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Abstract: Chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiencies of
saline wastewater treatment indicate the efficiency of the electrochemical oxidation process. Therefore,
the main target of this paper is to simultaneously increase COD and TOC removal efficiencies using
artificial intelligence and modern optimization. Firstly, an accurate model based on ANFIS was
established to simulate the electrochemical oxidation process in terms of reaction time, pH, salt
concentration, and DC applied voltage. Compared with ANOVA, thanks to ANFIS modelling, the
RMSE values are decreased by 84% and 86%, respectively, for COD and TOC models. Additionally,
the coefficient of determination values increased by 3.26% and 7.87% for COD and TOC models,
respectively. Secondly, the optimal reaction time values, pH, salt concentration, and applied voltage
were determined using the hunger games search algorithm (HGSA). To prove the effectiveness of
the HGSA, a comparison with a slime mold algorithm, sine cosine algorithm, and Harris’s hawks
optimization was conducted. The optimal values were found at a pH of 8, a reaction time of 36.6 min,
a salt concentration of 29.7 g/L, and a DC applied voltage of 9 V. Under this condition, the maximum
COD and TOC removal values were 97.6% and 69.4%, respectively. The overall efficiency increased
from 76.75% to 83.5% (increased by 6.75%).

Keywords: artificial intelligence; ANFIS modeling; environmental sciences; hunger games search;
wastewater treatment

1. Introduction

Water and energy are two intertwined global issues. Access to safe drinking water is a
major issue that affects a large number of people and is expected to worsen as a result of
population growth. Water desalination is considered the best choice to secure sustainable
fresh water; however, it requires a significant amount of energy [1]. Wastewater discharge
has been on the rise in tandem with global population growth, industrialization, and
urbanization [2–5]. While securing fresh water is critical for several countries, wastewater
is discharged in large quantities. The proper treatment of such wastewater can secure
a considerable portion of fresh water requirements. High salts can be found in various
industrial wastewaters, including textiles, medicines, leather goods, fish, meat processing,
and marine products [6,7]. Along with contaminated groundwater and wastewater from
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mining operations and recycling units in the gas and oil industries, salt can also be discov-
ered in significant amounts in the leachate of urban dumpsites [8,9]. The fish processing
industry needs a lot of sodium chloride for preservation [10,11]. High salt concentrations
are necessary in the tanning process used by the leather industry to strip hair and wool
from animal skins [12,13]. Furthermore, the salt content of the effluent from the oil refining,
extraction, and processing sectors varies significantly, often being several times higher than
the salt content of saltwater [14].

If wastewater is not handled correctly, the environment and human health can suf-
fer [15]. These consequences may involve harm to fish and wildlife populations, in addition
to oxygen reduction and drinking water pollution [16]. The main purpose of wastewater
treatment is the removal of suspended solids and metal ions before returning the effluent
to the environment [17,18]. As solid organic matter decays, it consumes oxygen that is nec-
essary for plants and animals. The proper treatment/management of wastewater signifies
a genuine sanitary and environmental challenge for all stakeholders worldwide [19–24].
Effective treatment options are available, including reusing treated wastewater [25,26].

The biological wastewater treatment approach, the conventional wastewater treatment
method, is a widespread treatment method [27,28]. It considers biodegradation bleaching
with the help of various microorganisms, algae, yeast, fungi, and bacteria [29]. This simple
and inexpensive process combines aerobic and anaerobic processes [30]. The use of biologi-
cal treatment methods for treating saline wastewater is currently unattainable because of
the dehydration of microbial cells in high-salt wastewater. Therefore, in the case of saline
wastewater, salt removal is necessary before biological treatment [31]. However, conven-
tional technologies rarely succeed in removing salt from wastewater. For the treatment of
wastewater with a high salt concentration, membrane treatment methods, including reverse
osmosis, nanofiltration, ultrafiltration–nanofiltration, and sophisticated oxidation processes,
including electrolysis and the electro-Fenton process, have been proposed [32–34]. These
wastewaters have a high electrical conductivity because of their high concentration of
cations and anions. Therefore, treating such wastewater with electron-assisted approaches
may be a good solution [35,36].

The reaction time, pH, salt concentration, and DC applied voltage are considered
essential factors that influence the performance of the electrochemical oxidation process.
The performance of the electrochemical oxidation process is measured through the chemical
oxygen demand (COD) and total organic carbon (TOC) removal. Optimizing the controlling
parameters, i.e., reaction time, pH, salt concentration, and the applied voltage, is essential
to increase the overall performance of the treatment process in terms of COD and TOC
removal efficiencies. Experimental optimization of such parameters is time-consuming,
costly, and needs significant effort and money. Although there has been success in this
regard using mathematical and physical modelling, the accuracy of these models is limited
by the need for assumptions [37]. Artificial intelligence (AI) is a robust modelling and
optimization method that is effectively used in various processes [38]. AI was applied
successfully to modelling and optimizing the performance of microbial fuel cells in terms
of increasing the power production at higher COD removal [22,39], biodiesel produc-
tion [40,41], syngas production [42–44], biohydrogen production [45,46], power output
of solid oxide fuel cells [47,48], carbon capture [49,50], and wastewater treatment [51].
Consequently, this work aims to improve the performance of the electrochemical oxidation
process by simultaneously boosting the COD and TOC removal efficiencies using artificial
intelligence and modern optimization. Unlike normal mathematical tools, ANFIS expresses
the functionality between the output and the inputs in the form of some IF-THEN fuzzy
rules. The proposed methodology for the case under investigation contains two phases.
The first phase is building an accurate model using ANFIS to simulate the electrochemical
oxidation process in terms of three controlling input parameters. The second phase is the
optimal parameter identification process using the hunger games search algorithm (HGSA).
During the optimization process, three controlling parameters were used. The reaction time,
pH, salt concentration, and DC applied voltage were used as decision variables, whereas
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the objective function was simultaneously maximization of the COD and TOC removal
efficiencies.

The main contributions can be outlined as follows.

• Creating an precise ANFIS model of the electrochemical oxidation process.
• For the first time, a hunger games search algorithm is used to define the best values of

reaction time, pH, salt concentration, and DC applied voltage
• Boosting the COD and TOC removal efficiencies simultaneously
• Demonstration of the proposed methodology

2. Materials, Methods, and Dataset

A rectangular Plexiglas reactor with a dimension of 15 × 6 × 16 and 1 L working
volume operated under batch mode was used. Two parallel electrode series of iron with
a dimension of 1.6 cm diameter and 14 cm length were connected and put inside the
Plexiglas reactor and contacted with the power supply as seen in Figure 1. Synthetic saline
wastewater with total organic carbon and chemical oxygen demand (COD) concentrations
of 2000 mg/L and 3500 mg/L, respectively, was synthesized by adding sodium chloride
(to control salinity) to wastewater. The pH of the synthetic saline wastewater was adjusted
using 1 N HCl and NaOH. COD and TOC were measured according to the standard
methods reported in [52]. The process’s efficiency was assessed based on COD and TOC
removal efficiencies according to the following equation:

TOC or COD removal e f f iciency % =
Ci − C

Ci
× 100
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Figure 1. Scheme of the electro-oxidation Plexiglas reactor.

Ci is the initial concentration in mg/L (TOC or COD), and C is the final concentration
in mg/L (TOC or COD). The influence of reaction time, pH, applied voltage, and salt
concentration on the TOC and COD removal efficiency was investigated. The values of
these independent values were shown in Table 1. The experimental results obtained are
shown in Table 2:
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Table 1. Considered parameters.

Independent Variables Values

Reaction time, min 20, 30, 40
pH 4, 6, 8
Applied voltage, V 3, 6, 9
Salt concentration, mg/L 12,000, 22,000, 32,000

Table 2. Effect of different operating parameters on COD and TOC [36], open access.

pH Time (min) Salinity
(gr/L)

Voltage
(Volt)

COD Removal
(%)

TOC Removal
(%)

4 20 22 6 49 37
4 30 22 3 38 36
4 30 12 6 49 37
4 30 22 9 69 55
4 30 32 9 51 40
4 40 22 6 60 37
6 20 12 6 36 30
6 20 22 3 51 30
6 20 22 9 43 40
6 20 32 6 57 32
6 30 12 3 43 39
6 30 12 9 52 40
6 30 22 6 80 67
6 30 22 6 79.4 61.7
6 30 22 6 86 66
6 30 22 6 83 62
6 30 22 6 81 67
6 30 32 3 51 37
6 30 32 9 81 62
6 40 12 6 52 37
6 40 22 3 53 31
6 40 22 9 83 60
6 40 32 6 73 54
8 30 12 6 57.5 42
8 30 22 3 71 52
8 30 22 9 81.5 58.2
8 30 32 6 89 64.5
8 40 22 6 76 44

3. Methodology

The considered methodology comprises two stages: ANFIS modelling and optimal
parameter determination.

3.1. ANFIS-Modelling

For the ANFIS model, the nonlinear mapping of the inputs is achieved using mem-
bership functions (MFs) during the fuzzification stage. Creating the rules, evaluating the
rules’ outputs, and merging the fired rules to obtain the output occurs during the inference
engine phase [53]. Ultimately, the output is switched from a fuzzy shape to a crisp shape
during the defuzzification stage. Despite various MF shapes and defuzzification methods,
the Gaussian structure and weight average are considered in this work. The relationships
between the inputs and outputs are patterned by an IF-THEN system as presented as
follows [49]:

IF x is X and y is Y THEN z = f (x, y);
Where, x and y represent the inputs and z denotes the output; X and Y denote the

membership functions.
The output f is defined in terms of the two rules’ outputs, f 1 and f 2, as follows:
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f = ω̃1 f1 + ω̃2 f2 (Output Layer)
Evaluating ω̃1g1(x, y) and ω̃2g2(x, y) (Defuzzification Layer)

ω̃1 = ω1
ω1+ω2

and ω̃2 = ω2
ω1+ω2

(N Layer)
ω1 = µA1 ∗ µB1 and ω2 = µA2 ∗ µB2 (π Layer)

µA1 , µA2 , µB1 and µB2 are the MF values of the two inputs (Fuzzification Layer)

3.2. Hunger Games Search

The original code of HGS is proposed by Yang et al. [54]. We integrated this optimizer
for the first time with ANFIS modelling to determine the best values of the reaction
time, pH, salt concentration, and DC applied voltage in order to improve the efficiency
of the electrochemical oxidation process. The behavior of the HGS can be expressed
mathematically to emulate the contraction stage as follows [54]:

→
X(t + 1) =



→
X(t)·(1 + randn(1)), r1 < l

→
W1·

→
Xb +

→
R·
→

W2·
∣∣∣∣→Xb −

→
X(t)

∣∣∣∣, r1 > l, r2 > E
→

W1·
→
Xb −

→
R·
→

W2·
∣∣∣∣→Xb −

→
X(t)

∣∣∣∣, r1 > l, r2 < E

(1)

where r1 and r2 are randoms;
r is current iterations;
→

W1 and
→

W2 are the weights of hunger;
→
Xb is the location information of a random individual in all the optimal individuals;
→

X(t) is each individual’s location;
The expression of E is presented in (2) [54].

E = sec h(|F(i)− BF|) (2)

where i ∈ 1, 2, . . . , n, F(i) is the fitness value;
BF denotes the best fitness;
Sech denotes a hyperbolic function

(
sec h(x) = 2

ex+e−x

)
.

The expression of
→
R is presented in (3):

→
R = 2× a× rand− a (3)

a = 2×
(

1− t
Max_iter

)
(4)

where rand denotes a random value;
Max_iter denotes the maximum iterations number.

The starvation characteristics of particles can be presented as follows:

The expressions of
→

W1 and
→

W2 can be presented as in (5) and (6) respectively [54]:

→
W1(i) =

{
hungry(i)· N

SHungry × r4, r3 < l
1 r3 > l

(5)

→
W2(i) = (1− exp(−|hungry(i)− SHungry|))× r5 × 2 (6)

here hungry denotes the hunger of every particle;
N is the number of particles;
SHungry is the sum of hungry feelings of all particles;
r3, r4 and r5 denote randoms values.
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The expression for hungry(i) can be presented as follows:

hungry(i) =
{

0, AllFitness(i) == BF
hungry(i) + H, AllFitness(i)! = BF

(7)

where AllFitness(i) is the fitness of every particle in the present iteration.
The expression for H is presented in (9):

TH =
F(i)− BF
WF− BF

× r6 × 2× (UB− LB) (8)

H =

{
LH × (1 + r), TH < LH

TH, TH ≥ LH
(9)

where r6 is a random value;
F(i) is the fitness of every particle;
BF denotes the best fitness;
WF is the worst fitness obtained in the current iteration process;
UB and LB are the maximum and minimum limits;
The hunger sensation H is limited to a lower bound, LH.

4. Results and Discussion

The number of measured points that were used for creating the ANFIS model is 29.
These samples were distributed to two parties. The first part had 20 samples. It was
employed to train the model, whereas the reminder was employed to test it. The ANFIS
model was trained by LSE and backpropagation in the forward and backward paths,
respectively. The SC was adopted for generation ANFIS rules. In this work the number
of rules are 17 and 19 for COD and TOC models, respectively. Next, the models were
trained until the minimum RMSE value was attained. The statistical assessment of the
ANFIS-based model is explained in Table 3.

Table 3. Statistical assessment of ANFIS-based models of COD and TOC.

RMSE R-Squared

Train Test All Train Test All

COD model

0.611 6.74 3.79 0.999 0.91 0.95

TOC model

0.838 4.547 2.63 0.994 0.92 0.96

Referring to Table 1, the RMSE values were 0.611 and 6.74during training and test-
ing, respectively, of the COD-based model. The R-squared values were 0.999 and 0.91
during training and testing the model, respectively. The RMSE decreased from 23.7 using
ANOVA [36] to 3.79 using ANFIS (decrease of 84%). The adjusted R-squared increased
from 0.92 using ANOVA to 0.95 using ANFIS (increase of 3.26%). For the TOC-based
ANFIS model, the RMSE values were 0.838 and 4.547 for training and testing data, re-
spectively. The R-squared values were 0.994 and 0.92 for training and testing. Compared
with ANOVA [36], the RMSE decreased from 18.78 using ANOVA to 2.63 using ANFIS
(decrease of 86%). The adjusted R-squared raised from 0.89 using ANOVA to 0.96 using
ANFIS (increase of 7.87%). In sum, the lowered RMSE and the boosted R-squared values
of the ANFIS model demonstrate a successful modelling stage. Figure 2a,b presents the
4-inputs-single-output structure of the ANFIS model for COD and TOC. There were 17
and 19 rules for COD and TOC models, respectively. To obtain the rules, the subtractive
clustering method was used. The shapes of the Gaussian MFs are presented in Figure 3a,b
for COD and TOC models. The colors in Figure 3 represent the clusters.
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Figures 4 and 5 point out the three-dimensional description with contours of the
system’s input–output for COD and TOC models, respectively. The maximum point of the
output reaches dark red, but the minimum point reaches dark blue.
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Figure 4 illustrates the surface of ANFIS-based models for COD removal at the different
interactions of (a) pH and reaction time, (b) pH and salt concentration, (c) applied voltage
and pH, (d) salt concentration and reaction time, (e) applied voltage and reaction time,
and (f) applied voltage and salt concentration. As depicted in the figure, there is an
optimum condition of the various parameters, i.e., pH, salt concentration, reaction time,
and applied voltage. As shown in these figures, as the salt concentration increases, so does
the percentage of COD and TOC removed. This is due to indirect oxidation caused by
the production of chloride or hypochlorite in response to the NaCl electrolysis process
occurring in the reactor, which, together with the produced hydroxyl radicals, causes
organic compound degradation [55]. The values of COD and TOC removal increase as pH
values rise. This rising trend is predicted for pH values up to 7, after which the removal
percentage will continue to fall. Chloride compounds such as hypochlorite, chloride ions,
chlorine gas, and chlorate are formed during electrochemical treatment. The appropriate
pH for this study was alkaline. The chlorine gas produced from Cl ions at the anode
(Equation (10)) is converted to hydrolyzed hypochlorite in this alkaline environment via
the following reactions (Equations (11) and (12)) [36]:

2Cl−1 ↔ Cl2 + 2 e− (10)

Cl2 + H2O ↔ HOCL + H+ + Cl− (11)

HOCl ↔ H+ + OCl− (12)

Such hypochlorite ions are used in the oxidation of the organic materials according to
the following equation (Equation (13)):

R + OCl− ↔ CO2 + H2O + Cl− (13)

As is clear from the figure, the TOC and COD removal increased over time until 30 min,
and then decreased with a further increase in time. The optimum time for the COD and
TOC removal was around 30 min. This is because as reaction time increases, the percentage
removal of the TOC and COD increases, however, as time proceeds, the salt concentration
(responsible for the hypochlorite production) decreases, and thus the percentage removal
decreases again. Furthermore, it is clear that the increase in the applied voltage from 4 to
6 V increased the removal percentages of the TOC and COD. However, they decreased at
higher applied voltages. This could be related to the sequestration of metal hydroxides at
the electrode level [36,56]. The increase in the salt concentration resulted in an increase in
both TOC and COD removal, and again they decreased at higher salt concentrations beyond
22 g/L. The increased removal percentages with increasing salt concentration could be
related to the positive role of the Cl on the oxidation of the organic materials, as discussed
above and reported by Panizza and Cerisola [57]. However, at higher salt concentrations,
the evolution of the Cl2 gas from the reactor decreased the removal percentages.

Catching the accurate relation between the inputs and outputs of electrochemical
oxidation motivates the created model to estimate both COD and TOC perfectly. This is
obvious from the mapping of the ANFIS model’s predicted outputs with the measured
dataset as illustrated in Figure 6a–d, for training the COD model, training the TOC model,
testing the COD model, and testing the TOC model, respectively. There is a match between
both experimental and ANFIS data. In addition, the predictions’ plots across the 100%
accuracy line are demonstrated in Figure 7a,b, respectively, for COD and TOC during the
training period.
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The following section shows the parameter identification process. The parameter
identification process aims to define the optimal values of reaction time, pH, salt concentra-
tion, and applied voltage to increase COD and TOC simultaneously. Consequently, after
creating a consistent ANFIS model, HGSA was used to define the optimal values for four
input parameters. To prove the effectiveness of HGSA, a comparison was made with slime
mold algorithm, sine cosine algorithm (SCA) and Harris’s hawks optimization (HHO). The
following relation can define the optimization problem of the case study:

f = arg
x∈R

max(COD + TOC)

where x is the four input parameters.
Table 4 presents the optimal values of action time, pH, salt concentration, and DC

applied voltage and the corresponding COD and TOC using measured data, RSM methodol-
ogy, and the HGSA. The combination between ANFIS and HGSA simultaneously increased
the COD and TOC. The COD increased to 97.63% with a rate of 9.7% and 6.4% compared to
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experimental and RSM methodology, respectively. In the same way, the TOD increased to
69.42% with a rate of 7.63% and 1.4% compared with measured data and RSM methodology,
respectively.

Table 4. Optimal values of input controlling parameters.

Method Reaction Time pH Salt Concentration
(g/L)

DC Applied
Voltage COD (%) TOC (%)

Exp. [36] 30 8 32 6 89 64.5
RSM [36] 30.71 7.69 30.94 7.41 91.78 68.49
HGSA 36.69 8 29.9 9.0 97.63 69.42

To check the robustness of the considered optimization algorithms, each one was im-
plemented 30 times. Table 5 demonstrates a comparison among the considered algorithms.
The number of populations (5) and iterations (100) were fixed with algorithms during the
optimization. Table 5 shows the superiority of HGSA compared with SMA, SCA, and HHO.
HGSA achieved the lowest STD value of 0.0127, whereas the maximum STD of 3.2264
was obtained by HHO. Figure 8 demonstrates the statistical analysis of 30 runs. Figure 8a
shows the maximum objective function found over 30 runs of HGSA. The details of the
30 run values for HGSA, HHO, SCA, and SMA are presented in Figure 8b–e. The best mean
cost function of 166.9904 was obtained by HGSA, whereas SCA obtained the worst cost
of 155.2735. This demonstrated the efficacy of the suggested methodology. Figure 9a–d
shows the particle convergence during the optimization process for reaction time, pH, salt
concentration, and DC applied voltage, respectively. As presented in Figure 8, the optimal
solutions were 36.69 min, 8, 29.9 g/L, and 9.0 V, respectively, for reaction time, pH, salt
concentration, and DC applied voltage.

Table 5. Comparison between considered algorithms.

HGSA SMA SCA HHO

Maximum 167.0600 167.0600 166.8933 167.0442
Minimum 166.9904 158.1047 155.2735 156.5687
Mean 167.0577 165.8614 163.0845 165.0988
STD 0.0127 3.0856 3.1572 3.2264
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5. Conclusions

The objective of this research is to model and optimize the performance of the elec-
trochemical oxidation process. The methodology integrates the ANFIS modelling and
parameter identification with HGSA. Two important outputs, COD and TOC removal
efficiencies of saline wastewater treatment, were increased through optimal tuning of the
reaction time, pH, salt concentration, and DC applied voltage. The ANFIS model was com-
pared with ANOVA. At first, a robust ANFIS-based model of the electrochemical oxidation
process was created. Compared with ANOVA, the COD-based ANFIS model’s RMSE value
was reduced from 23.7 using ANOVA to 3.79 using ANFIS. This is a decrease of 84%. The
adjusted R-squared was boosted from 0.92 (ANOVA) to 0.95 (ANFIS). This is a increase
of 3.26%. Additionally, for the TOC-based ANFIS model, the RMSE value was reduced
from 18.78 using ANOVA to 2.63 using ANFIS. This is a decrease of 86%. The adjusted
R-squared was boosted from 0.89 (ANOVA) to 0.96 (ANFIS). This is a increase of 7.87%.
This proved the accuracy of ANFIS modelling. Then, using HGSA, the best values for
controlling parameters of 36.69 min, 8, 29.9 g/L and 9.0 V were identified for reaction time,
pH, salt concentration, and DC applied voltage, respectively. Under this condition, the
COD increased to 97.63% with a rate of 9.7% and 6.4% compared with measured data and
RSM methodology, respectively. In the same direction, the TOD increased to 69.42% with a
rate of 7.63% and 1.4% compared with measured data and RSM methodology, respectively.
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