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Abstract: Quantifying the shadow price (SP) of CO2 emissions is the key to achieving China’s “double
carbon” targets. Considering technology heterogeneity, this study applies stochastic frontier analysis
combined with meta-frontier technology to estimate the environmental technical efficiency (ETE) and
SP of CO2 emissions for China’s fossil fuel power plants from 2005 to 2015. This approach overcomes
the lack of statistical inference and consistency of traditional methods and improves the reliability
of results. The main results are as follows: (a) the average ETE of China’s power plants is 0.9444,
indicating that inefficient production accounts for 5.66%. The difference in efficiency between the
central and local groups is significant. (b) The national average SP of CO2 is 266.8 US dollars per
ton, which is much higher than the carbon price in the emission trading system. This result implies
the need to design a carbon trading price mechanism. (c) The distribution of SP shows obvious
corporation and geographical characteristics that are closely related to the level of regional economic
development. Finally, the findings provide policy implications for the improvement of the efficiency
and abatement of costs of power plants and the determination of carbon prices.

Keywords: CO2 emissions; meta-frontier stochastic frontier analysis; shadow price; China’s fossil
fuel power plants

1. Introduction

Large amounts of greenhouse gas (GHG) emissions contribute to climate change
and have serious negative effects. The expansion of China’s power sector has attracted
enormous attention because of its contribution to GHG emissions and climate change. As
shown in Figure 1, China’s power sector releases approximately 46.53% of CO2 emissions
from fuel combustion [1], and the trend is showing obvious upward movement. Given
the rapid expansion of the power sector, the Chinese government has emphasized the
importance of controlling carbon emissions from power plants and has designed relevant
tools, including command-and-control and carbon trading schemes [2]. The national
carbon emission intensity reduction target and its delegation in each province is regarded
as a command-and-control policy tool for CO2 emission reduction, which was mainly
implemented under the five-year plan (FYP) [3]. Another tool is a market-based regulatory
strategy, which applies a tradable licensing system to reduce CO2 emissions at minimal
cost [4]. From the perspective of CO2 emission reduction, carbon trading schemes are more
effective than command-and-control policy tools [5]. Therefore, compared with command-
and-control methods, the operation of the carbon trading market can more effectively
enhance carbon efficiency and serve as the fastest channel to achieve China’s “double
carbon” targets. However, the carbon prices in the carbon trading market are problematic.
The carbon price is too low to reflect the real abatement cost owing to different issues in the
carbon trading market, including the lack of supervision and fuzzy quota allocation [6].
Taking carbon price as the benchmark would tremendously underestimate the Chinese
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government’s emission reduction budget, and such an underestimation could pose risks.
Therefore, understanding actual abatement costs is necessary and even urgent. Specifically,
such knowledge may contribute to the government’s preparations to minimize risks and
help power plants adjust the industrial structure within a reasonable budget.
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Figure 1. CO2 emissions in power sector.

To address identified problems, scholars and practitioners have paid considerable
attention to the empirical research on the power sector from the viewpoints of efficiency and
abatement costs. Wei et al. [7], Du and Mao [8], Peng et al. [9], and Wei and Zhang [10] em-
ployed the parametric linear programming (PLP) approach. Zhao and Ma [11], Zhang et al. [12],
Bi et al. [13], Wei et al. [14], and Xie et al. [15] used the data envelopment analysis (DEA)
method, while Chen et al. [16], Wang and Jiang [17], Qi and Choi [18], Xie et al. [19], and
Zhang et al. [20] applied the stochastic frontier analysis (SFA) approach. However, these
existing studies assumed that power plants are consistent with technical homogeneity.
Without consideration of technical heterogeneity, the estimated efficiency and abatement
costs will be biased [21]. To overcome this assumption, studies have introduced DEA and
PLP combined with meta-frontier analysis to the power sector in China [22–26]. Despite ex-
tensive research, we have identified a lack of investigation into the efficiency and abatement
costs of China’s power sector. In particular, few studies can provide meaningful statistical
inferences in estimating the efficiency and abatement costs of China’s power sector, and
these studies depend on programming technology [27]. Thus, we use SFA as the benchmark
and combine it with meta-frontier analysis to investigate the environmental technical effi-
ciency (ETE) and shadow price (SP) of CO2 in China’s power sector. The derived estimator
exhibits ideal statistical characteristics and is capable of making statistical inferences [28];
hence, it offsets the lack of a coherent data-generating process in pooled models [29] and
the omission of estimation errors in mixed approaches [30,31]. Given the unique features
of China’s political and economic system, the government can directly affect the carbon
market [32]. Accordingly, the consensus is for the CO2 market price to be lower than
the actual abatement cost; this condition may result in interest loss for regulators [33,34].
Therefore, we also compare SP and carbon market price to understand the reasons for the
divergence. Such an in-depth analysis is extremely significant for policymakers as it can
reveal the main defects of individual power plants and the carbon trading market. This
important issue has largely been ignored in the research on the power sector, with the
works of Wang et al. [35] and Xian et al. [36] representing some exceptions.
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The present study uses SFA combined with meta-frontier analysis to investigate
China’s fossil fuel power plants from 2005–2015. By assessing power plants with different
ownership types and comparing the market prices of the carbon trading market, this
study answers the following two questions: first, what are the ETE and carbon abatement
costs of power plants with consideration of technology heterogeneity and meaningful
statistical extrapolation? Second, why is pricing in the carbon trading market lower
than actual abatement costs? Currently, the power sector accounts for a relatively high
proportion of CO2 emissions in China and may be vital in the transformation of low-
carbon technology. Therefore, this study contributes to the exploration of the carbon
abatement costs of power plants. Most importantly, it provides a solid foundation for
system design for the development of carbon trading schemes and the achievement of
“double carbon” targets.

The remainder of this paper is organized as follows: Section 2 presents the SFA method
combined with meta-analysis and relevant data. Section 3 discusses the empirical results
for ETE and SP. Section 4 describes the reasons for low carbon prices in the carbon trading
market. Finally, Section 5 summarizes the main conclusions and policy implications of
the study.

2. Methodology and Data
2.1. Methodology
2.1.1. Directional Distance Function

Färe et al. [37] defined environmental production technology while considering un-
desirable outputs to measure ETE. In the current study, we consider technological hetero-
geneity and undesirable outputs in estimating the ETE and SP of CO2 emissions. Consider
N fossil fuel plants, each of which uses 3 inputs (labor (L), capital (K), and energy (E))
to produce 1 desirable output (electricity generation (Y)) and 1 undesirable output (CO2
emissions (B)). All input–output factors constitute the environmental production possibility
set T, which is expressed as follows:

T = {(X, Y, B) : X can produce(Y, B)} (1)

The directional distance function (DDF) for the output is defined as follows:

→
D(X, Y, B; g) = max{β : (X, Y + βgY, B− βgB) ∈ T} (2)

where g = (gY,−gB). The DDF represents the simultaneous maximum expansion of the
desirable output and contraction of the undesirable output for a given production technol-

ogy. In general, a plant with
→
D(X, Y, B; g) = 0 is considered to have realized the production

frontier. If
→
D(X, Y, B; g) > 0, then the plant still has room for efficiency improvement.

The DDF is typically shown in a quadratic function form to satisfy a non-neutral
technical change [38]. The production function can be expressed as

→
D(X, Y, B; g, t) = α0 + α1K + α2L + α3E + β1Y + γ1B

+ 1
2
[
α11K2 + α12KL + α13KE + α21LK + α22L2 + α23LE + α31EK + α32EL + α33E2]

+ 1
2 β11Y2 + 1

2 γ11B2 + µ11YB + θ11KY + θ21LY + θ31EY + ϑ11KB + ϑ21LB + ϑ31EB + τ1t

+ 1
2 τ11t2 + ϕ11tK + ϕ12tL + ϕ13tE + δ11tY + ρ11tB

(3)

Compared with the translog function, the quadratic functional form is more suitable
for the translation property of the DDF. The translation property is expressed as follows:

→
D(X, Y + αgY, B− αgB; g) =

→
D(X, Y, B; g)− α (4)
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This property signifies that if the vector (X, Y, B) is translated into (X, Y + αgY, B− αgB),

then the value of
→
D(X, Y, B; g) is reduced by α. The purpose of the translation property is

to estimate the parameters of the DDF [39]. When combined with Equations (3) and (4),
where α = B, the quadratic DDF can be converted to:

−B = α0 + α1K +α2L + α3E + β1(Y + B) + 1
2 α11K2 + α12KL + α13KE + 1

2 α22L2 + α23LE + 1
2 α33E2

+ 1
2 β11(Y + B)2 + θ11K(Y + B) + θ21L(Y + B) + θ31E(Y + B) + τ1t + 1

2 τ11t2 + ϕ11tK

+ϕ12tL + ϕ13tE + δ11t(Y + B) + v− u
(5)

where u =
→
D(X, Y, B; g, t) is the technical inefficiency and v is the random disturbance

term with a mean value of 0 and a normal distribution. To ensure that the translation and
symmetry properties hold, the parameters of the DDF must satisfy the following constraints:

α12 = α21, α13 = α31, α23 = α32
θ11 = ϑ11, θ21 = ϑ21, θ21 = ϑ21, δ11 = ρ11

β1 − γ1 = −1, β11 = γ11 = µ11

2.1.2. Meta-Frontier Stochastic Frontier Analysis

The meta-frontier stochastic frontier analysis (MSFA) was first proposed by Huang et al. [28].
In general, MSFA is divided into 2 steps. In the 1st step, we estimate the group frontier
using SFA. In the 2nd step, the results of the 1st step are used to construct the meta-frontier
for all observations.

We divide all observations into k(k = 1, 2, . . . , K) groups. Each group has a specific
production technology frontier that is not homogeneous. According to the technical levels
of the different groups, we define the environmental production possibility set of each
group as Tk.

Tk =
{(

Xk, Yk, Bk
)

: X can produce(Y, B)
}

, k = 1, 2, . . . , K (6)

The DDF of the group is similar to that of Equation (3). Combined with the translation
property, we obtain:

− Bk =
→
D

k(
Xk, Yk + αgY, Bk − αgB; g

)
+ vk − uk (7)

where uk =
→
D

k(
Xk, Yk, Bk; g

)
. The ETE is written as e(−uk). To obtain the ETE, parameters,

and fitted values of
→
D

k(
Xk, Yk, Bk; g

)
, we employ the SFA model in estimating Equation (7).

We can obtain the relationship between the actual and fitted values of
→
D

k(
Xk, Yk, Bk; g

)
as:

→̂
D

k(
Xk, Yk, Bk; g

)
=
→
D

k(
Xk, Yk, Bk; g

)
+
∼
vk (8)

where
∼
vk = v̂k − vk.

We define a meta-frontier technology possibility set as:

Tm = {(X, Y, B) : X can produce(Y, B) f or all plants} (9)

The meta-frontier DDF can be shown as:

→
D

m
(X, Y, B; g) = max{βm : (X, Y + βmgY, B− βmgB) ∈ Tm} (10)
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This equation has the same meaning as Equation (6); the difference between them
is that the technology frontier is heterogeneous. In addition, the meta-frontier must en-

velop all group frontiers in which
→
D

m
(X, Y, B; g) ≥

→
D

k
(X, Y, B; g). On the basis of this

relationship, we can define the technology gap difference (TGD) as follows:

→
D

m
(X, Y, B; g) =

→
D

k
(X, Y, B; g) + TGD (11)

According to Equation (11), the technology gap ratio TGR = e(−TGD). By substituting
Equation (8) into Equation (11), we obtain:

→̂
D

k(
Xk, Yk, Bk; g

)
=
→
D

m
(X, Y, B; g) + vm − um (12)

where vm = −
∼
vk, um = TGD.

Therefore, the meta-frontier environmental technical efficiency (MTE) is calculated as:

MTE = e(−uk−TGD) = TE× TGR (13)

In general, the larger the value of the TGR, the smaller the gap between the group
frontier and the meta-frontier and vice versa. The higher the MTE value, the more advanced
the technical level.

Figure 2 illustrates the MSFA model. Given an input–output level, that is, (xk, yk),
the distance between the projected meta-frontier points D and A includes 3 components:

TGD (TGD =
→
D

m
(.)−

→
D

k
(.)), technical inefficiency between points A and B (uk), and a

random disturbance term between points B and C (vk). For simplicity, we can express the
relationship as:

D = A + v + u + TGD (14)
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2.1.3. Shadow Price of CO2 Emissions

After estimating the parameters of the MSFA, we can derive the SP of the undesirable
output on the basis of the DDF and its dual model [40]. The function of the SP can be
expressed as:

q = −p
∂
→
D(X, Y, B; g, t)/∂B

∂
→
D(X, Y, B; g, t)/∂Y

(15)

where p is the price of the desirable output and q is the SP of the undesirable output.
Equation (15) indicates that the opportunity cost required to reduce an additional unit
of undesirable output under other conditions is unchanged. By deriving Equation (3),
we obtain:

∂
→
D(X, Y, B; g, t)

∂Y
= β1 + β11Y + µ11B + θ11K + θ21L + θ31E + δ11t (16)

∂
→
D(X, Y, B; g, t)

∂B
= γ1 + γ11B + µ11Y + ϑ11K + ϑ21L + ϑ31E + ρ11t (17)

Combined with Equations (15)–(17), we can obtain the expansion equation of the SP
as follows:

q = −p
γ1 + γ11B + µ11Y + ϑ11K + ϑ21L + ϑ31E + ρ11t
β1 + β11Y + µ11B + θ11K + θ21L + θ31E + δ11t

(18)

2.2. Data

Considering data availability, we collected the balanced panel data from 84 fossil fuel
power plants in China from the period 2005–2015. A total of 924 sample observations
were compiled.

2.2.1. Inputs

The inputs of the DDF consisted of L, K, and E. We measured L of each plant by the
number of employees, the data for which were obtained from the Chinese Industrial Enter-
prises Database. The K of each plant was measured by installed capacity. This information
was obtained from the China Electric Power Yearbook. The data on E refer to the fuel
consumption and are collected from the China Electric Power Industry Statistical Analysis.

2.2.2. Outputs

The outputs include desirable and undesirable outputs. The information on Y of
each plant is collected from The Compilation of Power Industry Statistical Data and is
measured by electricity. The undesirable output is CO2 emissions (B), which cannot be
obtained directly. Therefore, following Wei and Zhang [10], we calculate B by using the
following equation:

CO2i = ∑J
j=1 Eji × NCV j × CCj × COFj ×

(
44
12

)
(19)

where i is the ith fossil fuel power plant, j is the fuel type, Eji is the total consumption
of each fuel type, NCV j is the total energy released by the fuel type, CCj is the carbon
content, and COFj indicates the carbon oxidation factor from the Intergovernmental Panel
on Climate Change [41].

2.2.3. Others

When we estimate the SP of CO2 emissions, we also need to use information on
electricity price (P). Table 1 presents the descriptive statistics of all data collected from the
feed-in tariff of each plant.
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Table 1. Descriptive statistics of input and output factors.

Variable Definition Unit Obs. Mean Std. Dev. Min Max

K Installed capacity 106 KW 924 1.79 1.11 0.89 10.99
L Labor Num. 924 1228.19 799.10 166 5550
E Standard coal equivalent 106 tons 924 2.61 0.92 1.22 7.11
Y Electricity generation 109 KWH 924 0.93 0.51 0.40 5.67
B CO2 emissions 106 tons 924 7.45 2.61 3.53 21.10
P Price of electricity RMB/KWH 924 0.79 0.21 0.33 1.62

2.2.4. Classification Criteria of Data

Considering technological heterogeneity, we divided all observations into 2 groups
(central and local groups) according to ownership type [42] (Table 2). The central group
comprises the plants owned by the central government while the local group comprises the
plants owned by the local government. In general, the central group enjoys preferential
policies and financial support, whereas the local group often needs to be responsible for
its profits and losses. We employ MSFA to measure and compare the ETE and SP of the
2 groups.

Table 2. Locations and numbers of Chinese power plants.

Location Central Group Local Group

East 33 17
Central 15 7

West 9 3
Total 57 27

Note: The central group comprises 57 power plants operated by 8 enterprises: Datang Power Group (9), Huaneng
Group (14), Huadian (9), Huarun (5), Guodian (12), Guohua (3), Guotou (3), and Zhongtou (2). The local group
comprises 27 local power plants.

3. Empirical Results

The coefficient estimates for the MSFA model are shown in Table 3 and are derived by
solving Equations (7) and (12). Table 3 shows the parameter estimates for the within-group
frontier, common frontier, and pooled regressions.

Table 3. Coefficient estimates of the MSFA model.

Variable
Frontier

Central Group Local Group Meta Pooled

α1 0.0089 0.0100 0.0180 *** 0.0243 **
0.0068 0.0266 0.0070 0.0100

α2 −0.5356 *** −0.1386 * −0.1072 *** −0.1088 ***
0.0160 0.0792 0.0163 0.0234

α3 0.9867 *** 1.2087 *** 0.9733 *** 0.5934 ***
0.0572 0.2458 0.0596 0.0841

β1 −1.0633 *** −1.0865 *** −0.9825 *** −0.7694 ***
0.0339 0.1385 0.0317 0.0457

α11 −0.0021 0.0200 −0.0045 −0.0030
0.0026 0.0167 0.0029 0.0040

α12 −0.0256 *** 0.0150 0.0063 −0.0057
0.0080 0.0300 0.0079 0.0111

α13 0.0198 −0.4484 *** −0.0747 *** −0.0114
0.0229 0.0743 0.0079 0.0285

α22 0.0022 0.6553 *** 0.1398 *** 0.0612 ***
0.0117 0.0565 0.0119 0.0191
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Table 3. Cont.

Variable
Frontier

Central Group Local Group Meta Pooled

α23 0.1504 *** 1.7460 *** 0.5636 *** 0.3826 ***
0.0252 0.1303 0.0285 0.0428

α33 −1.4133 *** 0.2054 −0.9425 *** −0.6031 ***
0.0695 0.2186 0.0601 0.0922

β11 −0.0266 * 1.1201 *** 0.2942 *** 0.1736 ***
0.0145 0.0694 0.0146 0.0264

θ11 0.0161 0.2259 *** 0.0326 ** −0.0013
0.0128 0.0454 0.0153 0.0165

θ21 −0.0443 *** −1.1762 *** −0.3690 *** −0.2029 ***
0.0156 0.0863 0.0170 0.0290

θ31 0.3935 *** −1.0277 *** −0.0037 −0.0202
0.0250 0.0968 0.0241 0.0333

τ1 0.0034 0.0064 −0.0112 *** −0.0040
0.0026 0.0062 0.0022 0.0034

τ11 0.0008 * 0.0013 * 0.0023 *** 0.0010 **
0.0005 0.0008 0.0003 0.0004

ϕ11 0.0004 −0.0046 ** −0.0011 −0.0009
0.0007 0.0019 0.0008 0.0010

ϕ12 0.0018 0.0181 *** 0.0395 *** 0.0205 ***
0.0015 0.0059 0.0056 0.0022

ϕ13 −0.1370 *** −0.1393 *** −0.1297 *** −0.1021 ***
0.0051 0.0183 0.0056 0.0061

δ11 0.0705 *** 0.0644 *** 0.0569 ** 0.0488 ***
0.0028 0.0106 0.0033 0.0033

Log likelihood 1605.8979 634.2538 2140.6594 1920.8889
Obs. 627 297 924 924

Note: *, **, and *** represent significance levels of 10%, 5%, and 1%, respectively.

As shown in Table 3, we not only estimated the coefficients of the MSFA but also
compared them with the parameters of the pooled model. On the basis of the estimations,
we further calculated the ETE and technology gap and presented the results in Table 4.

Table 4. Estimation of ETE and technology gap.

Group (1) GTE (2) TGR (3) MTE (4) Pooled

Central group 0.9801 0.9664 0.9475 0.9631
Local group 0.9651 0.9714 0.9378 0.9729

Mean 0.9753 0.9680 0.9444 0.9698
Notes: GTE is the group-frontier environmental technical efficiency; MTE is the meta-frontier environmental
technical efficiency.

Column (1) shows the results for the group-frontier environmental technical efficiency
(GTE) obtained using Equation (4). Specifically, GTE is the ETE within the group frontier.
The average GTE of the central group is 0.9801, whereas that of the local group is 0.9651.
The GTE value of the central group is 0.015 higher than that of the local group. However,
owing to the existence of different group frontiers, the efficiency values of the two groups
are not comparable. Therefore, we require the introduction of meta-frontier technology.
Column (2) shows the results for the TGR derived from Equation (6). The average TGR of
the central group is 0.9664, whereas that of the local group is 0.9714. Compared with the
central group frontier, the local group frontier is closer to the meta-frontier. Moreover, the
local group obtains an advantage from technology-leading performance. From columns
(1) and (2), we can further obtain column (3). The mean MTE value of the central group is
0.9475, which is 0.0097 higher than that of the local group. We believe that this result is due
to fact that the policy of developing large units and suppressing small ones in China has
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promoted the adjustment of the capital structure of the central group. We use the pooled
model for comparison in column (4), and the average ETE is 0.9698.

The SP of CO2 is calculated using Equations (10) and (11). Specifically, SP reflects the
value of the electricity output that must be sacrificed to achieve a one-unit reduction in CO2
emissions. Tables 5 and 6 report the SPs in the group- and meta-frontiers, respectively. As
shown in Table 5, the abatement cost of an additional ton of CO2 emissions for the central
group is approximately 516.5 US dollars. For the local group, the SP of CO2 emissions is
approximately 342.1 US dollars per ton. To compare different groups, we assigned the full
sample under the meta-frontier technology, as shown in Table 6. The SP of CO2 emissions
of the central group is 263.1 US dollars per ton, which is 11.4 US dollars lower than that of
the local group. Compared with the results in Table 5, the difference in SP between the two
groups based on the meta-frontier is much smaller. In reality, the abatement cost of CO2
can be affected by several supply and demand factors. Consequently, the SP obtained in
this study is not equal to the actual transaction price, but it can provide strong support for
improving the carbon trading market.

Table 5. Shadow price in the group frontier (1000 US dollars/ton).

Group Obs. Mean S.D. Min Max

Central group 617 0.5165 0.8516 0 8.4272
Local group 295 0.3421 0.7370 0 7.8104

Table 6. Shadow price in the meta-frontier (1000 US dollars/ton).

Group Obs. Mean S.D. Min Max

Central group 627 0.2631 0.4975 0 7.0252
Local group 297 0.2745 0.3027 0 2.1846
Full sample 924 0.2668 0.4442 0 7.0252

Figure 3 reports the time trends of the SPs of the central and local groups. Interestingly,
the SP of the local group was higher than that of the central group before 2010. After 2010,
the SP of the central group exceeded that of the local group. We believe that owing to the
improvement in technology, the central group needed to increase its costs to reduce one unit
of CO2 emissions. This result is consistent with the conclusion in Table 4. In sum, the SP of
CO2 generally rose after 2010. Specifically, to cope with increasingly strict environmental
regulations, power plants needed to improve carbon efficiency, which further increased the
opportunity cost of carbon abatement.

In addition, we conducted a heterogeneity analysis from two aspects: nine corpora-
tions and seven geographical divisions.

China’s power sector is dominated by five large power generation corporations, four
small power generation corporations, and other local joint ventures: Da Tang, Hua Neng,
Hua Dian, Hua Run, Guo Dian, Zhong Tou, Guo Tou, and Local JV. Table 7 presents the
average SPs of CO2 emissions for these corporations. Among the nine corporations, Da
Tang, Hua Run, Guo Hua, and Local JV exceed the average level of SP of CO2 emissions by
13.12%, 34.67%, 47.34%, and 2.89%, respectively. The remaining five corporations are below
the average value. The four corporations with above-average values have more advanced
technology and higher efficiency than the other five. With respect to the remaining five
corporations, we suggest that they increase technical investment and improve ETE.
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Figure 3. Time trend of shadow price.

Table 7. Average shadow prices of CO2 emissions for nine corporations (1000 US dollars/ton).

Corporation Obs. Mean S.D. Min Max

Da Tang 99 0.3018 0.3924 0.0154 2.5999
Hua Neng 165 0.2247 0.2598 0 1.8122
Hua Dian 99 0.1958 0.2178 0.0173 1.2114
Hua Run 55 0.3593 0.7208 0 4.6100
Guo Dian 132 0.2663 0.6320 0 7.0252
Guo Hua 44 0.3931 0.9664 0 6.4462

Zhong Tou 22 0.2305 0.2357 0.0238 0.9277
Guo Tou 11 0.1242 0.1130 0.0220 0.3735
Local JV 297 0.2745 0.3027 0 2.1846

Full sample 924 0.2668 0.4442 0 7.0252

We analyzed the heterogeneity of SPs from the perspective of seven geographical
divisions. China has seven geographical divisions: North China, Northeast China, East
China, Central China, South China, Southwest China, and Northwest China. Figure 4
shows the geographical distribution of the SP of CO2 emissions. For the central group,
the average SPs for the seven geographical divisions are as follows: North (665.8 US
dollars/ton), Northeast (523.9 US dollars/ton), East (480.2 US dollars/ton), Central (450.6
US dollars/ton), South (552.6 US dollars/ton), Southwest (545.3 US dollars/ton), and
Northwest (346.7 US dollars/ton). For the local group, the average SPs are as follows:
North (464.1 US dollars/ton), Northeast (389.2 US dollars/ton), East (254.0 US dollars/ton),
Central (228.0 US dollars/ton), South (338.0 US dollars/ton), and Southwest (167.1 US
dollars/ton). Note that the data on Northwest China for the local group are unavailable.
Intuitively, the SPs of the central and local groups increase from west to east and from north
to south. This trend is directly proportional to the level of regional economic development
and technical efficiency. As for the full sample, the distribution of SPs is consistent with
that of the central and local groups.
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From the heterogeneity analysis, we find that the difference in SPs between the dif-
ferent regions is serious. In the carbon trading market, fossil fuel power plants whose SPs
are higher than the market price are more willing to buy quotas. By contrast, plants whose
prices are below the market price are more willing to sell quotas. To maximize ETE and
accurately account for the carbon abatement cost, a unified carbon trading market must be
established. The SP calculated from the MSFA in this study can provide an outstanding
basis for the improvement of market mechanisms for emission trading systems (ETS) and
the implementation of carbon peak and carbon neutrality policies.

4. Discussion

Our results clearly show that the SP of CO2 is 266.8 US dollars per ton. The SP of
CO2 emissions has increased significantly since 2010 (Figure 3) because compared with
those in the 11th FYP, fossil fuel power plants face stricter environmental regulations in the
12th FYP. Strict supervision could promote technological innovation in power plants and
further improve abatement costs. This condition provides strong support for the Porter
hypothesis [43].

However, the carbon prices of the seven carbon emission trading pilots were problem-
atic. As shown in Figure 5, the price in the pilot market fluctuates greatly and obvious price
heterogeneity exists in different pilot markets. Except for Beijing, the average carbon price
in the pilot markets is lower than 50 RMB per ton. Relative to the real carbon price in this
study, the price of the seven carbon emission trading pilots is too low to reflect the market
supply and demand relationship. This conclusion is consistent with those of Lee [44] and
Du and Mao [8].

Theoretically, carbon price is affected by the SP and demand price elasticity of power
plants, as well as by the supply–demand balance of carbon licenses [45]. However, owing to
the characteristics of China’s political and economic system, carbon price largely depends
on the relevant policies formulated by the government, such as price limits [46], carbon
reserves [47], quota allocations [48], and taxes and subsidies [49]. The reason why the
current carbon price is rather low is that power generation and high-emission enterprises
are first launched online in the carbon trading market. The purpose of the carbon market is
to introduce market-oriented means to encourage enterprises to optimize production and
reduce carbon emissions, but it cannot exceed the line borne by enterprises. Meanwhile,
China still has tremendous potential and demand for economic development. If China’s
carbon trading market is overpriced, it will face an extraordinarily heavy economic burden.
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Of course, as the carbon trading market is in its infancy, the government’s control over
carbon prices is not sufficiently strong. Many rules, such as the quota allocation scheme
and the measuring, reporting, and verification system, are key factors affecting carbon
prices, but they have imperfections [9]. These deficiencies are not conducive to the scientific
and reasonable emission reduction policies for power plants.
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Figure 5. Trend of carbon prices in seven carbon emission trading pilots.

In the future, we should consider the design of a carbon market price mechanism and
continue to improve the carbon price theory. Further, we should explore the influencing
factors of the supply–demand relationship relative to carbon price to minimize the diver-
gence between the market price and the actual SP and thereby promote the operational
efficiency of ETS. This objective is conducive to running the market mechanism so as to
shorten the distance from the “3060” target. To promote carbon efficiency and realize the
carbon emission targets, the power sector can formulate specific decarbonization plans (e.g.,
gradual transformation from traditional energy to clean energy). In this regard, the data on
energy structure and carbon oxidation factors will change accordingly. The changes will
affect the quantity of carbon emissions from the power sector and may further influence
the carbon efficiency ranking and carbon abatement costs of fossil fuel power plants. From
our heterogeneity analysis, we find that the geographical characteristics of efficiency and
abatement costs should remain unchanged. If necessary, the government can adopt differ-
ent policies to promote the realization of the carbon emission targets in specific regions.
For example, the Chinese government provides technical support to the west and carbon
abatement subsidies to the east. Technological progress can simultaneously promote carbon
efficiency and carbon abatement costs. We need to make further trade-offs between both.
In the future, we need to focus on identifying the impact of carbon emission constraints to
formulate optimal decisions for the decarbonization of power plants.

5. Conclusions and Policy Implications

Accurately estimating the cost of carbon reduction in the power sector is key to
achieving the “double carbon” goal. Therefore, many studies have evaluated ETE and SP
using DEA and PLP methods combined with meta-marginal analyses. However, these
methods cannot present statistical inferences, thereby leading to possible in accuracies.
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To overcome this statistical problem, we applied the SFA method combined with meta-
marginal analysis, which is statistically inferred and consistent. In addition, we calculated
the gap between the carbon price and the actual SP of CO2 on the basis of this benchmark to
present a field-oriented policy. The main findings of this study are summarized as follows:

First, ETE is a direct reflection of efficiency and technical level and plays an essential
role in energy saving and emission reduction. The empirical analysis shows that the ETE of
China’s power plants is 0.9444 and that obvious differences exist between the central and
local groups. In terms of efficiency decomposition, the overall efficiency of the central group
is dominant. This result may stem from recapitalization and government policy support.
The TGR of the local group is high, which indicates that it has gained an advantage in
technology-leading performance. From the perspective of management, the result can be
attributed to the improvement of the management level for the local group, which promotes
the catch-up effect and narrows the gap with the meta-frontier of fossil fuel power plants.

Second, the average SP of CO2 is 266.8 US dollars per ton, and the abatement cost
has increased significantly since 2010. To deal with increasingly stringent environmental
regulations, power plants need to improve the technical level of their carbon efficiency,
which further increases the opportunity cost of carbon abatement. This finding provides
strong support for the Porter hypothesis. In addition, the geographical distribution of the
estimated SPs for CO2 emissions shows that coastal cities and provinces (fossil fuel power
plants in the eastern and southern regions) have relatively high SPs for CO2 emissions
owing to the strict environmental regulations and advanced production technologies.
The distribution of SPs shows significant differences among corporations. For the nine
corporations, Da Tang, Hua Run, Guo Hua, and Local JV exceed the average SPs by 13.12%,
34.67%, 47.34%, and 2.89%, respectively. In the future trading market, power plants and
enterprises located in these areas will become potential buyers of emission quotas.

Third, we note a divergence between the actual SP and carbon price, and the imple-
mentation of the policy has an obvious impact on carbon pricing. The design of the carbon
market price mechanism and carbon price theory still need to be realized.

The following policy suggestions are put forward:
First, the ETE and SP of CO2 indicate the serious inequality in China’s fossil fuel power

plants. In other words, allocation inefficiency and technology gaps exist. Following the
principle of supply–demand balance, the SP should be based on the differences in a sound
carbon trading market. Hence, much room is left for carbon trading among China’s fossil
fuel power plants. The government should vigorously support power plants in carrying
out low-carbon innovation and formulate a series of policies to promote renewable energy
power generation. Furthermore, the government should provide the necessary financial
resources and policies for power plants.

Second, given the heterogeneity of the geographical distribution, the government
should encourage the development of a regional green economy. The results show that
the SP of CO2 is closely related to the level of regional economic development. Thus, the
government must optimize the industrial structure and promote industrial upgrading to
reduce high-energy consumption and high-emission industries. In addition, an urgent
undertaking is for the Chinese government to accelerate the construction of a unified carbon
trading market and bring more sectors into it.

Third, the carbon price in ETS is generally set by the Chinese government. This
condition hinders efficiency maximization to a certain extent. The government should
maximize the market mechanism to adjust prices and strengthen the control of GHG
emissions. The government can also learn from the experiences of countries with net-zero
emissions (e.g., Norway, Sweden, and France). Doing so can help the Chinese government
mitigate climate change and achieve the goals of carbon peak and carbon neutrality as soon
as possible.

This study has the following limitations. The data used are limited to the period of
2005–2015 and can thus be updated in future studies. Additionally, our sample cannot cover
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the entire power sector, which is only a part of the entire industry. We can further discuss
ETS trading in the future to provide guidance for carbon peak and neutrality policies.
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