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* Correspondence: aalshayeed@kku.edu.sa (A.K.); shahid@harran.edu.tr (S.F.)

Abstract: Lead (Pb) is a non-essential element; however, plants uptake it from soils rich in Pb.
Soybean [Glycine max (L.) Merr.] is an important legume crop, and Pb toxicity exerts negative impacts
on its growth and yield. This study investigated the role of foliar-applied loquat (Eriobotrya japonica
Lindl.) leaf extract in improving the morphological, physiological, and biochemical traits of soybean
plants under Pb toxicity. Soybean plants were exposed to four Pb concentrations (0, 200, 400, and
800 µg/L) and supplemented with 0% or 5% loquat leaf aqueous extract (EJLE). Data relating to
pigments, proline, total soluble sugars, malondialdehyde (MDA), hydrogen peroxide (H2O2), non-
enzymatic antioxidant, i.e., [ascorbic acid (AsA), glutathione (GSH), total phenolic contents (TPC),
and total flavonoids content (TFC)] and enzymatic antioxidant, i.e., [superoxide dismutase (SOD),
catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR)] were
recorded. Total chlorophyll contents and carotenoids were significantly decreased by Pb stress, while
lycopene and anthocyanin contents were increased. Similarly, proline, total soluble sugars, MDA,
H2O2, AsA, GSH, TPC, TFC, SOD, CAT, POD, APX, and GR were increased under Pb stress. Foliar
spray of EJLE lowered MDA and H2O2 accumulation and increased the contents of chlorophylls,
carotenoids, lycopene, anthocyanins, proline, total soluble sugars, and the antioxidant system. The
increase in the activities of antioxidant enzymes lowered the adverse effects of Pb stress in soybean.
Similarly, the application of EJLE lowered Pb accumulation in different plant parts compared to
those receiving no EJLE. It is concluded that EJLE can improve the Pb tolerance of soybean plants by
enhancing morphological, physiological, and biochemical traits. However, the actual mechanisms
behind these improvements warrant further investigation.

Keywords: chlorophyll contents; MDA; H2O2; antioxidant enzymes; GSH; AsA; phenols

1. Introduction

Environmental damage caused by heavy metal pollution is being observed glob-
ally [1]. Human activities are often regarded as the major cause of heavy metal pollution [2].
Wastewater discharge, overuse of fertilizers and pesticides in agriculture, and other anthro-
pogenic activities are increasing the concentration of heavy metals in the rhizosphere [2].
The most dangerous inorganic pollutants are nonbiodegradable heavy metals, including
arsenic (As), nickel (Ni), chromium (Cr), and lead (Pb) [3–5]. Heavy metals in the soil
suppress plant growth by inhibiting the uptake and movement of essential nutrients [6,7].
Intracellular accumulation of non-essential heavy metals such as Pb, cadmium (Cd), mer-
cury (Hg), and silver (Ag) leads to the production of reactive oxygen species (ROS) [7–10].

Lead is a hazardous and non-biodegradable heavy metal often found in the Earth’s
crust. It is the second-most dangerous metal after As [11], posing serious threats to all life
forms. The use of inorganic fertilizers and pesticides, mining, the burning of fossil fuels,
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the steel industry, atmospheric deposition, and electroplating contribute to heavy metal
pollution [12]. Pb-acid batteries, Pb-based insecticides, mining, the use of fuels containing
Pb, printing, and other anthropogenic activities are major sources of Pb pollution [13].

Lead is a poisonous element that prevents plant growth and metabolism. Its toxicity
reduces soil fertility, which decreases crop yields [14,15]. Pb toxicity significantly alters the
morphological, physiological, and biochemical functions of crop plants [14]. Cell division,
chlorophyll concentration, photosynthesis, the respiratory system, and cell membrane
permeability are disrupted by Pb toxicity [14,15]. Higher Pb concentrations in the growth
medium also cause oxidative stress through the production of excess ROS, including singlet
oxygen, superoxide radicals, hydroperoxyl radicals, hydrogen peroxide, and hydroxyl
radicals. Damage to DNA, oxidation of proteins and lipids, loss of cellular membranes, and
ion leakage all arise from the activation of programmed cell death pathways in response
to an excessive production of ROS that impairs the development and productivity of
agricultural plants [16].

Plants employ several defensive mechanisms that enable them to withstand the harm-
ful effects of abiotic stressors, particularly heavy metals. These include enzymatic and non-
enzymatic antioxidants. Superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase
(APX), and glutathione reductase (GR) make up the enzymatic antioxidant system. Non-
enzymatic antioxidants, such as ascorbate, glutathione, anthocyanin, and beta-carotene,
also help to detoxify the harmful ROS [4,7,14,17]. The antioxidant defense system is essen-
tial for minimizing or eliminating Pb toxicity in plants.

Soybean (Glycine max L.) is commercially grown all over the world since it is a rich
source of vegetable oil and protein [18]. Soybean seeds provide one of the most impor-
tant and inexpensive sources of protein and vegetable oil. Therefore, soybean plays an
essential role in human nutrition and animal production [19]. Soybean seeds include 35%
protein, 20% edible oil, 35% carbohydrates (17% of which is dietary fiber), roughly 5%
ash, and other vitamins and minerals [20–22]. Soybean growth, yield, and quality are
significantly impacted by abiotic stresses such as high temperatures, heavy metal toxicity,
and drought [23]. Furthermore, plants tend to accumulate significant amounts of heavy
metals from contaminated soils [24], which impair their growth and productivity [4,5,7,23].
Several studies have indicated that heavy metals significantly suppress the growth and
productivity of soybeans [23,25,26]. Therefore, management methods that can improve
soybean tolerance to Pb toxicity are needed.

Loquat (Eriobotrya japonica Lindl.) originated in southeast China and has grown across
Asia, including India, Japan, and Korea [27,28]. Its leaves are useful for treating persistent
illnesses such as headaches, phlegm, lower back discomfort, asthma, chronic bronchitis,
and dysmenorrhea. They are also used as antipyretic, digestive, and diuretic agents.
Additionally, loquat leaf extract has antiviral, anti-inflammatory, hyperglycemic, and
tumorigenic properties [29]. Loquat leaves contain significant amounts of triterpenic acids,
amygdalins, carotenoids, sesquiterpene glycosides, flavonoids, oleanolic acid, corosolic
acid, ursolic acid, and maslinic acid [29].

Although several biological functions of loquat leaf extract are known, it has rarely
been used to improve the heavy metal tolerance of crop plants. Keeping in view the bi-
ological functions of loquat leaf extract, this study inferred its role in improving the Pb
tolerance of soybeans. It was hypothesized that increasing Pb concentration will signifi-
cantly suppress the growth of soybean and that the application of loquat leaf extract will
reverse the adverse effects of Pb toxicity. The results would help improve soybean growth
in Pb-contaminated soils.

2. Materials and Methods
2.1. Experimental Site

The current study was conducted at the Research Center for Advanced Materials
Science (RCAMS) at King Khalid University (KKU) during 2020–2021. Soybean seeds
were collected from the Ministry of Agriculture in Abha. Healthy and viable seeds, after



Sustainability 2023, 15, 4352 3 of 18

removing the damaged or discolored ones, were selected for the experiment. Selected
seeds were thoroughly washed with distilled water and disinfected with a 5% sodium
hypochlorite (NaOCl) solution (v/v) for 10 min. Afterwards, the seeds were again washed
with distilled water and used in the experiments.

Different Pb concentrations (i.e., 0, 200, 400, and 800 µg L−1) were prepared by using
Pb(NO3)2. The plants were exposed to these concentrations through mixing with the
modified Hoagland nutrient solution [30]. Plants in the control treatment (0 µg L−1)
received only the nutrient solution. Ten seeds were sown in 15 cm plastic pots filled with
sand and perlite (1:1). The pots were placed in a greenhouse maintained at 20–25 ◦C
and 16:8 h light and dark duration. The plants were irrigated every second day with
modified Hoagland nutrient solution containing different Pb concentrations according to
the treatments. Loquat aqueous leaf extract (EJLE) was applied to plants 10 days after
emergence. Half of the plants were sprayed with 5% EJLE in each Pb concentration,
whereas the remaining half were sprayed with distilled water. Each Pb concentration had
4 replications, and there were 10 pots in each replication for both EJLE concentrations. The
plants were harvested at 20 days after emergence by carefully removing them from the pots,
and data relating to different growth, biochemical attributes, and Pb uptake were recorded.

2.2. Preparation of Loquat Leaf Extract

Loquat leaves were washed with distilled water, dried at 60 ◦C in the oven, and milled
into powder. The aqueous extract was prepared by mixing 5 g of leaf powder in 150 mL
distilled water. The resultant mixture was heated in an oscillator for 90 min at 80 ◦C until
the solution reduced to 100 mL. The extract was centrifuged at 4000 rpm for 20 min to
exclude the contaminants. The resultant supernatant was regarded as 100% concentrated,
stored at 4 ◦C, and used in the experiment. This supernatant was diluted to 5% with
distilled water for the foliar spray in the experiment [31].

2.3. Growth Traits and Pb Uptake

The harvested plants were divided into roots and shoots. The plants in each treatment
were dried in an oven at 70 ± 5 ◦C and dry weights were recorded. The Pb contents in
roots and shoots were quantified by digesting the dried samples in HClO4:HNO3 solution
(1:5, v/v). The Pb concentration in the samples was measured on ICP-OES. Translocation
factor was computed according to Malik et al. [32].

2.4. Pigments

Different pigments were determined by collecting 0.2 g fresh leaf samples from
each treatment. Acetone (80%, 4 mL) was used to extract these samples overnight, fol-
lowed by homogenization. Afterwards, the samples were filtered, and 25 mL of acetone
was added to increase the volume of the filtrates. Spectrophotometer (Optima 2100 DV,
PerkinElmer, Rodgau, Germany) was used to record the absorbance of the filtrates at
different wavelengths (663, 645, 480, and 537 nm). The method of Arnon [33] was used to
determine total chlorophyll contents, carotenoids, and anthocyanin. Likewise, the method
of Ravelo-Pérez et al. [34] was followed to determine lycopene contents.

2.5. Osmolytes

The method of Bates et al. [35] was followed to determine proline contents. A total
of 5 mL sulfosalicylic acid (3%) was used to homogenize the leaf samples. Next, 2 mL
ninhydrin reagent and 2 mL glacial acetic acid were added to 2 mL leaf extract in a test tube.
The mixture was heated at 90 ◦C for half hour, and the reaction terminated in an ice bath. A
total of 5 mL toluene was added to the reaction mixture after it cooled. The mixture was
vortexed for 15 s and kept at room temperature for 20 min in the dark so that the toluene
layer would separate from the aqueous solution. The UV-1900 BMS (Malvern Panalytical
GmbH, Kassel, Germany) spectrophotometer was used to measure the absorbance at
520 nm after collecting each toluene layer in a separate tube. Analytical-grade proline was
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used to create a standard curve calculated on a mg/g FW basis and to calculate the free
proline concentration in each sample.

The method of Irigoyen [36] was followed to extract and determine total soluble sugars.
Fresh leaves (0.2 g) were homogenized in 5 mL of ethanol (96% v/v) after rinsing with 5 mL
of ethanol (70% v/v). Afterwards, the samples were heated at 80 ◦C in a boiling water bath
for 10 min. The extract was cooled, centrifuged at 4000× g for 10 min, and the supernatant
was kept at 4 ◦C for measurement. Anthrone reagent [150 mg anthrone + 100 mL of sulfuric
acid (72%, v/v)] was reacted with 3 mL ethanolic extract in a boiling water bath at 80 ◦C for
15 min to estimate total soluble sugar content. Once the mixture was cooled, absorbance at
625 nm was measured using a spectrophotometer (UV-1900 BMS, Thermo Fisher Scientific,
Duisburg, Germany), and the total soluble sugars (mg/g FW) were determined using a
glucose standard curve.

2.6. Stress Indicators

Malondialdehyde (MDA) contents were used to assess lipid peroxidation in plant
tissues, as described by Zhang and Kirkham [37]. After homogenization in 5 mL TCA
(0.1%), 0.25 g leaf sample was centrifuged at 6000× g for 15 min. The resulting aliquot
(1 mL) was heated at 95 ◦C for 30 min, cooled in an ice bath, and centrifuged with 4 mL of
thiobarbituric acid (TBA). Absorbance of the supernatant was recorded at 532 and 600 nm.
The difference between 532 and 600 nm readings was recorded, and absorption coefficient
of 155 mM L−1 was used to express the MDA level in micromoles per gram of dry weight
(M/g FW).

The fresh leaves (50 mg) were homogenized in 3 mL of 50 mM phosphate regulator
(KH2PO4/K2HPO4, pH 6.5) to extract H2O2. The extract (3 mL) was mixed with 1 mL
titanium sulfate (0.1%), and 1 mL H2SO4 (20%), followed by centrifugation at 6000× g for
15 min. Then, absorbance was recorded at 410 nm and 0.28 µM L−1 coefficient was used to
express H2O2 as µM/g FW [38].

2.7. Ascorbic Acid

Ascorbic acid was extracted and determined from the leaves by following the method-
ology of Kampfenkel et al. [39]. Liquid nitrogen was used to homogenize leaf samples (1 g)
before extraction with 10 mL TCA (5% w/v), followed by centrifugation (15,000× g) at 4 ◦C
for 5 min. The concentration of AsA in the supernatant was immediately assayed after
being transferred to a clean reaction vessel using 1 mL reaction mixture.

2.8. Glutathione, Total Phenolics, and Flavonoids

The amount of glutathione was measured in accordance with the methodology of
Anderson [40]. Fresh leaves (0.5 g) were homogenized in 5% sulphosalicylic acid (2 mL)
under cool temperature, followed by centrifugation (12,000× g) for 10 min. The absorbance
was recorded at 412 nm to determine glutathione content. Folin–Ciocalteu reagent (0.75 mL)
was used to estimate total phenolic contents [41]. Similarly, total flavonoids were recorded
by following the method of Zhishen et al. [42].

2.9. Activities of Antioxidant Enzymes

A spectrophotometer was employed to measure the activities of various antioxidant
enzymes, i.e., SOD, CAT, POD, APX, and GR. The SOD activity was measured according to
Zhang [43]. Similarly, the methodology of Aebi [44] was followed to determine the activity
of CAT, and the methodology of Zhou and Leul [45] was followed to measure POD activity.
The APX activity was recorded by employing the methodology of Nakano and Asada [46].
Likewise, GR activity was measured by following the methodology of Rao et al. [47].

2.10. Statistical Analysis

The data on all of the recorded test were subjected to a normality test [48], which
indicated a normal distribution. Therefore, two-way analysis of variance (ANOVA) was
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employed to infer the significant differences among individual and interactive effects of Pb
and EJLE concentrations [49]. Least-significant-difference post hoc test at 95% probability
level was used to differentiate the means where ANOVA indicated significant differences
among individual and interactive effects of Pb and EJLE concentrations. Lastly, principal
component analysis was executed on the growth and biochemical attributes for the easier
interpretation of the results. All statistical computations were performed using SPSS
statistical software version 20.0 [50].

3. Results

The individual and interactive effects of lead (Pb) and loquat leaf extract (EJLE) had
significant effects on growth traits, pigment contents, Pb accumulation, and Pb translocation
factor (Table 1).

Table 1. Analysis of variance for growth and pigment contents and Pb accumulation in roots and
leaves of soybean plants grown under different Pb concentrations and foliar application of loquat
leaf extract.

Source DF Sum of
Squares

Mean
Squares F Value p Value

Shoot dry biomass

Pb 3 1.992 0.664 451.407 <0.0001

EJLE 1 0.112 0.112 76.193 <0.0001

Pb × EJLE 3 0.010 0.003 2.289 0.007

Root dry biomass

Pb 3 0.155 0.052 343.444 <0.0001

EJLE 1 0.031 0.031 205.444 <0.0001

Pb × EJLE 3 0.001 0.000 2.259 0.001

Chlorophyll contents

Pb 3 133.933 44.644 327.304 <0.0001

EJLE 1 21.755 21.755 159.495 <0.0001

Pb × EJLE 3 1.817 0.606 4.441 0.019

Carotenoid contents

Pb 3 90.760 30.253 277.957 <0.0001

EJLE 1 19.260 19.260 176.958 <0.0001

Pb × EJLE 3 4.657 1.552 14.262 <0.0001

Anthocyanin contents

Pb 3 66.499 22.166 236.471 <0.0001

EJLE 1 14.369 14.369 153.285 <0.0001

Pb × EJLE 3 3.275 1.092 11.644 0.000

Lycopene contents

Pb 3 134.656 44.885 427.819 <0.0001

EJLE 1 12.327 12.327 117.490 <0.0001

Pb × EJLE 3 8.453 2.818 26.857 <0.0001

Pb in roots

Pb 3 605,785.83 201,928.611 6319.708 <0.0001

EJLE 1 34,898.101 34,898.101 1092.197 <0.0001
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Table 1. Cont.

Source DF Sum of
Squares

Mean
Squares F Value p Value

Pb × EJLE 3 12,993.148 4331.049 135.548 <0.0001

Pb in leaves

Pb 3 187,399.403 62,466.468 1565.556 <0.0001

EJLE 1 24,400.315 24,400.315 611.529 <0.0001

Pb × EJLE 3 14,045.921 4681.974 117.341 <0.0001

Pb translocation factor

Pb 3 1.101 0.367 1577.826 <0.0001

EJLE 1 0.038 0.038 161.552 <0.0001

Pb × EJLE 3 0.018 0.006 26.438 <0.0001
Pb = lead concentrations, EJLE = loquat leaf extract, DF = degrees of freedom. The bold values in the p value
column indicate that the relative traits were significantly affected by individual or interactive effects of Pb and EJLE.
The bold values in the p value column indicate that the relevant individual or interactive effect was significant for
the corresponding trait.

The shoot and root dry biomass were significantly decreased by increasing Pb concen-
trations. However, application of 5% EJLE significantly improved shoot and dry biomass
under all Pb concentrations. The highest shoot and root dry biomass were noted under
0 µg Pb with 5% EJLE application, whereas plants exposed to 800 µg Pb concentrations
without EJLE application produced the lowest shoot and root dry biomass. Application of
5% EJLE improved shoot dry biomass by 10.8%, 10.2%, 9.6%, and 28.9% under 0, 200, 400,
and 800 µg Pb concentrations, respectively, compared to no ELJE application. Shoot dry
biomass of the plants receiving no EJLE was decreased by 19.1%, 38.0%, and 62.4% under
200, 400, and 800 µg Pb concentrations, respectively. Similarly, this decrease was 19.7%,
38.9%, and 52.9% under 200, 400, and 800 µg Pb concentrations, respectively, in the plants
treated with 5% ELJE (Figure 1).

Application of 5% EJLE improved root dry biomass by 18.6%, 27.2%, 34.8%, and
29.4% under 0, 200, 400, and 800 µg Pb concentrations, respectively, compared to no ELJE
application. Root dry biomass of the plants receiving no EJLE was reduced by 30.2%, 53.1%,
and 62.5% under 200, 400, and 800 µg Pb concentrations, respectively. On the other hand,
this decrease was 22.0%, 41.5%, and 56.7% under 200, 400, and 800 µg Pb concentrations,
respectively, for the plants supplemented with 5% ELJE (Figure 1).

The Pb accumulation in roots and leaves was significantly increased under increasing
Pb concentration. Higher Pb accumulation was recorded in roots compared to shoots. The
application of 5% EJLE significantly reduced Pb accumulation in roots and leaves. The
application of 5% EJLE reduced Pb accumulation in roots by 62.6%, 36.3%, and 34.4% under
200, 400, and 800 µg Pb concentrations, respectively, compared to no ELJE application
(Figure 1). In the same way, application of 5% EJLE reduced Pb accumulation in leaves
by 100.1%, 58.5%, and 79.3% under 200, 400, and 800 µg Pb concentrations, respectively,
compared to no ELJE supplementation (Figure 1).

The Pb translocation factor was increased with increasing Pb concentrations. The
lowest translocation factor was noted for 0 µg Pb concentration with or without EJLE
application, whereas 800 µg Pb concentration without EJLE application noted the highest
translocation factor. The application of 5% EJLE reduced Pb translocation factor by 23.1%,
16.3%, and 33.4% under 200, 400, and 800 µg Pb concentrations, respectively, compared
to no ELJE application. The translocation factor of the plants receiving no EJLE increased
by 46.0%, 52.0%, and 62.0% under 200, 400, and 800 µg Pb concentrations, respectively.
Similarly, this increase was 38.0%, 45.0%, and 47.0% under 200, 400, and 800 µg Pb concen-
trations, respectively, in the plants supplemented with 5% ELJE (Figure 1).
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Figure 1. Interactive effect of different lead and loquat leaf extract concentrations on root and shoot
biomass, Pb accumulation in roots and leaves, and Pb translocation factor of soybean plants. The
values of different traits are means ± standard errors of means (n = 4). Means with different letters
are significantly different from each other.

Different pigments, secondary metabolites, and stress indicators were significantly
affected by individual and interactive effects of Pb and EJLE concentrations (Tables 1 and 2).

Table 2. Analysis of variance for non-enzymatic antioxidants of soybean plants grown under different
Pb concentrations and foliar application of loquat leaf extract.

Source DF Sum of
Squares

Mean
Squares F Value p Value

Proline contents

Pb 3 117.536 39.179 701.078 <0.0001

EJLE 1 36.064 36.064 645.345 <0.0001

Pb × EJLE 3 2.781 0.927 16.586 <0.0001

Total soluble sugars
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Table 2. Cont.

Source DF Sum of
Squares

Mean
Squares F Value p Value

Pb 3 224.825 74.942 658.298 <0.0001

EJLE 1 25.855 25.855 227.109 <0.0001

Pb × EJLE 3 3.613 1.204 10.578 0.000

Malondialdehyde

Pb 3 419.985 139.995 1524.793 <0.0001

EJLE 1 67.670 67.670 737.050 <0.0001

Pb × EJLE 3 5.256 1.752 19.081 <0.0001

Hydrogen peroxide

Pb 3 428.681 142.894 2330.737 <0.0001

EJLE 1 74.026 74.026 1207.437 <0.0001

Pb × EJLE 3 7.769 2.590 42.240 <0.0001

Ascorbic acid

Pb 3 9924.944 3308.315 216.585 <0.0001

EJLE 1 14,653.030 14,653.030 959.289 <0.0001

Pb × EJLE 3 22,017.881 7339.294 480.481 <0.0001

Glutathione

Pb 3 26,018.168 8672.723 1044.265 <0.0001

EJLE 1 2623.787 2623.787 315.925 <0.0001

Pb × EJLE 3 244.641 81.547 9.819 0.001

Total phenolic contents

Pb 3 154.907 51.636 608.553 <0.0001

EJLE 1 97.486 97.486 1148.918 <0.0001

Pb × EJLE 3 17.907 5.969 70.347 <0.0001

Total flavonoid contents

Pb 3 3.713 1.238 120.001 <0.0001

EJLE 1 2.975 2.975 288.495 <0.0001

Pb × EJLE 3 0.743 0.248 24.011 <0.0001
Pb = lead concentrations, EJLE = loquat leaf extract, DF = degrees of freedom. The bold values in the p value
column indicate that the relative traits were significantly affected by individual or interactive effects of Pb and EJLE.
The bold values in the p value column indicate that the relevant individual or interactive effect was significant for
the corresponding trait.

Increasing Pb concentrations significantly reduced total chlorophyll contents, carotenoids,
anthocyanins, lycopene, flavonoids, and total phenols. However, application of 5% EJLE
significantly improved these contents. The application of 5% EJLE increased carotenoids by
41.4%, 36.7%, 42.2%, and 57.7% under 0, 200, 400, and 800 µg Pb concentrations, respectively,
compared to no ELJE application. Chlorophyll contents were improved by 16.7%, 11.5%,
31.3%, and 33.9% under 0, 200, 400, and 800 µg Pb concentrations, respectively, with the
application of 5% EJLE compared to no ELJE application (Figure 2).
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Likewise, application of 5% EJLE improved anthocyanins by 21.5%, 21.9%, 25.5, and
6.1% under 0, 200, 400, and 800 µg Pb concentrations, respectively, compared to no EJLE
application. In the same manner, supplementation with 5% EJLE improved lycopene
contents by 32.3%, 41.1%, and 19.5% under 0, 200, and 400 µg Pb concentrations, respec-
tively, compared to no EJLE application. However, lycopene was reduced by 3.0% under
800 µg Pb concentration by 5% EJLE application compared to no application. The increase
in flavonoids was 30.0%, 29.2%, 20.4%, and 10.6% under 0, 200, 400, and 800 µg Pb concen-
trations, respectively, with the application of 5% EJLE compared to no ELJE application.
Similarly, application of 5% EJLE improved total phenols by 45.6%, 25.9%, 44.8%, and
18.7% under 0, 200, 400, and 800 µg Pb concentrations, respectively, compared to no EJLE
application (Figure 2).

Total soluble sugars, proline, ascorbic acid, and glutathione were increased with
increasing Pb concentration. The increase in these contents was higher with 5% EJLE
application compared to no EJLE application. Similarly, MDA and H2O2 contents increased
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under higher Pb concentrations, and this increase was less in the plants sprayed with 5%
EJLE compared with no application (Figure 3).
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The plants sprayed with 5% EJLE demonstrated an increase of 24.0%, 13.6%, 5.1%, and
9.6% in total soluble sugars under 0, 200, 400, and 800 µg Pb concentrations, respectively,
compared to the plants receiving no EJLE. Similarly, proline increased by 16.3%, 16.5%,
22.2%, and 15.5% under 0, 200, 400, and 800 µg Pb concentrations, respectively, with 5%
EJLE application compared with no application. Likewise, the increase in ascorbic acid
with 5% EJLE application was 32.9%, 8.5%, 9.9%, and 8.5% under 0, 200, 400, and 800 µg Pb
concentrations, respectively, compared to no EJLE application. In the same way, glutathione
increased by 23.9%, 19.8%, 8.7%, and 8.0% under 0, 200, 400, and 800 µg Pb concentrations,
respectively, with the application of 5% EJLE compared to its no application. The reduction
caused by 5% EJLE in MDA contents was 122.5%, 21.5%, 32.0%, and 25.5% under 0, 200, 400,
and 800 µg Pb concentrations, respectively, compared with no application. Similarly, H2O2
contents were reduced by 42.9%, 16.7%, 17.0%, and 9.0% under 0, 200, 400, and 800 µg Pb
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concentrations, respectively, with 5% EJLE application compared to no application of EJLE
(Figure 3).

The activities of different antioxidant enzymes were significantly affected by individual
and interactive effects of Pb and EJLE concentrations (Table 3).

Table 3. Analysis of variance for antioxidant enzymes’ activities of soybean plants grown under
different Pb concentrations and foliar application of loquat leaf extract.

Source DF Sum of
Squares

Mean
Squares F Value p Value

SOD

Pb 3 1505.74 501.914 68.177 <0.0001

EJLE 1 682.02 682.027 92.642 <0.0001

Pb × EJLE 3 21.10 7.034 0.955 0.0043

CAT

Pb 3 1335.03 445.011 66.623 <0.0001

EJLE 1 1549.95 1549.952 232.046 <0.0001

Pb × EJLE 3 5.37 1.790 0.268 0.008

POD

Pb 3 887.04 295.681 81.848 <0.0001

EJLE 1 1121.07 1121.077 310.327 <0.0001

Pb × EJLE 3 11.78 3.929 1.088 0.003

APX

Pb 3 909.81 303.271 43.815 <0.0001

EJLE 1 573.30 573.304 82.829 <0.0001

Pb × EJLE 3 2.55 0.850 0.123 0.005

GR

Pb 3 921.65 307.219 26.546 <0.0001

EJLE 1 513.37 513.375 44.360 <0.0001

Pb × EJLE 3 6.88 2.295 0.198 0.008
Pb = lead concentrations, EJLE = loquat leaf extract, DF = degrees of freedom. The bold values in the p value
column indicate that the relative traits were significantly affected by individual or interactive effects of Pb and
EJLE. SOD = superoxide dismutase, CAT = catalase, POD = peroxidase, APX = ascorbate peroxidase, GR =
glutathione reductase. The bold values in the p value column indicate that the relevant individual or interactive
effect was significant for the corresponding trait.

The activities of antioxidant enzymes increased under higher Pb concentrations, and
this increase was higher in the plants sprayed with 5% EJLE compared to those receiving
no EJLE (Figure 4). The highest activities of SOD, CAT, POD, APX, and GR enzymes were
noted in the plants grown under 800 µg Pb concentration with the application of 5% EJLE,
whereas the plants grown under 0 µg Pb concentration with no EJLE application recorded
the lowest activities of these enzymes.

The CAT activity was improved by 19.5%, 17.3%, 14.8%, and 16.2% under 0, 200,
400, and 800 µg Pb concentrations, respectively, with 5% EJLE application compared
with no application. Similarly, application of 5% EJLE increased SOD activity by 23.9%,
19.4%, 13.2%, and 12.8% under 0, 200, 400, and 800 µg Pb concentrations, respectively,
compared with no application. Likewise, POD activity was improved by 27.6%, 28.2%,
26.8%, and 25.5% under 0, 200, 400, and 800 µg Pb concentrations, respectively, with the
application of 5% EJLE compared with no application. In the same way, application of
5% EJLE increased APX activity by 28.6%, 24.6%, 20.5%, and 20.4% under 0, 200, 400,
and 800 µg Pb concentrations, respectively, compared with no application. Similarly, GR
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activity was improved by 30.0%, 26.1%, 23.3%, and 24.3% under 0, 200, 400, and 800 µg
Pb concentrations, respectively, with 5% EJLE application compared with no application
(Figure 4).
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The principal component analysis divided the traits into three distinct groups (Figure 5).
The first group contained root and shoot dry biomass, total chlorophyll contents, and

carotenoids grouped together with 0 and 200 µg Pb concentrations with 5% EJLE concen-
tration. The second group had stress indicators, i.e., MDA and H2O2, Pb accumulation in
roots and leaves, and Pb translocation factor, which were grouped together with 400 and
800 µg Pb concentrations with no EJLE application. The rest of the traits were in the third
group, coupled with 400 and 800 µg Pb concentrations with the application of 5% EJLE
(Figure 5). The results of the PCA revealed that the application of 5% EJLE lowered the
production of stress indicators compared with no application. Similarly, the activities of
antioxidant enzymes and non-enzymatic antioxidants were improved with the application
of 5% EJLE. The PCA further revealed that the shoot and root dry biomass, chlorophyll
contents and carotenoids were higher in the plants grown under no- and low Pb toxicity
with the application of 5% EJLE (Figure 5).
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Figure 5. The biplot of the first two axes of principal component analysis executed on growth
and biochemical traits of soybean plants grown under different Pb and loquat leaf extract con-
centrations. SDM = shoot dry biomass, RDM = root dry biomass, Chls = total chlorophylls,
Antho = anthocyanins, Lyco = Lycopene, Pro = proline, TSS = total soluble sugars, MDA = mal-
ondialdehyde, H2O2 = Hydrogen peroxide, AsA = ascorbic acid, GSH = glutathione, TPC = total
phenolic contents, TFC = total flavonoid contents, SOD = superoxide dismutase, CAT = catalase,
POD = peroxidase, APX = ascorbate peroxidase, GR = glutathione reductase, PBR = Pb accumulation
in roots, PBL = Pb accumulation in leaves, and TF = PB translocation factor.

4. Discussion

Increasing Pb concentrations significantly suppressed the growth and biochemical
attributes of soybean plants as hypothesized. Similarly, the application of 5% EJLE notably
improved these traits, which also supported our hypothesis. Higher Pb accumulation was
recorded in roots compared to leaves in the current study, whereas application of EJLE
significantly lowered Pb accumulation in roots and leaves. The increased Pb accumulation
significantly reduced root growth and pigment contents, and this decrease was higher
under no application of EJLE. Plants readily absorb Pb from Pb-contaminated soils, with
the greatest accumulation observed in roots, whereas other parts (stems, leaves, and seeds)
accumulate lower amounts [7,51]. The main obstacles to Pb entry into cells are cell walls and
membranes [52]. Phytochelatins may decrease Pb entry into the cells [53]. Several strategies
have been tested in earlier studies to lower Pb accumulation in various plant species. The
application of endogenous substances has been reported to mitigate the adverse effects
of heavy metal on growth of different plant species [4,7,54]. The combined application of
asparagine and thiourea improved the Pb tolerance of wheat [7].

Various phenolic acids are known to improve heavy metal tolerance of different plant
species [55]. The EJLE is a phenolic compound; thus, it has considerable potential to
improve the heavy metal tolerance of plants. The EJLE has metal chelating, DPPH and
ABTS radical scavenging activities, and higher antioxidant enzyme activities [56]. The
formation of the EJLE-Pb complex might have reduced Pb accumulation and increased
soybean growth and biochemical attributes. However, this inference warrants further
investigation. Unfortunately, there is no report relating to the role of EJLE in improving
the heavy metal tolerance of crop plants. Thus, future studies must explore the chemical



Sustainability 2023, 15, 4352 14 of 18

composition of EJLE and the actual mechanisms involved in the improved growth of plants
with the application of EJLE.

Chlorophyll concentration is a key measure of a plant’s photosynthetic efficiency. Pb
toxicity causes significant morphological and physiological changes in plants, including
reduced photosynthesis, distributed nutrient uptake and water balance, and abrupt changes
in the activates of essential enzymes [57]. Pb toxicity is known to decrease chlorophyll a
and b, while it increases chlorophyll a:b ratio and chlorophyll degradation rate [7]. Reduced
nutrient and water uptake may result in lower photosynthesis, which would result in slower
plant development overall. Furthermore, elevated MDA levels and electrolyte leakage may
damage chloroplast membranes and result in decreased accumulation of photosynthetic
pigments under Pb stress. Increased Pb concentrations in the current study reduced total
chlorophylls and carotenoids, whereas they increased lycopene and anthocyanin. Foliar
application of 5% EJLE increased the contents of these pigments. The results of the current
study are similar to the findings of Shu et al. [58] who reported decreased photosynthetic
pigments in Jatropa curcas under Pb stress. The reduced photosynthetic contents were
linked with stomatal closure. Stomatal closure is a result of Pb interaction with guard cells
or due to the early effects of Pb toxicity on roots and stems. Plants may shift their stomata
in response to signals produced by the ABA under Pb stress [59]. The high redox potential
of some heavy metals likely hinders the reductive steps in the production pathways of
photosynthetic pigments, leading to a decrease in these pigments [60].

The metabolism of plant cells frequently results in the production of reactive oxygen
species (ROS). The oxidative damage, ultimately leading to cell death, is caused by an
excessive quantity of ROS produced under heavy metals’ toxicity. Plants exposed to higher
Pb concentrations produce significant amounts of ROS, which oxidize nucleic acids and
proteins and degrade their structures [61]. Plants capable of producing higher phenolic
compounds under heavy metal stress are regarded good candidates for phytoremedia-
tion [62]. These phenolic compounds may serve as antioxidants because their hydroxyl
groups can donate hydrogen and react with ROS in the termination reaction, which breaks
the cycle of producing new radicals. Phenolic compounds serve as significant antioxidants
under stressful environments, and these are generated through the shikimic acid or phenyl
propanoid pathways [63]. Loquat leaves are comprised of several active compounds with
anti-inflammatory, anti-tumor, and antioxidant properties, including roseoside, procyani-
din B-2, triterpene acids, chlorogenic acid, and flavonoids [28]. Production of osmolytes
(i.e., proline and total soluble sugars) increased under Pb stress with the application of
5% EJLE. Plants producing more proline could resist lipid peroxidation and membrane
alteration caused by Pb toxicity [64,65]. Several earlier studies have reported increased
accumulation of osmolytes in plants under heavy metal stress, including Pb [66,67]. The
increased proline in Pb-exposed seedlings might be linked with protein breakdown. Proline
mitigates metal-induced oxidative stress because of its ability to scavenge ROS [68]. Higher
production of proline and total soluble sugars with the application of 5% EJLE lowered
ROS, which improved Pb tolerance of soybean plants.

The current study indicated that leaf MDA and H2O2 contents increased under Pb
toxicity, while foliar application of 5% EJLE significantly reduced MDA and H2O2 contents.
Plant extracts possessing bioactive compounds may serve as powerful antioxidants. The
improved Pb tolerance of soybean plants through the application of 5% EJLE might be
attributed to its high levels of phenolic (benzoic acid and hydroxycinnamic derivatives)
and tocopherol components [69].

Non-enzymatic antioxidant contents (i.e., AsA, GSH, TPC, and TFC) increased under
Pb stress with the application of 5% EJLE. Due to electron donating abilities, TPCs serve
as hydrogen donors, reducing agents, and singlet oxygen quenchers, in addition to im-
parting heavy metal tolerance [70]. The increased TPC in the current study can provide a
mechanistic aid to soybean plants for improved Pb tolerance [71]. Similarly, the activity
of antioxidant enzymes significantly increased under Pb stress with the application of 5%
EJLE. The increased activity of these enzymes enhanced the tolerance of soybean plants
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to Pb toxicity. Improved activity of these enzymes shields plants from oxidative damage;
hence, defending the photosynthetic apparatus [72]. Plants produce antioxidants such
as proline, APX, glutathione, and GPX under Pb-induced oxidative stress to counteract
the negative effects of ROS [73]. Antioxidant activity in plants is achieved by the produc-
tion of ROS in the mitochondria through the membrane-coupled electron transport chain
during oxidative phosphorylation [74]. Increased activity of antioxidant enzymes may
have contributed to the reduced membrane leakage [75] due to EJLE application, which
preserved the membrane’s composition and ultrastructure. Reduced oxidative damage
with EJLE application can be linked to the efficient functioning of the antioxidant defense
system. Increased antioxidant enzyme activity can be linked to higher antioxidant poten-
tial of ELJE [56]. However, no earlier reports are available regarding the functioning of
EJLE. Therefore, our results indicate that EJLE could impart Pb tolerance to soybean plants
through enhanced activities of antioxidant enzymes. However, field studies exploring the
underlying mechanisms of EJLE are needed to reach concrete conclusions. Moreover, future
studies must analyze EJLE and test more concentrations of it to reach concrete conclusions.

5. Conclusions

This study indicated that Pb stress had negative effect on growth, total chlorophyll
contents, and carotenoids in soybean plants, whereas it promoted lycopene and antho-
cyanin. Pb toxicity exhibited a significant induction effect on the proline, total soluble
sugars, ascorbic acid, glutathione, total phenolic contents, total flavonoid contents, and
activity of antioxidant enzymes (SOD, CAT, POD, APX, and GR). The toxicity of Pb to pig-
ments, osmolytes, and the antioxidant system of soybean plants was significantly mitigated
by foliar spray of 5% EJLE. The EJLE decreased MDA and H2O2 contents and promoted
pigments, osmolyte contents, and the antioxidant system of soybean plants, thus reducing
Pb toxicity. Foliar application of 5% EJLE could effectively improve the Pb tolerance of
soybean plants. However, field studies exploring the underlying mechanisms of EJLE are
needed to reach concrete conclusions.
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