half-hour values; according to daytime, total radiation (RG), and heat sensitivity (h), the
daytime and nighttime values were divided into two groups. In this study, DR > 10 W M−2

or H > −4.3 W M−2 was set as the daytime values, and DR ≤ 10 W M−2 or, alternatively,
H ≤ −4.3 W M−2 was set as the nighttime values. The window in which each sample
was located was set to 13 days [2], and di was calculated according to Formula (4). Then,
the median di in each window, day and night, was calculated separately to obtain Md.
Finally, according to Formula (7) and Formula (8), the number of outliers eliminated was
346, accounting for 3% of the valid data.

di = (NEEi − NEEi−1)− (NEEi+1 − NEEi) (4)

Md = (di − di−1)− (di+1 − di) (5)

MAD = median(|di −Md|) (6)

di < Md −
(

z·MAD
0.6745

)
(7)

di > Md +

(
z·MAD
0.6745

)
(8)

3.1.2. Interpolation Precision

The determination coefficient (R2), root mean square error (RMSE), and absolute mean
error (MAE) were used to evaluate the interpolation accuracy of the Reddyproc algorithm.
The determination coefficient of the CO2 flux fitting obtained through the Reddyproc
algorithm was 0.65 (Table 2). In addition, before the Reddyproc algorithm interpolated the
missing values, it was necessary to detect the occasional spikes, namely, the outliers, in
the half-hour flux data through the outlier detection technique, which usually does not
directly affect the annual NEE. However, it affects the quality of the populated data set.
Figure 3 shows the CO2 flux data with the outliers not eliminated on the left, and there
are obvious discrete values in some time periods with large deviations. Meanwhile, on
the right, the outliers shown were detected and eliminated based on the outlier detection
algorithm. After removing outliers, the quality of the CO2 flux data was improved, and
the dispersion was decreased, which indicated that the interpolation data was of a high
precision and reliable quality.

Table 2. Interpolation accuracy of Reddyproc algorithm.

Station Name Pearson R2 RMSE MAE

Longbao 0.80 0.65 1.91 1.34

Pearson represents Pearson correlation coefficient, R2 represents coefficient of determination, RMSE represents
root mean square error, and MAE represents mean absolute error.
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3.2. Machine Learning Interpolation
3.2.1. Correlation Analysis between NEE and Meteorological Factors

The amount of a CO2 flux is affected by the climate, the land type, the vegetation
status, and other factors. In order to explore the sensitivity of the CO2 flux to environmental
factors, we selected meteorological factors for CO2 flux interpolation, and the 30 min data of
the input meteorological factors and the CO2 flux were selected for the correlation analysis.
The Pearson correlation coefficient in statistics was used to measure the linear correlation
between the CO2 flux and the meteorological factors in this paper. The results show that
there was a significant correlation between the CO2 flux and the selected meteorological
factors in the study area, and the significant p values were less than 0.001, indicating that the
level was significant. The correlation was as follows: shortwave downward radiation (RG)
> saturated water vapor pressure (VPD) > soil heat flux (Soil_G) > air temperature (Tair)
> relative humidity (RH) > soil temperature (Soil_T) > soil moisture content (Soil_VWC)
> wind speed (WS). The CO2 flux was negatively correlated with RG, VPD, Soil_G, Tair,
Soil_T, Soil_VWC, and WS, and it was positively correlated with RH as shown in Figure 4.

3.2.2. The Accuracy Comparison of Each Model Algorithm under Different Meteorological
Factor Input Combinations

According to the correlation analysis between the NEE and the meteorological factors
in Figure 4, the first three meteorological factors of the average correlation coefficient were
selected as the characteristic combination 1. Moreover, the range from combination 2 to
combination 6 was added according to the order of the average correlation coefficients,
and six input combinations based on the machine learning algorithm were built. A total of
80% of the observed values were used as the training set, and 20% were used as the test set
(Table 3).

Table 3. Model parameter combinations of different meteorological factors.

Feature
Combination Input Characteristics Feature Number

combination 1 RG, VPD, Soil_G 3
combination 2 RG, VPD, Soil_G, Tair 4
combination 3 RG, VPD, Soil_G, Tair, RH 5
combination 4 RG, VPD, Soil_G, Tair, RH, Soil_T 6
combination 5 RG, VPD, Soil_G, Tair, RH, Soil_T, Soil_VWC 7
combination 6 RG, VPD, Soil_G, Tair, RH, Soil_T, Soil_VWC, WS 8



Sustainability 2023, 15, 4652 9 of 18
Sustainability 2023, 15, x FOR PEER REVIEW 9 of 19 
 

 
Figure 4. Correlation coefficient matrix between NEE and meteorological factors. *** indicates sig-
nificant difference (p  <  0.001). 

3.2.2. The Accuracy Comparison of Each Model Algorithm under Different Meteorological 
Factor Input Combinations 

According to the correlation analysis between the NEE and the meteorological factors 
in Figure 4, the first three meteorological factors of the average correlation coefficient were 
selected as the characteristic combination 1. Moreover, the range from combination 2 to 
combination 6 was added according to the order of the average correlation coefficients, 
and six input combinations based on the machine learning algorithm were built. A total 
of 80% of the observed values were used as the training set, and 20% were used as the test 
set (Table 3). 

It can be seen from Table 4 that, in combination 1, MLR, CART, and Adaboost had 
poor prediction effects, and the accuracy R2 was less than 0.5. RF and XGBoost had the 
highest prediction accuracies, and R2 reached 0.58. In combination 2, CART had the lowest 
prediction accuracy (R2 = 0.24), and RF and MLP had the highest prediction accuracies (R2 
= 0.60). In combination 3, CART had the lowest prediction accuracy (R2 = 0.25), and MLP 
and XGBoost had the highest prediction accuracies (R2 = 0.61). In combination 4, CART 
had the lowest prediction accuracy (R2 = 0.22), and MLP and XGBoost had the highest 
prediction accuracies (R2 = 0.61). In combination 5, CART had the lowest prediction accu-
racy (R2 = 0.22), and MLP had the highest prediction accuracy (R2 = 0.61). In combination 
6, CART had the lowest prediction accuracy (R2 = 0.25), and RF, MLP, and XGBoost had 
the highest prediction accuracies (R2 = 0.62). 

  

Figure 4. Correlation coefficient matrix between NEE and meteorological factors. *** indicates
significant difference (p < 0.001).

It can be seen from Table 4 that, in combination 1, MLR, CART, and Adaboost had
poor prediction effects, and the accuracy R2 was less than 0.5. RF and XGBoost had the
highest prediction accuracies, and R2 reached 0.58. In combination 2, CART had the lowest
prediction accuracy (R2 = 0.24), and RF and MLP had the highest prediction accuracies
(R2 = 0.60). In combination 3, CART had the lowest prediction accuracy (R2 = 0.25), and
MLP and XGBoost had the highest prediction accuracies (R2 = 0.61). In combination
4, CART had the lowest prediction accuracy (R2 = 0.22), and MLP and XGBoost had
the highest prediction accuracies (R2 = 0.61). In combination 5, CART had the lowest
prediction accuracy (R2 = 0.22), and MLP had the highest prediction accuracy (R2 = 0.61).
In combination 6, CART had the lowest prediction accuracy (R2 = 0.25), and RF, MLP, and
XGBoost had the highest prediction accuracies (R2 = 0.62).

The R2 values of the eight types of machine learning algorithm models in combination
6 were the largest among the six feature combinations, which showed that the feature factor
of combination 6 was the best input for the model training. Figure 5 shows the prediction
accuracies in combination 6 among the eight machine learning models.

From Table 4 and Figure 4, it can be concluded that the change rate of RMSE in the
eight algorithms ranged from 2% to 6%, which included 4% for MLR, 6% for CART, 6% for
RF, 2% for MLP, 4% for KNN, 3% for Adaboost, 3% for GBRT, and 4% for XGBoost. Under
the six combinations, the R2 of the MLP model was between 0.60 and 0.62, the RMSE was
between 2.10 and 2.18, and the MAE was between 1.11 and 1.14. Under the combination of
the different meteorological factors, the average of R2 was the best, the RMSE change rate
was the lowest, and the stability was the best.
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Table 4. Model accuracy under different combinations of meteorological factors.

Feature
combination

MLR CART RF MLP

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

combination 1 0.32 2.60 1.65 0.22 2.99 1.64 0.58 2.19 1.16 0.57 2.17 1.11
combination 2 0.36 2.54 1.57 0.24 2.93 1.64 0.60 2.17 1.14 0.60 2.10 1.14
combination 3 0.36 2.54 1.57 0.25 2.87 1.57 0.60 2.22 1.21 0.61 2.10 1.14
combination 4 0.36 2.54 1.57 0.22 3.03 1.57 0.59 2.17 1.15 0.61 2.11 1.14
combination 5 0.36 2.53 1.57 0.22 2.98 1.51 0.60 2.15 1.10 0.61 2.10 1.14
combination 6 0.38 2.51 1.55 0.25 2.86 1.46 0.62 2.10 1.08 0.62 2.18 1.12

Average 0.36 2.54 1.58 0.23 2.94 1.57 0.60 2.17 1.14 0.61 2.13 1.13

Feature
combination

KNN Adaboost GBRT XGBoost

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

combination 1 0.52 2.16 1.35 0.40 2.29 1.24 0.56 2.20 1.17 0.58 2.17 1.11
combination 2 0.54 2.14 1.37 0.42 2.33 1.24 0.59 2.19 1.12 0.59 2.19 1.54
combination 3 0.54 2.24 1.37 0.44 2.27 1.27 0.56 2.22 1.15 0.61 2.19 1.54
combination 4 0.52 2.24 1.37 0.44 2.29 1.27 0.57 2.20 1.15 0.61 2.11 1.54
combination 5 0.56 2.23 1.41 0.42 2.28 1.21 0.57 2.19 1.10 0.60 2.10 1.54
combination 6 0.56 2.21 1.40 0.46 2.28 1.26 0.59 2.20 1.10 0.62 2.10 1.52
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3.3. Comparison of Reddyproc and MLP Interpolation Effect
3.3.1. Interpolation Precision

Figure 6 shows the decision coefficients R2 of the Reddyproc and MLP algorithms for
the CO2 flux fitting. The decision coefficient of the Reddyproc estimation model was larger
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than that of the MLP estimation model, and the noise influence of the MLP model was
larger than that of Reddyproc.
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3.3.2. Monthly Scale NEE Variation Characteristics

The Reddyproc and MLP models estimated the monthly change in the NEE at the
Longbao Station, which is shown in Figure 7. The filling effect of missing data had almost
the same effect on the whole-year data. The net absorption reached its maximum in July,
which was −1.26 µmol S−1 M−2. The emission rate reached its maximum in April, which
was 0.57 µmol S−1 M−2. With the development of the vegetation structure, the carbon
absorption increased, and it reached its maximum in the middle of the growing season.
The results showed that the estimated value of Reddyproc was about 1.5 times lower than
that of MLP in January, February, March, and October. However, from April to September,
the monthly average of the former was higher than that of the latter by about 1.5–2 times.
These results indicated that the machine learning algorithm tended to predict the carbon
source more in the cold season (nongrowing season), and carbon sequestration was more
likely to be predicted in the warm season (growing season).
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3.3.3. Hourly Scale NEE Variation Characteristics

The hourly variation in the NEE at the Longbao Station estimated with the MLP model
is shown in Figure 8, and the monthly hourly absorption peaks at the Longbao Station were
14:00 in January, 14:00 in February, 13:00 in March, 11:00 in April, 12:00 in May, 13:00 in
June, 11:00 in July, 12:00 in August, 12:00 in September, and 12:00 in October. The overall
peak occurred between 11:00 and 14:00; the emissions peaked in January at 09:00, February
at 09:00, March at 19:00, April at 20:00, May at 22:00, June at 21:00, July at 21:00, August
at 22:00, September at 00:00, and October at 23:00, and the overall peak occurred between
21:00 and 00:00. The hourly variation in the NEE at the Longbao Station estimated with the
Reddyproc model is shown in Figure 4. It was found that the peak of absorption estimated
with REDDYPROC was 1–2 h later than that estimated with the MLP model in July and
August. The peaks at the other time periods were similar, which was consistent with the
above finding that MLP was estimated to be higher in the warm season (growing season)
than in Reddyproc. As a result, the absorption rate of the NEE reached its peak faster in the
MLP model.
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4. Discussion
4.1. Input Factor Selection in the Model

It can be seen from Section 3.2.2 that the R2 variation range of the eight types of
machine learning algorithm models in the six combinations was 0.22–0.62, the RMSE
variation range was 2.10–2.99, and the MAE variation range was 1.08–1.65. The input
factors in combination 1 were the top three meteorological factors (RG, VPD, Soil_G),
which were ranked by the correlation coefficients in Figure 4. When the temperature was
added, the prediction accuracy of the eight models was improved, and the R2 increased
by 2~13%, which is consistent with the conclusion obtained by Wang Sheng et al. [35]
when using machine learning to fit water flux; that is, the accuracy of the models obtained
by each algorithm increases with an increase in the number of input features. Then, the
meteorological factors RH, Soil_T, Soil_VWC, and WS were added to the model input
factors in turn. The results showed that, when RH, Soil_T, and Soil_VWC were added,
the prediction accuracies of MLR, RF, and MLP were almost unchanged and that the
prediction accuracies of KNN, Adaboost, GBRT, and XGBoost fluctuated obviously. In
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terms of stability, MLP was the highest, and CART and RF were the worst, which is the
same as the research results of Mao et al. [36] and Hassan et al. [37]. In other words, the
RF algorithm had a serious overfitting phenomenon because the tree model had a high
dependence on the continuity of the data distribution, and the RF model was easy to fall
into overfitting in some sample sets with large noise. After adding WS, the R2 of the eight
models increased significantly. The Pearson correlation coefficient between the CO2 flux
and WS was zero, and the significant p value was less than 0.001, indicating that WS was
also a key factor affecting the CO2 flux in the Longbao area. This conclusion shows that the
determination of the input factors in the algorithm model was not completely consistent
with the correlation conclusion. The selection of the input factors needed to be added one
by one on the basis of the correlation analysis to obtain the best model feature combination.

4.2. Improved MLP Deep Learning Model

The Reddyproc model could obtain a better NEE estimation model with fewer input
parameters, while the machine learning prediction model had eight input features. How-
ever, in the high-latitude and high-altitude area, the above-mentioned machine learning
models were greatly limited in the study of ecosystem carbon assessment in the absence of
corresponding measured data due to the limited observation elements, the harsh climate
conditions, and the uneven distribution of the observation sites. Is it possible to find a
model that does not require the relevant physical parameters of the high-cold region, greatly
reducing the parameters of the model, and would it be more suitable than conventional ma-
chine learning models for regions that are without or lacking data? Huang et al. (2021) [38]
applied an artificial neural network to a frozen soil hydrological model of small watersheds
in the hinterland of the Qinghai–Tibet Plateau. After training, the model could simulate
and predict the runoff in a small watershed in the frozen soil area of the Qinghai–Tibet
Plateau by relying on precipitation and temperature as inputs. It provided a simple and
effective method with a certain physical significance for the study of the runoff of small
watersheds in a frozen soil area without observation data, such as soil temperature and
moisture. Peng et al. (2018) [39] applied the BP neural network algorithm to the estimation
of water flux and found that the performance of the neural network model was significantly
better than that of the machine learning model under the same conditions, which indicated
that they have strong adaptability. Y. Lecun (2015) [40] further elucidated the deep learning
algorithm, which differs from machine learning in that the traditional machine learning
framework is feature extraction and classification, while the deep learning framework
is feature learning and classification, and the latter has a stronger learning ability and
generalization ability.

In this study, the MLP model was found to be the most stable, with input characteristics
ranging from three to eight variables, and the fitting accuracy fluctuated by about 1%.
Considering that the MLP model was stable and optimal, the MLP deep neural network was
used for NEE prediction. Additionally, the multilayer perceptron was based on the single
layer neural network, which was composed of one or more hidden layers, and, thus, became
the deep neural network. Its parameters were adjusted through supervised learning and
forward and backward propagation, which accorded with the Y. Lecun (2015) [40] analytic
deep learning framework. The network input dimension was set to have five parameters,
referring to the five meteorological factors in Section 2.2.1, which had a relatively high
correlation between the NEE and meteorological factors, including shortwave downward
radiation (RG), saturated water pressure (VPD), air temperature (Tair), relative humidity
(RH), and wind speed (WS). The learning rate of multilayer perceptron training was set to
0.001 through cross-validation and parameter tuning, and the batch size was set to 32. The
training time epoch was set to 500, and the optimizer selected was Adam. Additionally,
the hidden layer was set to 20,20,5. The output dimension was set to one, which was the
NEE prediction value. The model decision coefficient R2 obtained through the training of
this network model was 0.58, which was larger than that of the previous MLP model (0.57).
It showed that the precision of the deep learning model can be improved by using fewer
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input parameters under the optimization of the network structure, and this compares with
Deng Mengjiao (2022) [41] and Xia Guoen (2020) [42], who quantitatively evaluated and
compared the multilayer perceptron of the algorithms with CART, KNN, NB, RF, and SVM
by using accuracy and F1 (a comprehensive evaluation of precision and recall). Additionally,
compared with the performance of the algorithms with those of CART, K-nearest neighbor
(KNN), Naïve Bayes (NB), RF, and SVM, the accuracy of the multilayer perceptron method
was consistent with the results of the study with the highest F1 score, further indicating
that the deep learning model has a stronger learning ability and generalization ability.

4.3. Timing Anomaly Detection

The depth model of MLP had a good learning ability and prediction accuracy with
five input features, but the estimation ability of the NEE was still lower than that of the
Reddyproc model on the whole. Considering that the Reddyproc algorithm includes outlier
detection technology as can be seen from Figure 3, the outlier detection algorithm based
on the NEE data outlier detection and elimination of the data dispersion was reduced,
and the data quality was improved. Papale et al. (2006) [2] performed quality checks and
filtering based on the relationship between the measured flux and friction velocity, using
the absolute bias median of the outlier estimator (MAD) for outlier detection on the basis of
a double-difference time series, to discard biased data. The problem of anomaly detection
has been widely studied in various fields and applications. Chandola et al. (2009) [43] and
Toledano et al. (2017) [44] pointed out that anomaly detection aims at finding unusual data
values or patterns in time series data that do not satisfy the normal constraint rules of a
given model, and, in many practical applications, it has certain practical value.

In order to explore the importance of time series anomaly detection in NEE model
prediction, the training was carried out after the time series anomaly value of the NEE
was eliminated. The outliers here were timestamp values where the observed NEE was
different from the expected NEE of the time series. When a particular time instant was
compared with the other values in the time series (global outliers) or with its neighbors
(local outliers), it presented an anomaly. IOR was used to set the threshold and to judge
the outliers by the threshold. The red color indicated the outliers. Figure 9 shows the
training curve of the MLP training model before and after NEE timing anomaly detection;
the accuracy curve of the MLP prediction model in the test set was lower than that in
the training set, which showed that the model did not perform well in the test set, and
the model determination coefficient R2 was 0.58. The prediction accuracy of the MLP
prediction model in the test set was better, and the model determination coefficient R2 was
raised to 0.64 (Figure 10), which showed that the elimination of the time series outliers
had a great influence on NEE simulation. Stable laminae, which were often present at
night, inhibited turbulence, leading to an underestimation of the nocturnal NEE, that
is, ecosystem respiration (Van Gorsel et al., 2007) [45], as Massman and Lee (2002) [46]
suggested. Specifically, adverse conditions could be detected by examining the relationship
between the nocturnal NEE and u*, and Reddyproc provided this method, which allowed
the determination of the nighttime friction wind velocity thresholds under conditions that
were not considered as such [42,43]. The nighttime flux could be estimated accurately.
Machine learning (ML) and deep learning (deep learning) lacked the understanding of the
mechanism between the variables; however the data parameters were required to be low,
so they were not as good as Reddyproc in the estimation of the NEE. The results further
showed that the understanding of the underlying mechanism of the NEE was of great
significance to the prediction model.
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5. Conclusions

This study compares two filling methods, i.e., machine learning and Reddyproc, with
respect to estimating the carbon flux through the eddy covariance data measured in the
high-latitude Qinghai–Tibet plateau area, which showed a good approximation of the
original data in the case that the amount of the data to be filled was small. In general,
the Reddyproc model obtained better NEE estimates with fewer input parameters, which
outperformed the machine learning model.

The accuracy of the gap filling method depends on the preprocessing of the data used
to parameterize the filling algorithm, particularly when determining the friction wind
speed threshold for the nighttime data. In this case, we should strongly emphasize that
restudying the “nighttime” problem, in theory and through experiments, is the prerequisite
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for processing eddy covariance data. We believe that the detection and elimination of
NEE time series anomalies were very important for the subsequent model training and
prediction, and the precision was significantly improved, which showed that the outlier
detection technology had a great influence on the simulated NEE. In addition, we found
that the estimated values of the Reddyproc model and the MLP model had obvious seasonal
differences. The MLP prediction was about 1.5 times higher in the cold season (nongrowing
season) and about 2 times lower in the warm season (growing season).

This work contributes to the efforts of the flux community, collecting continuous
measurements of the ecosystem carbon and energy exchange, by compiling consistent,
quality assured, and documented datasets from a variety of worldwide ecosystems. The
standardization of the data postprocessing assured justified comparable data to address
intercomparisons across natural and managed ecosystems, climatic gradients, and mul-
tiple years and to investigate the processes controlling the carbon and energy fluxes of
these systems.
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