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Abstract: In this paper, a new robust model predictive control (RMPC) for uncertain nonlinear
systems subject to actuator saturation is designed to regulate the terminal voltage of a photovoltaic
generator (PVG) that feeds a DC motor-pump via a buck DC–DC converter. The considered system is
a combination of a PVG-converter and DC motor-pump, which possesses nonlinear behavior along
with under a saturating control signal highly dependent on the operation point and climate conditions
of solar radiation and temperature. As a result, the control task is complex due to the nonlinearity
of the system and its dependence on climate conditions. Based on the dead-zone property, the
presented paper introduces a new RMPC technique to provide an innovative and efficient solution
to ensure the closed-loop system’s robust stability in the presence of actuator nonlinearity. In this
paper, the nonlinear system is described in polytypic form, and an appropriate linear feedback control
law is designed and used to minimize an infinite horizon cost function under the framework of
linear matrix inequalities (LMIs). Furthermore, sufficient state-feedback control law conditions are
synthesized to guarantee the robust stability of the closed-loop system in the presence of polytypic
uncertainties. Simulation results are provided, in which the results illustrate the effectiveness of the
proposed method.

Keywords: photovoltaic pumping system; DC–DC buck converter; robust model predictive control;
nonlinear system; actuator saturation; linear matrix inequalities; polytypic system

1. Introduction

Over the past three decades, solar energy has become increasingly popular as one of
the main renewable energy sources. Several strategies have been introduced to use sunlight
as a source of energy in which sunlight can be converted into heat (solar–thermal energy
conversion) [1], electricity (solar–photovoltaic energy conversion) [2], solar fuel (hydrogen)
generated via photocatalytic water splitting [3,4], or sunlight chemicals, such as H2O2
production [5]. It can also be used for CO2 reduction [6] and ammonia synthesis [7]. The
use of photovoltaic energy has grown tremendously in a wide range of applications, where
many non-electrified villages and rural regions rely on solar energy as their primary source
of electricity since electrification is difficult and expensive [8,9]. In addition, photovoltaic
water-pumping systems for irrigation and water supply in remote areas have been widely
implemented due to their unique features of ease of installation, environment friendliness,
and low maintenance costs [10,11]. For the optimization of energy, PV water-pumping
systems have to operate at their maximum power point (MPP). A directly coupled PV
electromechanical system operates at the intersection of current–voltage curves of the PV
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array and DC motor-pump set [12,13]. PV water-pumping systems are usually designed to
extract as much energy as possible from the solar resource, using a simple DC–DC power
converter controlled by an maximum power point tracker (MPPT) algorithm [14,15]. In
the literature, many of the MPPT algorithms have been applied for obtaining the maximal
power from PV systems. Perturb and observe (P&O) and incremental conductance (INC)
are the most widely used methods [16–18]. However, the simplest and fastest algorithm is
the constant voltage control approach, in which the PV array is controlled to operate at a
constant voltage equal to the MPP voltage of the array at the standard test condition (STC)
provided by the manufacturer, by adjusting the duty ratio of the power converter [15]. The
authors in [19,20] have shown that this technique has improved stability and low depen-
dence on solar irradiation. Elgendy et al. [13] proved in a comparative investigation that it
offers significantly better energy use efficiencies (up to about 91%) compared to directly
connected systems without taking the effects of insolation and temperature variations on
the MPP voltage into consideration.

Generally, the dynamic behavior of power converter systems can be described as a
bilinear model under a saturating control signal. The classical control techniques applied
to power converters usually do not take into account input saturation, which can severely
degrade the performance of the closed-loop system, thus making the closed-loop system
unstable, especially if the converter is subject to large perturbation. Furthermore, when a
power converter is used in solar applications, the control system becomes more complex.
Many studies have lately demonstrated that PVG characteristics have a substantial effect
on the dynamic behavior of power converters [21]. Since the PVG dynamic resistance is
both an environmental variable and operating point dependent, major changes in the PV
system might compromise its stability [15].

Despite the nonlinearity and uncertainty of these systems, the linear (state or output)
feedback control of power converters based on the small signal control theory proposed by
Middlebrook and Cuk [22] is the most applicable approach at present. For example, the
fuzzy-logic controller proposed in [23] and the PID controller proposed in [24] are based
on small signal control theory. Such linear controllers are designed based on the model
linearization at a certain operation point, and the obtained model can only be useful for
small variations around that specific steady point [25,26]. To cope with the deficiency of
these linear controllers, several nonlinear control strategies have been developed with
stability analysis, including fuzzy-logic controllers [27,28], adaptive control [29,30], neural-
network-based control [31], sliding mode control (SMC) [32], and feedback linearization
controllers [33]. However, these methods have two major limitations: The constraints on the
input actuators are not considered when using these methods. In addition, the closed-loop
performance in terms of robust stability and the presence of parameter uncertainties is not
optimized. In recent years, more consideration has been given to studying intelligent and
robust control structures, which can maintain nonlinear systems stability over a certain
operating range.

Model predictive control (MPC) is a control strategy that offers attractive solutions for
controlling constrained linear or nonlinear systems [34,35]. The ability to handle hard con-
straints on states/outputs and inputs and time-varying behaviors make the MPC method
an effective technique for a wide range of practical applications [36]. MPC algorithms are
widely based on dynamic models to predict system behaviors over a prediction horizon.
The reliable solution obtained is based on the minimization at each time step of an upper
bound of the worst-case infinite horizon quadratic function.

In general, it is difficult to construct an accurate model of a system in which uncertainty
is frequently present. It is well known that the uncertainty related to systems can be
represented in the form of parametric uncertainty or bounded disturbance regions. In the
presence of a significant level of uncertainty, the control law designed by MPC based on a
nominal model is suboptimal and can even be infeasible. Unfortunately, traditional MPC
approaches fail to explicitly handle the plant-model uncertainty. As a result, numerous
researchers have recently shown great interest in the RMPC of uncertain systems, where
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several tools, such as the LMI optimization approach, were developed to build RMPC
algorithms [37–40].

In most practical control processes, actuator saturation is a common kind of nonlinear-
ity. The classical control techniques that ignore actuator saturation may severely reduce
the performance of a closed-loop system, and the closed-loop system may lose its stability,
especially if subjected to certain large perturbations [41,42]. Hence, it is important to con-
sider the control input constraints in the RMPC design. In the literature, stability analysis
and the synthesis of RMPC strategies for linear systems with actuator saturation have been
considered as a popular topic in the past few decades. The common feature of most RMPC
strategies is that they deal with input nonlinearity by estimating the domain of attraction
in the presence of actuator saturation. Kothare et al. [37] proposed a new robust centralized
constrained MPC technique using an LMI-based optimization approach to guarantee the
asymptotic stability of closed-loop systems. The proposed algorithm allows the incorpora-
tion of a large class of plant uncertainty descriptions and can guarantee the stability and
robustness of the controlled system. The design in [37] also includes systematic treatment
of input and state constraints. Casavola et al. [38] presented a scheduling min-max MPC
algorithm for linear parameter varying (LPV) systems with polytopic uncertainty subject
to input saturation. Cao and Lin [43] proposed an RMPC algorithm for LPV systems with
polytopic uncertainty in the presence of actuator saturation. In the approach in [43], the
actuator saturation constraint was characterized in terms of the convex hull of a group of
auxiliary linear feedback laws and an actual linear feedback law. Huanga et al. [44] im-
proved the design in [43] by taking the relative weighting between the auxiliary and actual
feedback laws into account. Despite the improvements obtained, this method does not
consider certain issues of system nonlinearity. Another disadvantage is that the real-time
implementation of this approach suffers from a heavy computational burden due to the
large number of inequalities when the saturating linear feedback law is expressed on a
convex hull. This may lead to the intractability of the optimization problem, especially in
the case of high-dimensional systems and fast sampling applications. Moreover, numerous
MPC designs for linear systems with actuator saturation have been published in [45–49].

During the past decade, many MPC techniques for systems subject to actuator satu-
ration have been studied. In [50], a model predictive tracking control algorithm for the
flexible air-breathing hypersonic flight vehicle was proposed to handle the flight control
problem with actuator constraints and input delays. A novel, fast MPC technique with
actuator saturation for large-scale structures based on the explicit expression form of the
Newmark-βmethod and parametric variational principle was introduced in [51]. In [52],
the asymptotic stability of the finite horizon MPC of nonlinear systems with incremen-
tal input constraints was proposed and investigated. The authors in [53] presented an
MPC approach for systems with a dead zone and saturation, where two different control
strategies based on MPC were compared: the former uses hybrid MPC, while the latter
is based on dead-zone inversion and standard MPC. A novel discrete-time sliding mode
predictive control technique for a tethered satellite with saturated input was proposed
and investigated in [54], in which a discrete-time auxiliary controller was involved in the
discrete-time MPC scheme to achieve fast and more stable performance. However, in
contrast to linear systems subject to actuator saturation, there are few significant MPC
designs for nonlinear systems subject to actuator saturation.

In this work, the ability of the LMI approach is exploited to accommodate an MPC-
based technique for the control of nonlinear systems subject to actuator saturation, through
the dead-zone property. As the main contribution in this work, a new RMPC for uncertain
nonlinear systems subject to actuator saturation is proposed to control a photovoltaic
pumping system where a simulation study on the PV pumping system, which comprises
a PVG, a voltage-mode-controlled DC–DC buck converter, and a DC motor-pump, is
illustrated to evaluate the performance of the proposed controller. The objective of the
control process is to keep the PVG voltage at the MPP voltage in the presence of PVG
dynamic resistance uncertainty and atmospheric condition changes. The proposed RMPC
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algorithm innovatively uses certain ideas from the work in [55]. In the proposed approach,
a saturation model based on dead-zone nonlinearity is used to handle the saturation of
the control input. The controller design is characterized as an optimization problem of the
worst-case performance objective function over an infinite moving horizon. In addition, at
each time step, adequate state feedback that renders the closed-loop saturated nonlinear
system globally asymptotically stable to the origin is obtained via linear matrix inequalities.
The main advantages of the proposed approach, compared with other well-known RMPC
techniques, are its ability to consider both actuator saturation and system nonlinearity and
the reduction in conservativeness by avoiding a large number of inequalities when the
actuator saturation constraint is characterized in terms of the convex hull; therefore, the
proposed algorithm guarantees a lower computation time compared to other methods.
The proposed method can be applied to deal with complex industrial systems, such as
computer numerical control (CNC) machines, active magnetic bearing (AMB), robot manip-
ulators, overhead cranes, and DC–DC power converters. Different scenarios are used in the
simulation study to illustrate the effectiveness and applicability of the proposed approach
to the PV pumping system.

The rest of this paper is organized as follows: Section 2 describes the mathematical
formulation of the problem to be handled. Some basic concepts concerning MPC are intro-
duced and the saturated RMPC scheme is proposed in Sections 3 and 4, respectively. Next,
several simulation results are demonstrated under the Matlab environment in Section 5
to test the validity and effectiveness of our method. Finally, the paper is concluded in
Section 6.

2. Problem Formulation

Consider a nonlinear discrete-time dynamical system subject to actuator saturation:

x(k + 1) = f (x(k), u(k)) (1)

where k is the current time instant and x ∈ Rn is the state. The control input is bounded as
u(k) = sat(u(k)). sat(u(k)) ∈ Rm is a saturation function of the control input u(k) ∈ Rm,
which is defined as:

sat(u(k)) =


−ulim, i f u(k) < −ulim
u(k), i f −ulim ≤ u(k) ≤ ulim
ulim i f u(k) > ulim

(2)

where ulim is a control input limit and ulim = umax. umax is the maximum control input limit.
f ∈ C2 is a nonlinear function of states and control inputs f (0, 0) = 0. Let A = ∂ f

∂x

∣∣∣
(0,0)

,

B = ∂ f
∂u

∣∣∣
(0,0)

, and the dynamic system (Equation (1)) can be reformulated as a polytopic

uncertain system:

x(k + 1) = A(β)x(k) + B(β)u(k) + f̃ (x(k), u(k)) (3)

where the system matrices are affine functions of a parameter vector β of r parameters
(β = (β1, . . . , βr)). Each uncertain parameter β j is bounded between a minimum and a
maximum value β j and β j. j = {1, 2, . . . , r}

β j ∈
[

β j, β j

]
(4)

Moreover, we assume that:

[A(β) B(β)] ∈ Ω = Co{[A1 B1], [A2 B2], . . . , [Ar Br]} (5)
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where Ω denotes the convex hull and
[
Aj Bj

]
are vertices of the convex hull. Ω can be

written as:
[A(β) B(β)] =

{
∑r

j=1 β j
[
Aj Bj

]
, β j > 0, ∑r

j=1 β j = 1
}

(6)

f̃ (x(k), u(k)) is the nonlinear term obtained by differing between the nominal nonlin-
ear model and the linear part, which is given by:

f̃ (x(k), u(k)) = f (x(k), u(k))− Ajx(k) + Bju(k) (7)

Assume that f̃ is globally Lipschitz or at least locally Lipschitz in a region D including
the origin with respect to x(k) and uniformly in u(k). Therefore, we have the following
Lipschitz condition: ∣∣∣∣∣∣ f̃ (x, u)− f̃ (x0, u) ||2 ≤ N||x− x0||2 (8){

∀x, x0 ∈ Rn globally Lipschitz
∀x, x0 ∈ D locally Lipschitz

where N ∈ Rn×n is a Lipschitz constant matrix. For x0 = 0, the Lipschitz inequality
(Equation (8)) can be rewritten as:[

f̃ (x, u)− f̃ (0, u)
]T

I
[

f̃ (x, u)− f̃ (0, u)
]
≤ xT NT Nx (9)

where I is the identity matrix.
This paper aims to find a non-saturating linear-state feedback law u(k) = Hx(k), where

a dead-zone nonlinearity approach is used to handle the saturation nonlinearity. Hence,
the dynamic system (Equation (3)) is written as:

x(k + 1) = Ajx(k) + Bj(u(k)− u(k) + u(k)) + f̃ (x(k), u(k))
=
(

Aj + Bj H
)
x(k) + Bjψ(k) + f̃ (x(k), u(k))

(10)

where H is the state feedback gain. Let us introduce the following useful lemmas for
later use.

Lemma 1. For the saturation constraint defined by Equation (2), let:

ϕ = u− u (11)

Thus, there is:
ϕT ϕ ≤ εuTu (12)

where 0 < ε < 1 and ψ = [ϕ1, ϕ2, . . . , ϕN ]
T ∈ RN . ϕi(i = 1, 2, . . . , N) is the dead-zone

nonlinearity function.

Proof . See [56]. �

Lemma 2. Schur complements lemma: for any three matrices functions: L(x) = L(x)T, M(x) = M(x)T,
and W(x). The LMI [

L(x) W(x)
W(x)T M(x)

]
> 0 (13)

is equivalent to
M(x) > 0, L(x)−W(x)M(x)−1W(x)T > 0 (14)

or
L(x) > 0, M(x)−W(x)L(x)−1W(x)T > 0 (15)



Sustainability 2023, 15, 4493 6 of 26

Proof. Refer to [57]. �

Lemma 3. Assume that F and E are vectors or matrices with appropriate dimensions. For any
positive scalar α > 0, the following inequality holds:

FTE + ET F ≤ αFT F + α−1ETE (16)

3. Robust Model-Based Predictive Control Using LMIs

Let x(k + 1|k ) ∈ X be the predicted state of the plant at time k + 1, i ≥ 0 and
u(k + 1|k ) ∈ U the future control move at time k + 1, i ≥ 0, in which X and U are compact
subsets of Rn and Rm, respectively, and both of them contain the origin as an interior point.
The RMPC aims to find an efficient state feedback control law u(k + i|k) = H(k)x(k + i|k) ,
i ≥ 0 by minimizing the following worst-case performance function:

J(k) = ∑∞
i=0 x(k + i|k )TSx(k + i|k ) + u(k + i|k) T Ru(k + i|k) (17)

where S ∈ Rn×n and R ∈ Rm×m are positive definite states and control weights, respectively.
The optimization problem (Equation (17)) can be formulated as follow:

min
u(k+i|k) J(k) (18)

Let us introduce a quadratic Lyapunov function V(x) = xT Px, P > 0 of the state
x(k|k) , with V(0) = 0, at sampling time k. Suppose the following robust stability condition
is satisfied:

V(k + i + 1|k) −V(k + i|k) ≤ − [x(k + i|k) TSx(k + i|k ) + u(k + i|k)) T Ru(k + i|k) ] (19)

Summing this inequality from i = 0 to i = ∞, we get:

x(∞|k) T Px(∞|k )− x(k|k) T Px(k|k ) ≤ −J (20)

With x(∞|k) = 0 or V(x(∞|k)) = 0, the upper bound of the cost function is:

J ≤ x(k|k) T Px(k|k ) ≤ γ (21)

where γ is a positive scalar and is regarded as an upper bound of the objective in Equation (17):

∑∞
i=0 x(k + i|k )TSx(k + i|k ) + u(k + i|k) T Ru(k + i|k) ≤ γ (22)

Thus, the control action of robust MPC at time k can be obtained by solving the
following optimization problem:

min
u(k+i|k)γ (23)

Applying Schur complements, the condition x(k|k) T Px(k|k ) ≤ γ in Equation (21) can
be expressed equivalently as the LMI:[

I ∗
x(k) Q

]
≥ 0, Q > 0 (24)

We can postulate the following theorems to construct the state feedback matrix H in
order to minimize the upper bound γ. (More details can be found in Kothare et al. [37]).



Sustainability 2023, 15, 4493 7 of 26

4. Main Results
4.1. Linear Systems Subject to Actuator Saturation

In this section, for the case in which the nonlinear term is not considered, a saturated
controller is designed to stabilize the input-saturated linear system (Equation (25)):

x(k + 1) = Ajx(k) + Bju(k), j = {1, 2, . . . , r} (25)

where u(k) ∈ Rm is the saturation function of the control input defined in Equation (2).
With the dead-zone nonlinearity expression of a saturating linear feedback law, as described
in Lemma 1, the first result of our work is given by the following theorem.

Theorem 1. Consider the discrete-time linear system (Equation (25)) and assume x(k|k) is the
measured state of x(k) at each sample time k. The state feedback control law u(k + i|k) =
H(k)x(k + i|k) , i ≥ 0 that minimizes the upper bound γ on the infinite horizon quadratic
performance index J(k) is given by H(k) = YQ−1, where Q, Q > 0, and Y are the solutions to
the following LMIs:

min γ
γ, ξ1, ξ2, Q, Y

subject to
(26)

[
I ∗
x(k) Q

]
≥ 0 (27)

Q ∗ ∗ ∗ ∗ ∗
(1 + α1)

1
2 (Ai + BiY) Q ∗ ∗ ∗ ∗
S

1
2 Q 0 γI ∗ ∗ ∗

[(1 + α2)R]
1
2 Y 0 0 γI ∗ ∗[

ε
(

1 + α−1
1

)] 1
2 BjY 0 0 0 ξ1 I ∗[

ε
(

1 + α−1
2

)] 1
2 Y 0 0 0 0 ξ2 I


≥ 0, j = {1, 2, . . . , r}

Q− ξ1 I > 0
Q− ξ2 I > 0

(28)

Proof of Theorem 1. See Appendix A. �

4.2. Nonlinear Systems Subject to Actuator Saturation

In this section, we will extend the preceding development to the case of nonlinear sys-
tems under actuator saturation. With Theorem 1 and the Lipschitz condition (Equation (9)),
the following theorem is the second result of our paper.

Theorem 2. Consider the discrete-time nonlinear system (Equation (10)) and assume x(k|k) is the
measured state of on the infinite horizon quadratic performance x(k) at each sample time k. The
state feedback control law u(k + i|k) = H(k)x(k + i|k) , i ≥ 0 that minimizes the upper bound
γ on the infinite horizon quadratic performance index J(k) is given by H(k) = YQ−1, where
Q, Q > 0, and Y are the solutions to the following LMIs:

min γ
γ, ξ1, ξ2, Q, Y

(29)

Subject to LMI[
I ∗
x(k) Q

]
≥ 0

(30)
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

Q ∗ ∗ ∗ ∗ ∗ ∗
[(1 + α1)(1 + α2)]

1
2 (Ai + BiY) Q ∗ ∗ ∗ ∗ ∗

S
1
2 Q 0 γI ∗ ∗ ∗ ∗

[(1 + α3)R]
1
2 Y 0 0 γI ∗ ∗ ∗(

1 + α−1
1

) 1
2 N 0 0 0 ξ1 I ∗ ∗[

ε(1 + α1)
(

1 + α−1
2

)] 1
2 BjY 0 0 0 0 ξ1 I ∗[

ε
(

1 + α−1
3

)] 1
2 Y 0 0 0 0 0 ξ2 I


≥ 0, j = {1, 2, . . . , r}

Q− ξ1 I > 0
Q− ξ2 I > 0

(31)

Actually, Equation (29) is for constructing an invariant ellipsoid, and Equations (30) and (31)
are for guaranteeing robust stability. The symbol “∗” depicts a symmetric structure.

Proof of Theorem 2. See Appendix A. �

5. Illustrative Results
5.1. Example 1

To demonstrate the effectiveness of the proposed RMPC approach, we consider the
discrete-time double integrator [58]:

x(k + 1) =
[

1 1
1 0

]
x(k) +

[
0
1

]
u(k), y(k) =

[
1 0

]
x(k)

which is subject to the input constraint −1 ≤ u(k) ≤ 1. The discrete-time system starts
from the initial condition x(0) =

[
10 −5

]T . We use our saturated RMPC algorithm
(Equation (29)) to cope with this problem and compare the results with the saturated RMPC
algorithm presented by Cao and Lin [43] and Kothare et al. [37].

Figure 1 shows the state responses and control input of the system under the three dif-
ferent designs. These responses demonstrate that our RMPC guarantees better stabilization
performance than that of the previous designs, where the proposed controller results in a
smaller overshoot, a shorter rising time, and a faster time response.
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5.2. Example 2. DC–DC Buck-Converter-Based PV Pumping System

The photovoltaic pumping system under consideration is shown in Figure 3. It
comprises a PVG, a DC–DC buck converter, and a DC motor coupled to a centrifugal pump.
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Figure 3. Proposed PV pumping system block diagram.

5.2.1. PVG Model

Generally, a PVG consists of several solar cells, which are connected in series and
parallel to achieve the required voltage and current. The single-diode circuit model in
Figure 4a is the most widely used one to study the behavior of a PVG, in which the PVG
can be modeled as a current source to model the photo-current Iph in parallel with a diode
D, an intrinsic shunt resistance RP, and a series resistance RS (more details can be found
in [59,60]). A PVG has a nonlinear voltage–current (V − I) characteristic (see Figure 5)
given by Equation (32), where vpv and IPV are the output voltage and current of the PV
module, respectively. The efficiency of PVG depends on the internal characteristics of the
device RP and RS and on many ambient conditions, such as the solar irradiance level,
temperature, and shaded condition.

IPV = Iph − I0

[
exp
(

vpv + IPV RS

nVt

)
− 1
]
−
(

vpv + IPV RS

RP

)
(32)

I0 is the reverse saturation current.
Vt =

NsKT
q is the junction thermal voltage of the array with Ns cells connected in series.

n is the ideality factor of the PV cell.
q = 1.60217646× 10−19 C is the electron charge.
K = 1.3806503× 10−23 J/K is the Boltzmann constant.
T is the temperature in degrees Kelvin.
Since Rp � RS, it is possible to assume that Isc ≈ Impp. Thus, the photo-current for

any temperature and solar irradiation can be expressed by the following equation [61]:

Iph =
G0

Gre f

[
Impp + Ki

(
T − Tre f

)]
(33)

Isc is the short-circuit current.
Impp is the MPP current at STC.
Ki is the short-circuit current temperature coefficient.
G0 is the solar irradiance in W/m2.
Gre f = 1000 W/m2 is the solar irradiation reference at STC.
Tre f = 25 ◦C (298 degrees Kelvin) is the PVG temperature reference at STC.
The cell reverse saturation current, which depends on temperature, is given by:

I0 = Irs

[
T

Tre f

]3

exp
[

qEg

nK

]
(34)

Irs is the reverse saturation current.
Eg = 1.12 eV is the band-gap energy of the semiconductor used in the cell.

Irs =
Isc,n

exp
(

Voc,n
nVt,n

)
− 1

(35)
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Isc,n is the cell short-circuit current at STC.
Voc,n is the open-circuit voltage at STC.
Vt,n is the junction thermal voltage with Ns cells connected in series at Tre f .
A modification on the reverse saturation current is proposed in [61] to match the

open-circuit voltages of the model with the experimental data (from the manufacturer
datasheet) for a wide range of temperatures

I0 =
Isc,n + Ki

(
T − Tre f

)
exp
[

Voc,n+Kv(T−Tre f )
nVt

]
− 1

(36)

Kv is the open-circuit voltage temperature coefficient.
The relation between Rp and RS can be determined by solving Equation (33) for

RS [61]:

Pmax = ImppVmpp = Vmpp

[
Iph − I0

[
exp
(

q
KT

Vmpp + ImppRS

Nsn

)
− 1
]
−

Vmpp + ImppRS

Rp

]
(37)

Pmax is the maximum power from the manufacturer datasheet. Then, Rp can be derived
iteratively as:

Rp =
Vmpp

(
Vmpp + ImppRS

)
Vmpp Iph −Vmpp I0exp

[
q(Vmpp+ImppRS)

NsnKT

]
+ Vmpp I0 − Pmax

(38)

To simplify the PVG model, a Thévenin equivalent circuit shown in Figure 4b can be
used, with:

RTH = RS + RP ‖ RD (39)

VTH = IPV RP (40)

where VTH is Thévenin equivalent voltage and RTH is Thévenin resistance. It can be
observed that the Thévenin equivalent circuit parameters are not constant but depend on
the environmental variables and operating point.
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5.2.2. DC Motor-Pump Model

The DC motor in Figure 3 is a DC motor with a permanent magnet (see Figure 6). This
model is defined by an electrical circuit equation armature:

va(t) = Raia(t) + e(t) + La
dia(t)

dt
(41)

where e(t) is the counter electromotive force, ia is the armature current, va is the armature
voltage, and Ra and La represent the armature resistance and inductance, respectively.
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5.2.3. Buck Converter Model

Figure 5 shows the schematic circuit diagram of a PV pumping system formed after
connecting a DC motor to a DC–DC buck converter fed from a photovoltaic generator. The
converter is assumed to operate in continuous conduction mode (CCM), and the inductor
current is always larger than 0. Control is implemented via a pulse width modulation
(PWM) approach. vpv is the photovoltaic array voltage, which must be controlled through
variation of the duty cycle d(t) in order to keep the array operation at the maximum power
point. The diode D is on inverse polarization, while C represents the capacitor value,
and sw is a power MOSFET controlled by a binary signal Sb(t); see Figure 7. The binary
signal that triggers the switches on and off is controlled by a fixed-frequency pulse width
modulation (PWM) circuit (Figure 7). 1/Ts is the constant switching frequency of the PWM
circuit, and Ts is the switching period given by:

Ts = Ton + To f f (42)

1 
 

 
 
 
 
 

 
Figure 7. PWM waveforms.

Ton is the time when the MOSFET is on (ub = 1). To f f is the time when the MOS-
FET is off (ub = 0). The ratio Ton/(Ton + To f f ) is the duty cycle d(t). A PWM signal
of constant frequency can be obtained by comparing the duty cycle with a sawtooth
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signal SM(t) of amplitude equal to 1. Consequently, the duty cycle is constrained in
amplitude between 0 and 1:

0 ≤ d(t) ≤ 1 (43)

The average circuit model of the PV pumping system is shown in Figure 8. The
corresponding discrete-time model is obtained by using the forward Euler approximation
as follows:

ia(k + 1) =
(

1− TSRa
La

)
ia(k)− TS

La
e(k) + TS

La
vPV(k)d (k)

vPV(k + 1) = − TS
C ia(k)d(k) +

(
1− TS

CRTH

)
vPV(k) +

TSVTH
RTH

(44)

1 
 

 
 
 
 
 

 

Figure 8. Averaged circuit model of PV pumping system.

The total instantaneous quantities of the PV system are presented as the sum of the
DC and AC components.

x(k) = x̃(k) + X

d(k) = d̃(k) + D
(45)

where x =
[
ia(k), vpv(k)

]T ∈ R2 is the state, d(k) ∈ R is the saturated control input of the
buck converter, X and D represent the equilibrium values, and x̃ and d̃ are the perturbed
values of state and input. Using the same concept, we can obtain:

ia(k) = ĩa(k) + Ia

vPV(k) = ṽPV(k) + VPV

d(k) = Hx̃(k) + HX

(46)

Equation (46) is substituted into Equation (44), and a small-signal model is derived
as follows:

ĩa(k + 1) =
(

1− TSRa
La

)
ĩa(k)− TSVPV

La
d̃(k) + TS D

La
ṽPV(k)

ṽPV(k + 1) = − TS Ia
C d̃(k)− TSD

C ĩa(k) +
(

1− TS
CRTH

)
ṽPV(k)

(47)

Equation (47) can be expressed as follows:

x(k + 1) = x̃(k) +
.

X= Ax̃(k) + AX + B sat
(0,1)(Hx̃(k) + HX) + f̃

(
x̃(k), d̃(k)

)
(48)

where f̃ is the nonlinear term that is obtained by differing between the nominal nonlinear
model and the linear part, given by:

f̃
(

x̃(k), d̃(k)
)
= f (x(k), d(k))− Ax̃(k) + AX + B sat

(0,1)(Hx̃(k) + HX) (49)

And A =

[
1− TSRa

La

TSD
La

− TSD
C 1− TS

CRTH

]
, B =

[
TSVPV

La

− TS Ia
C

]
.
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The control input is subject to non-symmetric actuator saturation, and we can use the
method proposed in [25] to transform it to a symmetric saturation. Thus, the saturation
function of the control input is rewritten as follows:

sat
(0,1) (Hx̃(k) + HX) =


0, i f Hx̃(k) + HX < 0

Hx̃(k) + HX i f 0 ≤ Hx̃(k) + HX ≤ 1
1, i f Hx̃(k) + HX > 1

(50)

which can be expressed as

sat
(−HX,1−HX)(Kx̃(k)) =


HX, i f Hx̃(k) < −HX

Hx̃(k) i f HX ≤ Hx̃(k) ≤ 1− HX
1− HX, i f Hx̃(k) + HX > 1− HX

(51)

If we add HX to Equation (48), we can obtain the following equality:

sat
(0,1)(Hx̃(k) + HX) = sat

(−HX,1−HX) (Hx̃(k)) + HX (52)

Since the steady-state part is equal to 0, there is:

f (X, D) = AX + HX = 0 (53)

In our case, the steady-state control signal is HX = 0.5, and the operating point can be
calculated from:

Ra Ia = VPV D

DIa = (−VPV + VTH)/RTH
(54)

The system described in Equation (48) can be written as follows:

x̃(k + 1) = Ax̃(k) + Bsat
(

δ̃(k)
)
+ f̃

(
x̃(k), d̃(k)

)
(55)

where sat
(

δ̃(k)
)
= sat

(−HX,1−HX) (Hx̃(k)) is the new control input. Lemma 1 can be used to
handle saturation nonlinearity. Thus, the new symmetric saturation model is constrained
as in [62]:

−U0 < u(k) < U0 ↔ −HX < δ(k) < HX (56)

Based on this amplitude saturation, the decentralized dead-zone nonlinearity can be
defined as:

ϕ̃(k) = sat
(

δ̃(k)
)
− δ̃(k) (57)

The closed-loop system is rewritten as:

x̃(k + 1) = (A + BH)x̃(k) + Bϕ̃(k) + f̃
(

x̃(k), d̃(k)
)

(58)

5.2.4. Uncertainty Polytope Model

In this example, the Thévenin resistance RTH at the operating point is considered
as the uncertain parameter. The discrete state-space model described in Equation (58) is
expressed as:

x̃(k + 1) = (A(β) + BH)x̃(k) + Bϕ̃(k) + f̃
(

x̃(k), d̃(k)
)

(59)

We consider r = 2 and the vector β[1/RTH ], in which:

1
RTH

∈
[

1
RTHmin

,
1

RTHmax

]
(60)
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Photovoltaic generators are neither constant voltage sources nor constant current
sources. In practice, the PVG is forced to operate at the boundaries of the constant current
and constant voltage modes, if an MPPT is used, and the possessing dynamic resistance is
equal to the resistance of its load at the maximum power transfer [63]. Based on the PVG
equivalent circuit of Figure 4b, we can define a range of changes for Thévenin resistance.
Under the open-circuit condition, RD is low, dominating the parallel connection with
RP [15]. Therefore, we have:

RTH |oc → RS + RD (61)

bounded by:
RTH |oc > RTHmin = RS (62)

With short-circuit and reference conditions, RD is high and RP dominates the parallel
connection. There is:

RTH |sc → RP + RS (63)

Note that RS is constant and RP is irradiation dependent [64]:

RP
RP,re f

=
G0

Gre f
(64)

where G0 is the solar irradiance and RP,re f is the shunt resistance at STC (the solar irradiation
is Gre f = 1000 W/m2, and the PVG temperature is Tre f = 25 ◦C). As an approximation,
we have:

RTH |sc < RTHmax = RP,STC (65)

Since the PV system matrix A(β) depends linearly on the uncertain parameter 1/RTH ,
we can define a polytope of r = 2 vertices, which contains all the possible values of the
uncertain matrix. The uncertain matrices Aj are:

A1 =

[
1− TSRa

La

TSD
La

− TSD
C 1− TS

CRp

]
, A2 =

[
1− TSRa

La

TSD
La

− TSD
C 1− TS

CRS

]

5.2.5. Simulations Results

In this section, several simulation tests are implemented to verify the performance of
the proposed control law and its robustness according to the presence of the input constraint,
insolation variations, temperature variations, and dynamic resistance uncertainty. The
results are compared to the RMPC method for nonlinear systems dependent on the Lipschitz
bound presented in Poursafar et al. [55] and the saturated RMPC algorithm presented in Cao
and Lin [43] designed by the linearized model around the equilibrium point. The parameters
of the DC–DC converter and the PVG can be found in Tables 1 and 2, respectively.

Table 1. Buck converter parameters.

Parameters Description Numerical Value

L Inductance 1 mH
C Input capacitance 1000 µF
Va Armature voltage 13.5 V
Ia Armature current 15.22 A
D Duty cycle 0.5
Ts Switching period 0.654 ms
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Table 2. PVG parameters at STC.

Parameters Description Numerical Value

Pmax Maximum power 200.143 W
Vmpp Voltage at Pmax 26.3 V
Impp Current at Pmax 7.61 A
Isc Short-circuit current 8.21 A
Voc Open-circuit voltage 32.9 V

KV
Open-circuit voltage temperature

coefficient −0.1230 V/K

Ki
Short-circuit current temperature

coefficient 0.0032 A/K

RTH Thévenin resistance 415.405 Ω
Rs Series resistance 10 Ω

Rp,STC Shunt resistance at STC 405.405 Ω

• Scenario 1: The input saturation effect In the first case, we assume that the saturation limit
is δmax = 0.5, and the initial conditions of the DC–DC buck converter during startup
are represented by x0 = [15.22, 26.3]T . We use the nominal value of the dynamic
resistance RTH = 415.405 Ω to test the closed-loop behavior without any change in the
converter parameters. Figure 9 depicts the computed input and state responses under
the three different designs, where the waveforms are the PV voltage vpv, armature
current ia , and duty cycle d. From Figure 9, it can be discovered that the proposed
method outperforms the saturated RMPC algorithm in Cao and Lin [43] with a fairly
good time response and lower fluctuations. Moreover, the PV voltage response settles
to its desired value without any overshoot, whereas the approach in [55] has some
unstable transient responses. In other words, our RMPC is well capable of handling
the hard actuator saturation constraint.

• Scenario 2: The insolation variations effect In the second case, we assume that the satu-
ration limit is δmax = 0.5. An examination is made for various irradiances, such as
G0 = 200 W/m2, G0 = 400 W/m2, and G0 = 1000 W/m2. With the proposed control
method, the power regulation response is shown in Figure 10. The increasing and
decreasing nature of PV power with respect to insolation G0 can be observed in the
waveforms of PV power, which verifies the PV generator voltage at the MPP tracking.
Similarly, the proposed RMPC also shows a good time response, low oscillation, and
desired stability.

• Scenario 3: The temperature variations effect In this scenario, we consider varying temper-
ature with constant insolation G0 = 1000 W/m2. The temperature changes between
100 ◦K and 298 ◦K at t = 100 s. Next, the temperature increases to 400 ◦K at t = 200 s,
and it returns to 100 ◦K at t = 300 s, For this scenario, the saturation limit is δmax = 0.5.
Figure 11 depicts the computed state responses under the proposed RMPC design. It
is easily seen that the proposed RMPC guarantees the desired stability, with a good
time response and low oscillation.

• Scenario 4: The dynamic resistance variations effect In the last case, we consider dynamic
resistance uncertainty in order to validate the robustness of the proposed controller.
Figure 12 illustrates that our controller can stabilize the system on the reference
PV voltage in presence of an abrupt dynamic resistance change. The overshoots
and long settling time at t = 50 s and t = 120 s are the results of the aggressive
move in the converter parameters, which demonstrates the effectiveness of our MPC
design algorithm.
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6. Conclusions

This paper proposes a new RMPC design framework based on Lyapunov stability
theory for a PV pumping system with actuator saturation and uncertain parameters. The
input saturation effect is expressed by a model using dead-zone nonlinearity. At each time
instant, the state feedback control law is obtained by minimizing the upper bound of the
infinite horizon cost function within the framework of LMIs, which directly incorporates the
input saturation. The internal stability of the closed-loop system is guaranteed in the sense
of Lyapunov stability. The design of the closed-loop stabilization for a nonlinear system for
the requirement of desired output responses with uncertain parameters is also investigated
here. The simulation results obtained demonstrate the effectiveness and efficiency of our
method. Furthermore, the novel method is examined in case the uncertainty is in the form
of solar irradiance change and dynamic resistance, which proves that it is able to stabilize
the system at the desired PV voltage.
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Nomenclature

Abbreviations
MPC model predictive controller
RMPC robust model predictive controller
DC direct current
DC–DC direct current–direct current
PV photovoltaic
PVG photovoltaic generator
LMI linear matrix inequality
H2O2 hydrogen peroxide
CO2 carbon dioxide
MPP maximum power point
MPPT maximum power point tracker
P&O perturb and observe
INC incremental conductance
STC standard test condition
PID proportional–integral–derivative
SMC sliding mode control
LPV linear parameter varying
CNC computer numerical control
AMB active magnetic bearing
CCM continuous conduction mode
PWM pulse width modulation
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Symbols
x∈Rn state
u ∈ Rm control input
u ∈ Rm saturation function of control input
k current time instant
ulim control input limit
umax maximum control input limit
f ∈ C2 nonlinear function of states and control inputs
β j uncertain parameter
Ω convex hull
f̃ (x, u) globally Lipschitz

N ∈ Rn×n Lipschitz constant matrix
I identity matrix
H state feedback gain
ϕi dead-zone nonlinearity function
J worst-case performance function
S ∈ Rn×n positive definite state weight
R ∈ Rm×m positive definite control weight
V(x) quadratic Lyapunov function
γ positive scalar
IPV output current of PV generator, in ampere
vpv output voltage of PV generator, in volt
Iph photo-current of the PV generator
I0 reverse saturation current
Isc short-circuit current
Ki short-circuit current temperature coefficient
Eg band− gap energy of the semiconductor used in the cell, in eV
Isc,n cell short-circuit current at STC
Voc,n open-circuit voltage at STC
Vt,n junction thermal voltage at Tre f
Kv open-circuit voltage temperature coefficient
Irs reverse saturation current
RP shunt resistance, in ohm
RS series resistance, in ohm
Vt junction thermal voltage
n ideality factor of the PV cell
q electron charge, in coulomb
K Boltzmann contant, in J/K
iD recombination losses current
VTH Thévenin equivalent voltage, in volt
RTH Thévenin resistance, in ohm
e(t) counter electromotive force
ia DC motor armature current, in ampere
va DC motor armature voltage, in volt
Ra armature resistance, in ohm
La armature inductance, in henry
D diode
d converter duty cycle
C capacitance, in farad
Sb binary signal
Ts witching period, in second
SM sawtooth signal
x̃ perturbed values of state
d̃ perturbed values of input
VMPP voltage at MPP, in volt
IMPP current at MPP, in ampere
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Pmax MPP from the manufacturer datasheet, in watt
RP,re f shunt resistance at SRC, in ohm
G0 solar irradiance, in W/m2

Gre f solar irradiation reference, in W/m2

T PVG temperature, in degrees Kelvin
Tre f PVG temperature reference, in degrees Kelvin

Appendix A Proof of Theorem 2

To obtain the LMI (Equation (27)), V(x) is required to satisfy:

V(k + i + 1|k) −V(k + i
∣∣∣k) ≤ −(x(k + i|k) TSx(k + i|k ) + u(k + i|k) T Ru(k + i|k)) (A1)

By substituting Equation (10) in Equation (A1), we have:[(
Aj + Bj H

)
x(k + i|k ) + Bj ϕ(k + i|k ) + f̃ (x(k + i|k ), u(k + i|k )

]T

×P
[(

Aj + Bj H
)
x(k + i|k ) + Bϕ(k + i|k ) + f̃ (x(k + i|k ), u(k + i|k )

]
−x(k + i|k) T Px(k + i|k ) + x(k + i|k) TSx(k + i|k ) + u(k + i|k) T Ru(k + i|k ) ≤ 0

Define the function h1(x, u) as:

h1(x, u) =
[(

Aj + Bj H
)
x(k + i|k ) + Bj ϕ(k + i|k ) + f̃ (x(k + i|k ), u(k + i|k )

]T

×P
[(

Aj + BjH
)

x(k + i|k ) + Bj ϕ(k + i|k ) + f̃ (x(k + i|k ), u(k + i|k )
]

=
[(

Aj + BjH
)

x(k + i|k ) + Bjψ(k + i|k )
]T P

[(
Aj + Bj H

)
x(k + i|k ) + Bj ϕ(k + i|k )

]
+
[(

Aj + Bj H
)

x(k + i|k ) + Bj ϕ(k + i|k )
]T P[ f̃ (x(k + i|k ), u(k + i|k )]

+[ f̃ (x(k + i|k ), u(k + i|k )]T P
[(

Aj + Bj H
)
x(k + i|k ) + Bj ϕ(k + i|k )

]
+ [ f̃ (x(k + i|k ), u(k + i|k )]T P[ f̃ (x(k + i|k ), u(k + i|k )]

where applying Lemma 3 on h1(x, u) yields:

h1(x, u) ≤ (1 + α1)
[(

Aj + Bj H
)
x(k + i|k ) + Bj ϕ(k + i|k )

]T P
[(

Aj + Bj H
)
x(k + i|k )

]
+Bj ϕ(k + i|k ) +

(
1 + α−1

1

)
[ f̃ (x(k + i|k ), u(k + i|k )]T P[ f̃ (x(k + i|k ), u(k + i|k )]

Consider P ≤ λ1,max I ≤ µ1 I, where λ1,max is the maximum eigenvalue of P and µ1 I is
the corresponding upper bound. There is:

h1(x, u) ≤ (1 + α1)
[(

Aj + BjH
)
x(k + i|k ) + Bj ϕ(k + i|k )

]T

×P
[(

Aj + Bj H
)
x(k + i|k ) + Bj ϕ(k + i|k )

]
+
(

1 + α−1
1

)
µ1[ f̃ (x(k + i|k ), u(k + i|k )]T [ f̃ (x(k + i|k ), u(k + i|k )]

(A2)

Using Lipschitz property in Equation (9) helps in further simplifying Equation (A2) to:

[ f̃ (x(k + i|k ), u(k + i|k )]T [ f̃ (x(k + i|k ), u(k + i|k )] ≤ x(k + i|k )T NT Nx(k + i|k )

There is:

h1(x, u) ≤ (1 + α1)
[(

Aj + Bj H
)
x(k + i|k ) + Bj ϕ(k + i|k )

]T

×P
[(

Aj + BjH
)

x(k + i|k ) + Bj ϕ(k + i|k )
]
+
(

1 + α−1
1

)
µ1x(k + i|k )T NT Nx(k + i|k )
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Inequality in Equation (A1) becomes:(
1 + α−1

1

)
µ1x(k + i|k )T NT Nx(k + i|k )− x(k + i|k) T Px(k + i|k )

+(1 + α1)
[(

Aj + Bj H
)
x(k + i|k ) + Bj ϕ(k + i|k )

]T P[
(

Aj + Bj H
)
x(k + i|k )

+Bj ϕ(k + i|k )] + x(k + i|k) TSx(k + i|k ) + u(k + i|k) T Ru(k + i|k ) ≤ 0

(A3)

Now, we define another function h2(x, u) as:

h2(x, u) =
[(

Aj + BjH
)
x(k + i|k ) + Bj ϕ(k + i|k )

]T

×P
[(

Aj + BjH
)

x(k + i|k ) + Bj ϕ(k + i|k )
]

=
[(

Aj + Bj H
)

x(k + i|k )
]T P

[(
Aj + Bj H

)
x(k + i|k )

]
+
[(

Aj + Bj H
)
x(k + i|k )

]T

×P
[
Bj ϕ(k + i|k )

]
+
[
Bj ϕ(k + i|k )

]T P
[(

Aj + Bj H
)
x(k + i|k )

]
+
[
Bj ϕ(k + i|k )

]T P
[
Bj ϕ(k + i|k )

]
Applying Lemma 3, the upper bound of the function h2(x, u) is:

h2(x, u) ≤ (1 + α2)
[(

Aj + Bj H
)
x(k + i|k )

]T P
[(

Aj + Bj H
)
x(k + i|k )

]T

+
(

1 + α−1
2

)[
Bjϕ(k + i|k )

] T P
[
Bjϕ(k + i|k )

]
There is:

h2(x, u) ≤ (1 + α2)
[(

Aj + Bj H
)
x(k + i|k )

]T P
[(

Aj + BjH
)

x(k + i|k )
]

+
(

1 + α−1
2

)
µ1Bj

T Bjϕ(k + i|k )Tϕ(k + i|k )

The term ψ(k + i|k )Tψ(k + i|k ) is bounded as:

ψ(k + i|k )Tϕ(k + i|k ) ≤ εu(k + i|k )Tu(k + i|k )

Thus, we obtain:

h2(x, u) ≤ (1 + α2)
[(

Aj + Bj H
)
x(k + i|k )

]T

×P
[(

Aj + Bj H
)

x(k + i|k )
]
+ ε
(

1 + α−1
2

)
µ1Bj

T Bju(k + i|k )Tu(k + i|k )

Moreover, we define the function h3(u) as:

h3(u) = u(k + i|k) T Ru(k + i|k )
= [u(k + i|k )− u(k + i|k) + u(k + i|k) ]T R[u(k + i|k )− u(k + i|k) + u(k + i|k) ]
= [ϕ(k + i|k ) + u(k + i|k) ]T R[ϕ(k + i|k ) + u(k + i|k) ]
= [ϕ(k + i|k) ]T R[ϕ(k + i|k )] + [ϕ(k + i|k )]T R[u(k + i|k)]
+[u(k + i|k) ]T R[ϕ(k + i|k )] + [u(k + i|k) ]T R[u(k + i|k) ]

Applying Lemma 3, the upper bound of the function h3(u) is:

h3(u) ≤ (1 + α3)u(k + i|k) T Ru(k + i|k) +
(

1 + α−1
3

)
ϕ(k + i|k) T Rϕ(k + i|k)

Consider R ≤ λ2,max I ≤ µ2 I, where λ2,max is the maximum eigenvalue of R and µ2 I is
the corresponding upper bound. There is:

h3(u) ≤ (1 + α3)u(k + i|k) T Ru(k + i|k) +
(

1 + α−1
3

)
µ2ψ(k + i|k) T

ψ(k + i|k)

The term ϕ(k + i|k )Tϕ(k + i|k ) is bounded as:

ϕ(k + i|k )Tϕ(k + i|k ) ≤ εu(k + i|k )Tu(k + i|k )
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There is:

h3(u) ≤ (1 + α3)u(k + i|k) T Ru(k + i|k) + ε
(

1 + α−1
3

)
µ2u(k + i|k )Tu(k + i|k )

By replacing h2(x, u) and h3(u) in the inequality Equation (A1), the following condition
holds for all i > 0:(

1 + α−1
1

)
µ1x(k + i|k )T NT Nx(k + i|k ) + (1 + α1)(1 + α2)

[(
Aj + Bj H

)
x(k + i|k )

]T

×P
[(

Aj + BjH
)

x(k + i|k )
]
+ (1 + α3)u(k + i|k) T Ru(k + i|k)

+ε(1 + α1)
(

1 + α−1
2

)
µ1Bj

T Bju(k + i|k )Tu(k + i|k )T − x(k + i|k) T Px(k + i|k )

+ε
(

1 + α−1
3

)
µ2u(k + i|k )Tu(k + i|k ) + x(k + i|k) TS(k + i|k ) ≤ 0

(A4)

By replacing u(k + 1|k) = Hx(k + 1|k) in Equation (A4), we have:

(1 + α1)(1 + α2)
[(

Aj + BjH
)]T P

[(
Aj + Bj H

)]
+
(

1 + α−1
1

)
µ1NT N

+ε(1 + α1)
(

1 + α−1
2

)
µ1Bj

T Bj HT H − P + S + (1 + α3)KT RK + ε
(

1 + α−1
3

)
µ2HT H ≤ 0

Pre-multiply and post-multiply by Q > 0 and substitute Q = γP−1, Y = HQ, ξ1 = γµ1,
and ξ2 = γµ2. Applying Schur complements, we obtain the LMI (Equation (27)).

Remark A1. The proof of Theorem 1 is similar to that of Theorem 2. Therefore, we only present the
proof of Theorem 2 in this appendix for brevity.
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