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Abstract: A tumor is an abnormal development of cells in the human body. A tumor develops when
cells divide without any control. Tumors change their size from a small to large lump. Tumors appear
anywhere in the body. The early stage of diagnosis is an essential one in disease treatment. Many
researchers carried out their research on different tumor detection methods. However, the tumor
detection accuracy level was not improved and tumor detection time consumption not minimized.
In order to address these problems, an Iterative Reflect Perceptual Sammon Bagging Classification
(IRPS-BAC) Method is introduced. The aim is to accurately detect brain tumors as early as possible
and make the method suitable for real-time applications. The IRPS-BAC Method comprises two
processes, namely, feature selection and classification using the iterative reflect perceptual sammon
feature selection process and bagging classification process. In the IRPS-BAC Method, an input of
medical data are gathered from the Epileptic Seizure Recognition Data Set and Cervical Cancer Risk
Classification database. After that, iterative reflect perceptual sammon feature selection process
is carried out to select the relevant features. Iterative reflect perceptual divergence computes the
variation between two features. After that, sammon mapping projects the similar and dissimilar
features into feature space. By this manner, the relevant features get selected using the IRPS-BAC
Method. With the help of selected relevant features, bagging classification process is carried out. In
bagging classification process, internal node processes the selected features and leaf node to make
the tumor decision as normal or cancerous one based on information gain. This, in turn, helps to
reduce the time complexity and error rate. The performance of the proposed IRPS-BAC Method is
determined by two benchmark datasets through comparing the parameter such as tumor detection
time, tumor detection accuracy and error rate with the existing approaches. In the Epileptic Seizure
Recognition Data Set, the proposed IRPS-BAC Method improves tumor detection accuracy by 16%,
with minimum time period and the error rate of 41 ms and 58% for tumor detection as compared
to existing methods. By using Cervical Cancer Risk Classification, the proposed IRPS-BAC Method
exhibited higher classification performance measures, including accuracy (14%), time (46 ms), and
error rate (61%), than the current conventional approaches.

Keywords: machine learning; tumor detection; iterative reflect perceptual sammon; bagging
classification; relevant features; internal node

1. Introduction

Tumor detection is the challenging and essential task in different medical-image
applications as it includes a large amount of data/information. In the medical field,

Sustainability 2023, 15, 4602. https://doi.org/10.3390/su15054602 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15054602
https://doi.org/10.3390/su15054602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-2514-4812
https://orcid.org/0000-0002-2833-7196
https://doi.org/10.3390/su15054602
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15054602?type=check_update&version=1


Sustainability 2023, 15, 4602 2 of 17

brain tumor detection, either manually or automatically, is vital for clinical diagnosis and
treatment to avoid the death rate. Therefore, the novel Iterative Reflect Perceptual Sammon
Bagging Classification (IRPS-BAC) Method is useful for medical applications. It provides
main advantages in the medical field, especially for early-stage diagnosing and treating
brain tumors accurately.

An automatic method was introduced in [1] for epileptic seizure detection depend-
ing on deep metric learning. A one-dimensional convolutional embedding module was
employed for single-channel and multichannel EEG signals correspondingly. However,
the detection time was not reduced by the designed method. The cell-free DNA (cfDNA)
methylome was introduced in [2] to identify ovarian cancer at the early stage, but the
detection accuracy level was not improved by cfDNA methylome.

A new patient-specific seizure prediction technique was introduced in [3] depending
on deep learning with electroencephalogram (EEG) recordings. However, the computa-
tional complexity was not reduced by the patient-specific seizure prediction technique. An
artificial intelligence system was discussed in [4] for identifying the epileptic focus based
on features that utilized interictal EEGs. An efficient computer-aided solution was obtained
for epilepsy focus detection, but the computational time consumption was not reduced by
the artificial intelligence system.

A new analysis system was introduced in [5] for identifying the epileptic seizure from
EEG signals. The designed system employed the statistical features depending on optimum
allocation technique (OAT) with logistic model trees (LMT), but the space complexity was
not minimized by the designed analysis system. The blood samples of DNA methylation
profiling were carried out in [6] for ovarian cancer detection. A supervised machine
learning algorithm was used to predict and classify the blood sample as malignant or
non-malignant, but the computational cost was not reduced by DNA methylation profiling.

Epithelial ovarian cancer (EOC) was linked in [7] with the pathogenic variants (PVs)
in homologous recombination and/or mismatch repair genes. The women’s testing was
carried out with familial EOC. However, the tumor detection accuracy was not improved
by EOC. The circulating tumor DNA (ctDNA) utility was carried out in [8] with biomarker
for EOC, but feature selection time was not reduced by ctDNA utility.

An ultrasensitive and selective electrochemical biosensor was employed in [9] for rapid
DNA methylation detection in blood. DNA methylation sensing included hybridization
of DNA modified gold-coated magnetic nanoparticles to target DNA and to differentiate
methylated DNA. However, computational cost was not reduced by designed biosen-
sor. The signal decomposition and statistical method was discussed in [10] for epileptic
seizure detection. The variational mode decomposition (VMD) was carried out to ex-
tract components of intrinsic mode functions (IMFs) through EEG signal decomposition.
However, the feature selection accuracy was not improved by signal decomposition and
statistical method.

A brain tumor occurs due to the unrestrained and fast expansion of cells. If not
treated at an early stage, it may lead to death. Despite numerous important efforts as
well as talented results in this domain, accurate feature selection and classification have a
challenging duty. Few machine learning brain tumor detection methods are examined to
discover brain tumor detection. In previous work, the relevant feature was selected, but
the feature selection time was enhanced. The conventional classification process failed to
attain accuracy. To address these issues, the Iterative Reflect Perceptual Sammon Bagging
Classification (IRPS-BAC) Method is introduced.

The following is a list of our key contributions to this research:

â This paper presents the proposed IRPS-BAC Method to improve the tumor detection
performance with higher accuracy and lesser time complexity;

â This paper uses the iterative reflect perceptual sammon feature selection process and
bagging classification process in the proposed IRPS-BAC Method;

â This paper applies the iterative reflect perceptual sammon feature selection process
for computing divergence between features and objective. The sammon mapping
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projects the similar and dissimilar features into feature space and also selects the
relevant features. In this way, the tumor detection time is said to be minimized;

â This paper performs the bagging classification process in the IRPS-BAC Method. The
internal node process the selected features to take the tumor decision as normal or
cancerous based on information gain. This, in turn, helps to improve accuracy and
reduce the time complexity and error rate.

The rest of the paper is arranged as follows: the related works of tumor detection is
presented in Section 2. In Section 3, details of the IRPS-BAC Method are described with a
neat diagram. Section 4 provides the experimental setup. The results and discussions are
presented in Section 5. Finally, Section 6 concludes the paper.

2. Related Works

An efficient encrypted EEG data classification and recognition system was designed
in [11] through a chaotic baker map and Arnold Transform algorithm with convolutional
neural networks (CNNs). A fully automated system depending on the Hybrid Grey Wolf
Optimizer Improved Sine Cosine Algorithm (HGWOISCA) was introduced in [12] for EEG
signal classification.

An automated deep learning-enabled brain signal classification for epileptic seizure
detection was introduced in [13] to categorize the brain signals to identify the existence
of seizure or not. A new enhanced search ability based on atomic search optimization
(ESAASO) was introduced in [14] for seizure and non-seizure detection. An inertia weight,
levy flight, and ranking strategies were combined to increase the performance.

A new epileptic seizure detection method was introduced in [15] with empirical mode
decomposition, the mutual information-based best individual feature (MIBIF) selection
algorithm, and the multi-layer perceptron neural network. An autonomously generalized
retrospective and patient-specific hybrid model was introduced in [16] based on convolu-
tional neural network with long short-term memory. An automated learning framework
termed Fourier–Bessel series expansion-based empirical wavelet transform (FBSE-EWT)
method was introduced in [17] for identifying epileptic seizures from the EEG signals. A
deep long short-term memory (LSTM) network was introduced in [18] to study high-level
representations of EEG patterns. The features were given to softmax layer to attain the
predicted labels.

A support vector machine classifier was introduced in [19] for time series EEG signals
mapping to a complex network. Edge weight fluctuation (EWF) was used to extract
fluctuation in EEG signals. A new method was introduced in [20] for time series EEG signals
mapping to complex network. A random forest classifier was performed in [21] to relying
contextually on several spatial and temporal features of machine learning used in tumor
detection. A segmentation and detection method for brain tumors was developed [22]
by using images from MRI sequence as an input image to identify the tumor area. Deep
hybrid learning (DeepTumorNetwork) was introduced in [23] for categorizing brain cancers.
However, the time was not reduced.

3. Methodology

A tumor is the abnormal increase in cells to form an unnatural section with different
features from normal cells. Tumor detection is the most challenging task in medical
applications [24]. The tumor classification is a difficult task in the field of medical data
analysis. Machine learning technology helps the radiologists to easily detect the tumor
without any surgical intervention [25]. Different classification methods are discussed by the
researchers to detect the tumor disease in an effective manner, but the detection accuracy
was not improved and detection time consumption was not reduced by conventional
methods. In order to address these issues, an efficient method called the Iterative Reflect
Perceptual Sammon Bagging Classification (IRPS-BAC) Method is introduced for tumor
detection. The structural diagram of the IRPS-BAC Method is illustrated in the Figure 1.
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Figure 1. Architecture of proposed IRPS-BAC Method.

The above Figure 1 explains the flow process of the proposed IRPS-BAC Method to
perform efficient tumor detection with higher accuracy and lesser time consumption. The
input medical data ‘d_1, d_2, d_3 . . . d_m’ are gathered from the database. The collected
medical data with features are considered as an input for performing feature selection.
Finally, the selected features of tumor classification are carried out with higher accuracy and
lesser time consumption. The brief explanation of the iterative reflect perceptual sammon
feature extraction and bagging classification is discussed in next sub-section.

3.1. Iterative Reflect Perceptual Sammon Feature Extraction

The proposed IRPS-BAC Method performs the feature selection for accurate tumor
detection with lesser time consumption. Feature selection is the process that finds the
feature subset from the input dataset. Iterative reflect perceptual divergence computes the
distance between the two points. In the IRPS-BAC Method, sammon mapping projects the
similar and dissimilar features into feature space. The diagrammatic representation of the
feature selection is illustrated in Figure 2.

Figure 2 explains the diagrammatic representation of the feature selection process. Let
us consider that the number of features in the database is ‘ f etj = f et1, f et2, f et3, . . . f etn’.
By applying the iterative reflect perceptual divergence, the distance is determined between
feature and objective. It is formulated as

ϕirp = || f etj − objective || (1)

From (1), ‘ϕirp’ denotes iterative reflect perceptual divergence. ‘ f j’ denotes the features
of input data. The iterative reflect perceptual divergence value varies from ‘0′ to ‘1′. After
that, the threshold value is predefined to map the input features from a database into any
of their subsets. Consequently, the sammon mapping result is given as

SM→
{

ϕirp > th ; dissimilar f eatures
ϕirp < th ; similar f eatures

(2)
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From (2), ‘SM’ symbolizes the sammon mapping function. ‘th’ represent the threshold.
The feature that gets more diverged from objective is considered as the dissimilar feature, or
else the feature is considered as the relevant feature. By this manner, the similar feature gets
mapped into low-dimensional space. The algorithmic process of iterative reflect perceptual
sammon feature selection is shown in Algorithm 1.

Algorithm 1: Iterative Reflect Perceptual Sammon Feature Selection

Input: Database, number of features ‘ f etj = f et1, f et2, f et3, . . . f etn’
Output: Selected features

1. Begin
2. Number of input features ‘ f etj = f et1, f et2, f et3, . . . f etn’ taken as an input
3. For each feature ‘ f etj’
4. Compute the iterative reflect perceptual divergence
5. Map the features into subsets based on divergence value
6. Select the relevant features from database
7. End for
8. End

The algorithmic step of the IRPS-BAC Method is described with feature selection
process. Initially, the number of features is considered as an input. Then, the divergence
value is computed for every feature. Based on the values, the relevant features are selected.
Finally, the relevant features are used to perform efficient tumor detection.

3.2. ID3 Ensembled Bagging Classification

In the IRPS-BAC Method, bagging classifier is an ensemble of base classifiers each on
random subsets of a dataset and combines their individual predictions. Each base classifier
trained random input generated with replacement. Training set for every base classifier
is independent of each other. Bagging classifier minimizes the overfitting through voting
which resulted in bias compensated by variance reduction. Bootstrap aggregating is a
machine learning technique used to improve the stability and accuracy of classification
and regression analysis. Let us consider that Bagging classifier construct ‘n’ number of
ID3 decision tree results for each medical data in bootstrap samples. The ID3 decision tree
is used in the IRPS-BAC Method for categorizing the medical data into normal data or
cancerous data (i.e., abnormal data). ID3 decision tree has root node, internal node, and
leaf node. The root node has data with selected features. The internal node processes the
selected features and the leaf node takes the decision to categorize the tumor as a normal
or cancerous one based on information gain. The information gain is given as
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Bi(τi) = IG = h(s)−∑Cs∈ n,ab
|cs|
|I| ∗ h(cs) (3)

From (3), ‘Cs’ denotes the two classes of ID3 classifier (i.e., normal or abnormal). ‘h(s)’
symbolizes the entropy of total set. ‘S’ symbolizes the input data. ‘h(cs)’ symbolizes the
entropy of the classes. The information gain is used for data partitioning consistent with
selected features. The data with high information gain is categorized as normal. The
data with less information gain is categorized as abnormal. The output of classification
is attained at the leaf node. Each weak classifier presents the classification results. After
that, bagging classifier in the IRPS-BAC Method aggregates all base classifier into strong
classifier. It is formulated as

B(τi) = B1(τi) + B2(τi) + · · ·+ Bn(τi) (4)

From (4), the strong classifier results are obtained. Subsequently, the IRPS-BAC
Method applies vote ‘δi’ for each base ID3 classifier results ‘B(τi)’. It is computed as

δi →∑n
i=1B(τi) (5)

From (5), the majority vote of all base ID3 classifier results is employed to formulate
the strong classifier for grouping the medical data. Consequently, the strong classifier result
is computed as

SC(τi) = arg max
n

δ(B(τi)) (6)

From (6), ‘SC(τi)’ designates the final strong clustering result, whereas ‘arg max
n

δ’

denotes the majority votes of base classifier output. The obtained strong classification
results are used to accurately characterize the data as normal data or abnormal data. The
algorithmic description of the ID3 Ensembled Bagging Classification in the IRPS-BAC
Method is described as follows.

Algorithm 2 describes the algorithmic description of ID3 ensembled bagging classifi-
cation in the IRPS-BAC Method. The number of medical data with the selected features is
considered as an input. With selected features, the ensemble bagging classifier built the
number of decision trees to categorize the medical data. The bagging classifier combines
the decision tree and assigns the votes to every decision tree result. The decision tree
with maximum votes is considered as the final classification results. By this manner, the
classification results are improved and minimized the time consumption. The proposed
IRPS-BAC Method effectively performs the brain tumor detection with higher accuracy.

Algorithm 2: ID3 Ensembled Bagging Classification

Input: Selected features
Output: Classification results
Begin

1. for each data with selected features
2. Construct base learners with selected features
3. Classifies data based on maximum information gain
4. Combine all weak learners
5. for each weak learners
6. Assign votes to each base learner
7. Find base learner with majority of votes
8. Obtain strong classification results
9. end for
10. end for

End



Sustainability 2023, 15, 4602 7 of 17

4. Experimental Settings

The experimental analysis of the proposed IRPS-BAC Method and existing methods,
the automatic method [1], cfDNA methylome [2], and Deep Tumor Network [25], are
implemented using JAVA coding for detecting the tumor with minimum time consumption.
The medical data is collected from two different datasets, namely the Epileptic Seizure
Recognition Data Set and Cervical Cancer Risk Classification. The first dataset [23] is
taken from the UCI machine learning repository (https://archive.ics.uci.edu/ml/datasets/
Epileptic+Seizure+Recognition (accessed on December 2022)). The objective of the dataset
is to predict the epileptic seizure which is a symptom due to excessive neuronal activity in
brain. The dataset comprises 11,500 instances and 179 attributes. Among 179, 178 attributers
are explanatory variables (X1, X2 . . . X178) and last attribute is a class attributes. The second
dataset [26] is taken from Kaggle (https://www.kaggle.com/datasets/loveall/cervical-
cancer-risk-classification (accessed on December 2022)). This file comprises the list of
risk factors for cervical cancer leading to biopsy examination. The dataset comprises
858 instances and 36 attributes.

5. Results Analysis

The simulation results of the proposed IRPS-BAC Method and existing methods, the
automatic method [1], cfDNA methylome [2], and Deep Tumor Network [25], are illustrated
in this section. The efficiency of proposed and existing methods are compared with different
parameters, including:

â Tumor detection time;
â Tumor detection accuracy;
â False-positive rate.

The effectiveness of the proposed IRPS-BAC Method and existing methods are dis-
cussed in terms of tables and graphical representation.

5.1. Impact on Tumor Detection Accuracy

Tumor detection accuracy is defined as the ratio of number of data points that are
correctly identified as tumor or normal through the classification to the total number of
data points. The tumor detection accuracy is expressed as

TDA =

(
Number o f data points that are correctly detected

Number o f data points

)
∗ 100 (7)

From (7), ‘TDA’ symbolizes the tumor detection accuracy. The tumor detection
accuracy is computed in percentages (%).

Tables 1 and 2 explain the tumor detection accuracy of three different methods, namely,
the automatic method, cfDNA methylome, Deep Tumor Network, and the proposed IRPS-
BAC Method for two datasets, namely the Epileptic Seizure Recognition Data Set and
Cervical Cancer Risk Classification.

The various medical data points are collected from the database. The performance of
the tumor detection accuracy of the proposed IRPS-BAC Method is significantly improved
when compared to the existing techniques. The simulation graph with different results is
illustrated in Figures 3 and 4.

Figures 3 and 4 provide the simulation results of tumor detection accuracy results for
three different methods with respect to different number of data points. With an increase
in number of data points, the tumor detection accuracy for three different techniques
gets increased or decreased, respectively. Comparatively, the IRPS-BAC Method attained
higher tumor detection accuracy than the other three existing methods. This is because
of using feature selection and classification process for efficient tumor detection. The
divergence is computed for every feature to perform the relevant feature selection process.
With relevant feature selection, the ensembled bagging classification is a type of machine
learning technique using ID3 for analyzing the medical data into normal data or cancerous

https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
https://www.kaggle.com/datasets/loveall/cervical-cancer-risk-classification
https://www.kaggle.com/datasets/loveall/cervical-cancer-risk-classification
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data for accurate tumor detection. The bagging classifier integrates decision tree as well
as allocates the votes to each decision tree outcome. The decision tree with higher votes
is taken as the final classification outcomes. These classification results are used to get
precise brain tumor detection. When considering the Epileptic Seizure Recognition Data
Set with the ‘5000′ input data points considered for experimentation, the tumor detection
accuracy is found to be ’93.7%’ using the IRPS-BAC Method. The tumor detection accuracy
is ’83.4%’ when compared to the automatic method [1], ‘77.5%’ when compared to cfDNA
methylome [2], and ‘73.85%’ when compared to Deep Tumor Network [25]. The average
comparison analysis on tumor detection accuracy using the Epileptic Seizure Recognition
Data Set is found to be comparatively enhanced by 11%, 17%, and 21% when compared
to [1,2,25]. For Cervical Cancer Risk Classification, the number of data points is considered
as 160 in the second iteration for calculating the tumor detection accuracy. By applying
the proposed IRPS-BAC Method, the tumor detection accuracy was found to be 93.1%
and the tumor detection accuracy of existing models in [1,2,25] are 81.9%, 86.3%, and 78%,
respectively. Similarly, different performance results are observed for each method with
respect to the number of data points. The average of ten comparison results indicates that
the IRPS-BAC Method considerably improves tumor detection accuracy using Cervical
Cancer Risk Classification by 14%, 8%, and 19% when compared to the two state-of-the-art
algorithms explored by [1,2,25].

Table 1. Tabulation of tumor detection accuracy for Epileptic Seizure Recognition Data Set.

Number of Data
Points (Number)

Tumor Detection Accuracy (%)

Automatic
Method

cfDNA
Methylome

Deep Tumor
Network

Proposed IRPS-BAC
Method

1000 85.8 81.8 79.8 92.4

2000 82.1 77.35 75 92.4

3000 81.6 76.3 74.85 91.4

4000 81.2 79.5 74.05 87

5000 83.4 77.5 73.85 93.7

6000 81.4 78.0 75.8 87.5

7000 78.5 75 73 91.2

8000 82.3 77 75 89.1

9000 79.5 77.5 74.2 95.3

10,000 85.7 83.5 80.3 91.9

Table 2. Tabulation of tumor detection accuracy for Cervical Cancer Risk Classification Data Set.

Number of Data
Points (Number)

Tumor Detection Accuracy (%)

Automatic
Method

cfDNA
Methylome

Deep Tumor
Network

Proposed IRPS-BAC
Method

80 82.5 87.5 80.3 93.8

160 81.9 86.3 78 93.1

240 70.8 77.1 68.28 86.7

320 71.9 82.8 68.76 93.4

400 77.5 82.5 70 92

480 85.4 87.5 82.42 93.8

560 87.9 89.3 81.29 92.9

640 89.1 92.2 87.05 96.1

720 90.3 91.7 85.29 96.5

800 90 92.3 87.5 97.5
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5.2. Impact on Error Rate

Error rate is defined as the ratio of the number of data points that are incorrectly
detected as a tumor or normal to the total number of data points. The error rate is calcu-
lated as

ER =

(
Number o f data points that are incorrectly detected

Number o f data points

)
∗ 100 (8)

From (8), ‘ER’ denotes the error rate. Consequently, the error rate is calculated in
terms of percentage (%).

Tables 3 and 4 describe the error rate of three different methods, namely the automatic
method, cfDNA methylome, Deep Tumor Network, and the proposed IRPS-BAC Method,
for two datasets, namely, the Epileptic Seizure Recognition Data Set and Cervical Cancer
Risk Classification.
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Table 3. Tabulation of error rate for Epileptic Seizure Recognition Data Set.

Number of Data
Points (Number)

Error Rate (%)

Automatic
Method

cfDNA
Methylome

Deep Tumor
Network

Proposed IRPS-BAC
Method

1000 14.2 18.2 20.2 7.6

2000 17.9 22.65 25 7.6

3000 18.4 23.7 25.15 8.6

4000 18.8 20.5 25.95 13

5000 16.6 22.5 26.15 6.3

6000 18.6 22 24.2 12.5

7000 21.5 25 27 8.8

8000 17.7 23 25 10.9

9000 20.5 22.5 25.8 4.7

10,000 14.3 16.5 19.7 8.1

Table 4. Tabulation of error rate for Cervical Cancer Risk Classification Data Set.

Number of Data
Points (Number)

Error Rate (%)

Automatic
Method

cfDNA
Methylome

Deep Tumor
Network

Proposed IRPS-BAC
Method

80 17.5 12.5 19.7 6.2

160 18.1 13.7 22 6.9

240 29.2 22.9 31.72 13.3

320 28.1 17.2 31.24 6.6

400 22.5 17.5 30 8

480 14.6 12.5 17.58 6.2

560 12.1 10.7 18.71 7.1

640 10.9 7.8 12.95 3.9

720 9.7 8.3 14.71 3.5

800 10 7.7 12.5 2.5

The various medical data points are collected from the database. The performance
of the error rate of the proposed IRPS-BAC Method is reduced when compared to the
existing techniques. The simulation graph with different error rate results is shown in
Figures 5 and 6.

Figures 5 and 6 provide the simulation results of error rate results for three different
methods with respect to a number of data points. With an increase in number of data
points, the error rate for three different techniques gets increased or decreased, respectively.
Comparatively, the IRPS-BAC Method attained a lesser error rate than the other three
existing methods. The main reason for minimizing the error rate is to apply feature
selection and classification process in the IRPS-BAC Method. The divergence value is
determined for every feature. The applicable features are chosen by using the innovation
of iterative reflect perceptual sammon feature selection process. Next, by using the bagging
classification process, an internal node processes the selected features as well as a leaf node,
to consider the tumor decision as normal or cancerous based on information gain. In this
manner, error rate is said to be reduced.
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When considering the Epileptic Seizure Recognition Data Set with the ‘1000’ input data
points considered for experimentation, the error rate is found to be ‘7.6%’ using the IRPS-
BAC Method. The error rate is ‘14.2%’ when compared to the automatic method [1], ‘18.2%’
when compared to cfDNA methylome [2], and ‘20.2%’ when compared to Deep Tumor
Network [25]. The average comparison analysis on error rate using the Epileptic Seizure
Recognition Data Set is found to be comparatively reduced by 50%, 59%, and 64% when
compared to [1,2,25]. Let us consider 80 numbers of data points taken in the first iteration
and the observed results using the IRPS-BAC Method is 6.9%, whereas the performance
of error rate results of [1,2] is 18.1%, 13.7%, and 22%, respectively. The comparison results
indicate that the error rate of the IRPS-BAC Method is considerably reduced by 62%, 52%,
and 70% when compared to [1,2,25].
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5.3. Impact on Tumor Detection Time

Tumor detection time is defined as the amount of time consumed to detect the tumor
from the given input data points through the classification. The time is calculated using the
given formula

TDT = Dn ∗ t(DSD) (9)

From (9), ‘Dn’ represents the input number of data points. ‘t(DSD)’ symbolizes the
time consumed for detecting the single data point. The tumor detection time is measured
in milliseconds (ms).

Tables 5 and 6 illustrate the tumor detection time of three different methods, namely
automatic method, cfDNA methylome, and Deep Tumor Network, of the proposed IRPS-
BAC Method for two datasets, namely Epileptic Seizure Recognition Data Set and Cervical
Cancer Risk Classification. The medical data points are gathered from the database. The
performance of tumor detection time of the proposed IRPS-BAC Method is reduced when
compared to the existing techniques. The simulation graph with different tumor detection
time results is illustrated in Figures 7 and 8.

Table 5. Tabulation of tumor detection time for Epileptic Seizure Recognition Data Set.

Number of Data
Points (Number)

Tumor Detection Time (ms)

Automatic
Method

cfDNA
Methylome

Deep Tumor
Network

Proposed IRPS-BAC
Method

1000 30 20 38 15

2000 54 36 63 26

3000 75 45 84 33

4000 88 48 97 36

5000 100 50 116 42.5

6000 108 54 115 48

7000 105 59.5 118 52.5

8000 96 64 105 56

9000 90 67.5 98 58.5

10,000 90 70 100 60

Table 6. Tabulation of tumor detection time for Cervical Cancer Risk Classification Dataset.

Number of Data
Points (Number)

Tumor Detection Time (ms)

Automatic
Method

cfDNA
Methylome

Deep Tumor
Network

Proposed IRPS-BAC
Method

80 0.4 0.32 0.6 0.24

160 0.72 0.608 0.94 0.432

240 0.984 0.84 1.23 0.6

320 1.248 1.024 1.465 0.704

400 1.48 1.2 1.67 0.8

480 1.68 1.296 1.89 0.864

560 1.848 1.4 2.032 0.952

640 2.048 1.408 2.225 1.024

720 2.232 1.44 2.452 1.008

800 2.32 1.44 2.52 0.96
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Figures 7 and 8 illustrate the simulation results of tumor detection time results for
three different methods with respect to number of data points. With increase in number
of data points, the tumor detection time for three different techniques gets increased
correspondingly. Comparatively, the IRPS-BAC Method attained lesser tumor detection
time than the other three existing methods. This is due to the application of feature selection
and classification process in the IRPS-BAC Method. The feature selection is carried out
through the divergence value to pick up significant features to perform efficient tumor
detection. Further, the bagging classification process is applied to combine every weak
learner into a strong one for classifying the normal data or abnormal data. This aid in
diminishing the tumor detection time. When considering the Epileptic Seizure Recognition
Data Set with the ‘9000’ input data points considered for experimentation, tumor detection
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time is found to be ‘56 ms’ using the IRPS-BAC Method. The tumor detection time is
‘96 ms’ when compared to the automatic method [1], ‘64 ms’ when compared to cfDNA
methylome [2], and ‘98 ms’ when compared to the Deep Tumor Network [25]. The average
performance analysis on tumor detection time using the Epileptic Seizure Recognition Data
Set is found to be comparatively reduced by 49%, 18%, and 55% when compared, according
to [1,2,25]. Let us consider 400 data points for conducting the experiments to calculate the
tumor detection time. The overall performance of tumor detection time using the proposed
IRPS-BAC Method is 0.8 ms. In addition, the tumor detection time using [1,2,25] was found
to be 1.48 ms, 1.2 ms, and 1.67 ms, respectively. For each method, various performance
results are observed with respect to different counts of input. The comparison result of
tumor detection time of the IRPS-BAC Method is considerably reduced by 47%, 30%, and
62% when compared to the two state-of-the-art algorithms, according to [1,2,25].

5.4. Throughput

Throughput is the number of data points being successfully executed in accurate time.
This is mathematically expressed as given below:

Througput =
[

Number o f data pointsexec

time (s)

]
where Number o f data pointsexec denotes the data points executed time in seconds ‘time (s)’.
Throughput is computed by data per second (data/s).

Tables 7 and 8 demonstrate the throughput of three different methods for two datasets.
The various medical data points are gathered from the database. The performance of the
throughput of the proposed IRPS-BAC Method is enhanced when compared to the obtain-
able techniques. The simulation graph with different results is illustrated in Figures 9 and 10.

Figures 9 and 10 offer the comparison results of throughput results for three different
methods based on number of data points. With increase in number of data points, the
throughput for three different techniques gets increased, respectively. Comparatively, the
IRPS-BAC Method attained maximum throughput with the two other existing methods.
The main reason for higher throughput is to apply feature selection and classification
process for efficient tumor detection. The average performance analysis on throughput
using the Epileptic Seizure Recognition Data Set is found to be comparatively increased
by 14%, 27%, and 44% when compared using [1,2,25]. The throughput of the IRPS-BAC
Method using Cervical Cancer Risk Classification is considerably improved by 11%, 22%,
and 41% when compared to the two state-of-the-art algorithms [1,2,25].

Table 7. Tabulation of throughput for Epileptic Seizure Recognition Data Set.

Number of Data
Points (Number)

Throughput (Mbits/Sec)

Automatic
Method

cfDNA
Methylome

Deep Tumor
Network

Proposed IRPS-BAC
Method

1000 146 110 85 180

2000 250 220 189 295

3000 355 325 270 416

4000 480 442 389 527

5000 525 505 445 638

6000 660 630 580 748

7000 770 710 650 854

8000 887 812 762 960

9000 978 912 872 1080

10,000 1160 1065 1003 1270
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Table 8. Tabulation of throughput for Cervical Cancer Risk Classification Data Set.

Number of Data
Points (Number)

Throughput (Mbits/Sec)

Automatic
Method cfDNA Methylome Deep Tumor

Network
Proposed IRPS-BAC

Method

80 194 163 105 246

160 305 275 229 357

240 397 361 310 462

320 531 487 439 585

400 620 574 505 673

480 734 686 640 782

560 804 740 690 866

640 908 857 802 975

720 1052 980 932 1132

800 1222 1156 1094 1295
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6. Conclusions

A new method termed the IRPS-BAC Method is introduced with the iterative reflects
perceptual sammon feature selection process and bagging classification process. An input
medical data are gathered from input database. An iterative reflect perceptual sammon fea-
ture selection process selected the relevant features through computing variation between
features and the sammon mapping projects the similar and dissimilar features into feature
space. Then, bagging classification process classifies the data into normal or cancerous
based on information gain. This, in turn, helps to reduce the time complexity and error
rate. The performance of the proposed IRPS-BAC Method is determined through tumor
detection time, tumor detection accuracy, and error rate with the existing approaches. The
proposed IRPS-BAC Method improves tumor detection accuracy with minimum time for
tumor detection.
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