



# Article Adjustment of Measurement Error Effects on Dispersion Control Chart with Distribution-Free Quality Variable

Su-Fen Yang \*<sup>D</sup>, Li-Pang Chen <sup>D</sup> and Cheng-Kuan Lin

Department of Statistics, National Chengchi University, Taipei 116011, Taiwan

\* Correspondence: yang@mail2.nccu.tw

Abstract: In industrial processes, control charts are useful tools to monitor the quality of products and detect possibly out-of-control processes. While many types of control charts have been available for data analysts, they were developed by assuming that the variables are precisely measured. In applications, however, measurement error is ubiquitous when data are falsely recorded by investigators or imprecisely collected by unadjusted machines. Even though the impacts of measurement error for different types of control charts have been explored, error-corrected control charts are still unavailable. In this study, we propose a new dispersion control chart with error correction to fill out this research gap. Our key idea is to convert the observed distribution-free process variables into a flexible sign statistic, and then adopt a function to adjust the measurement error effects on the sign statistic. Finally, we develop an exponentially weight-moving average dispersion control chart with measurement error correction based on the corrected sign statistic. The proposed error-corrected dispersion control chart not only eliminates measurement error effects, but also provides more reliable control limits for monitoring process dispersion. Throughout the numerical examination, we find that the proposed error-corrected dispersion control chart is effective in handling moderate and large levels of measurement error and shows good out-of-control detection performance. Finally, the proposed error-corrected dispersion control chart is implemented in the semiconductor data.

**Keywords:** measurement error elimination; exponentially weighted moving average control chart; dispersion control chart

# 1. Introduction

Statistical process control (SPC) is a useful tool to maintain the quality of the product and detect possibly out-of-control (OC) processes. Many methods have been developed and widely applied since the work of Shewhart [1], including the  $\overline{X}$  chart used to monitor the mean of the process, and *R* or *S* chart adopted to monitor the dispersion of the process. However, they are not sensitive to detecting small shifts. To remedy this, Robert [2] proposed an exponentially weighted moving average (EWMA) chart, which improves out-of-control detection performance against the Shewhart control chart for the mean and dispersion with small shifts.

Another critical concern of Shewhart charts is the requirement of the normally distributed data, which is usually violated in applications. To improve this shortcoming, several distribution-free methods have been explored. To name a few, Amin et al. [3] proposed the sign chart based on sign-test statistics to control process center and variability. Bakir [4,5] proposed the Shewhart type that is based on the sign test or signed ranks of grouped observations to monitor a process center. These charts do not require the distribution to be symmetric, and they are applicable in various situations. Yang et al. [6] proposed the nonparametric EWMA sign chart to monitor the process target. Yang et al. [7] proposed the nonparametric EWMA sign chart to monitor the process mean. Chowdhury et al. [8] proposed the Shewhart–Cucconi (SC) chart to monitor a process location and scale. Although these methods address the issue of requiring normality assumptions, they



Citation: Yang, S.-F.; Chen, L.-P.; Lin, C.-K. Adjustment of Measurement Error Effects on Dispersion Control Chart with Distribution-Free Quality Variable. *Sustainability* **2023**, *15*, 4337. https://doi.org/10.3390/ su15054337

Academic Editor: Bhavik Bakshi

Received: 24 January 2023 Revised: 23 February 2023 Accepted: 24 February 2023 Published: 28 February 2023



**Copyright:** © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). may not necessarily perform better when the sample size is large. Yang and Arnold [9,10] developed a distribution-free dispersion control chart, whose monitoring statistic will not be influenced by out-of-control mean. Tang et al. [11] proposed an AEWMA median chart with known or estimated parameters to monitor the mean value. Riaz et al. [12] proposed an NPSNDH control chart based on sign test statistics to monitor process location. These charts solve the issue of distributional assumptions but, unfortunately, cannot be directly applied in more general situations that involve measurement errors.

Those existing methods are under the assumption that data are precisely measured. In applications, however, measurement error is ubiquitous when data are falsely recorded by the investigators or imprecisely collected by unadjusted machines. This feature may incur the wrong conclusion or induce an incorrect control chart. In the past literature, measurement error effects have been investigated based on several types of control charts. For example, for location and scale processes, Mittag and Stemann [13] proved stochastic measurement error has considerable effects on Shewhart X - S control charts. Linna and Woodall [14] examined measurement error effects on Shewhart  $\overline{X}$  and  $S^2$  charts by using covariable models and linearly increasing variance models. Stemann and Weihs [15] compared the ability of the EWMA-X - S chart and the Shewhart X - S chart with measurement error and found that the EWMA- $\overline{X} - S$  chart is superior. To monitor the mean process with measurement error, Maravelakis et al. [16] examined the effect of measurement error on EWMA-X charts for mean by using a covariable model, multiple measurements, and a linearly increasing variance model. Abbas et al. [17] proposed EWMA control charts using auxiliary variables in the form of regression estimates to monitor process means. Daryabari et al. [18] examined measurement error effects on the Maximum Exponentially Weighted Moving Average and Mean Squared deviation (MAX EWMAMS) control chart, which can monitor mean and variance processes; Noor-ul-Amin et al. [19] examined measurement error effects with an auxiliary variable for EWMA-Z control charts by using a covariable model, multiple measurements, and a linearly increasing variance model. Asif et al. [20] described measurement error effects on the hybrid exponentially weighted moving average (HEWMA) control chart by using a covariable model, multiple measurements, and a linearly increasing variance model. Huwang and Hung [21] examined the effect of measurement error on the sample generalized variance chart and the likelihood ratio test chart for monitoring multivariate process variability. Nojavan et al. [22] examined the effect of measurement error on Mann–Whitney and signed-rank charts for monitoring the process center when the distribution is unknown. While these methods discuss the effect of different measurement error models on control charts, they do not provide suitable strategies to correct for measurement error effects.

In addition to continuous random variables, p control charts subject to error-prone binary random variables have also been explored. For example, Case [23] showed that inspection error rates affected the OC curve of a p control chart and proposed the compensating p chart to make the actual OC curve into the proximity of the desired OC curve. Lu et al. [24] examined the effect of inspection error on run-length control charts and presented the adjusted control limits for the run-length charts to partially compensate for the shifts of the average number inspected (ANI) curves with inspection error. Shu and Wu [25] used fuzzy set theory to construct a fuzzy-p control chart and monitor the imprecise fraction of nonconforming items. Daryabari [26] examined the performance of the Bernoulli CUSUM chart in the presence of measurement error. Chen and Yang [27] proposed an error-corrected EWMA p control chart to monitor the changes in defection rate. These methods examine or correct for the impacts of measurement error on control charts, providing us with a good direction for addressing the issue of measurement error.

Although some methods have been developed to reduce the effect of measurement error, such as Case [23], Shu and Wu [25], and Chen and Yang [27], few approaches are available to correct for measurement error effects when monitoring continuous random variables. Most methods assume the true quality characteristics and the measurement error are normal distributions. On the contrary, a few studies only discuss the effect of

measurement error on process dispersion. Therefore, we propose a new approach to correct measurement error effects for monitoring process dispersion. Specifically, we apply the dispersion statistic of the sign chart proposed by Yang and Arnold [9,10] to transform continuous random variables into discrete ones. After that, we develop an error-corrected EWMA variance control chart by adopting a corrected proportion (e.g., Chen and Yang [27]). Our contribution is to propose an error-eliminated and distribution-free dispersion control chart, which provides reliable control limits and effectively detects out-of-control processes.

The remainder is organized as follows. In Section 2, following Yang and Arnold [10], we introduce the general framework of the EWMA variance chart and discuss measurement error effects for the EWMA variance chart. We also propose a valid approach to correct measurement error effects. To assess the performance of detecting out-of-control process dispersion, we examine the out-of-control average run length ( $ARL_1$ ) and compare the performance of the EWMA variance with/without measurement error correction in Section 3. In Section 4, we examine the robustness of the proposed chart by considering different distributions of true observation and various levels of measurement error. In Section 5, we apply the proposed variance control chart to analyze the SECOM data set from the UCI Machine Learning Repository [28] and compare the detection performance with the EWMA variance chart with measurement error. A summary is given in Section 5.

## 2. Using the Error-Corrected EWMA Variance Chart to Monitor Process Dispersion

#### 2.1. Design of the EWMA Variance Chart

Yang and Arnold [9,10] proposed a dispersion monitoring statistic whose variance will not be influenced by the out-of-control mean and integrated it with the sign test method to construct the distribution-free EWMA dispersion control charts. We adopted the general framework of the EWMA dispersion control chart in Yang and Arnold [9,10], and described it as follows.

Let *n* be the sample size, and let *t* denote the number of sampling periods. For the  $t^{th}$  sampling period and the  $j^{th}$  observation with  $j = 1, \dots, n$  and  $t = 1, \dots, \infty$ , let  $X_{t,j}$  be continuous random samples coming from an in-control continuous process  $X_0$  with unknown distribution and variance  $\sigma^2$ .

To monitor the process variance under the unknown distribution, we can use the sign method to convert the continuous variable to a binary variable. Specifically, under the in-control process, define

$$\mathcal{X}_{t,j'} = \frac{\left(X_{t,2\,j'} - X_{t,2\,j'-1}\right)^2}{2} \tag{1}$$

for a fixed *t* and  $j' = 1, 2, \dots, 0.5n$ . Based on the transformation (1), we denote  $Y_0$  as the random variable of the in-control process, then we obtain  $E(Y_0) = \sigma^2$ . We can see that the statistic  $Y_0$  is an unbiased estimator of  $\sigma^2$ , and it will not be influenced by the mean of  $X_{t-2}$ , j'.

Moreover, by (1), define an indicator function

$$I_{t,j'} = \begin{cases} 1, & if \ Y_{t,j'} > \sigma^2 \\ 0, & otherwise \end{cases} \text{ for fixed } t \text{ and } j' = 1, 2, \cdots, 0.5n.$$
(2)

Denote  $V_t$  as the sum of indicators of function at the  $t^{th}$  sampling period, i.e.,

$$V_t = \sum_{j'=1}^{0.5n} I_{t,j'} \sim Bin(0.5n, p_0) \text{ for } t = 1, \cdots, \infty,$$
(3)

where  $p_0 \triangleq P(Y_0 > \sigma^2)$  for the in-control process.

From (3), let

$$P_t = \frac{V_t}{0.5n} \text{ for } t = 1, \cdots, \infty, \tag{4}$$

To monitor the variance process, we can construct an EWMA variance chart based on (4), and the EWMA statistic at *t* time is defined as

$$EWMA_{P_t} = \lambda P_t + (1 - \lambda) EWMA_{P_{t-1}}$$
(5)

for  $t = 1, 2, \dots, \infty$ , where  $\lambda$  is a smoothing parameter, and  $\lambda \in (0, 1]$ .

We let the starting EWMA charting statistic,  $EWMA_{P_0}$ , t = 0, be the mean of  $P_t$ , i.e.,  $EWMA_{P_0} = p_0$ . The mean and the variance of  $EWMA_{P_t}$  are, respectively, derived as

$$E(EWMA_{P_t}) = p_0$$

and

$$Var(EWMA_{P_t}) = \frac{p_0(1-p_0)\lambda \left[1-(1-\lambda)^{2t}\right]}{n(2-\lambda)}.$$

Assume that there is an upward or downward out-of-control process dispersion; hence, two one-sided EWMA variance charts are considered. The control limits ( $(UCL_1, LCL_1)$  and  $(UCL_2, LCL_2)$ ) of the two one-sided EWMA variance charts are, respectively, as follows.

$$UCL_{1} = p_{0} + L_{1} \sqrt{\frac{p_{0}(1-p_{0})\lambda \left[1-(1-\lambda)^{2t}\right]}{n(2-\lambda)}},$$

$$LCL_{1} = -\infty,$$
(6)

and

$$UCL_{2} = \infty,$$

$$LCL_{2} = p_{0} - L_{2} \sqrt{\frac{p_{0}(1-p_{0})\lambda \left[1-(1-\lambda)^{2t}\right]}{n(2-\lambda)}},$$
(7)

where  $L_1$  and  $L_2$  are determined to satisfy the preset in-control average run length (ARL\_0).

To calculate the  $L_1$  and  $L_2$ , we first define run length (*RL*), which is the first number of points that will point beyond the control limits. The average run length (*ARL*) is the mean of *RL*. With given the *ARL*, one can adopt a numerical algorithm summarized in Algorithm 1 to determine  $L_1$  and  $L_2$ .

To assess the performance of process monitoring, we primarily examine the  $ARL_0$ , in-control median run length (*MRL*), and in-control standard deviation of run length (*SDRL*), denoted as  $MRL_0$  and  $SDRL_0$ . We employ Monte Carlo simulation to compute  $ARL_0$ ,  $MRL_0$ ,  $SDRL_0$ , and let  $ARL_0$ ,  $MRL_0$ ,  $SDRL_0$  denote resulting values. The  $ARL_0$  is usually set as 370.4 and 200. In this study, we set  $ARL_0 = 370.4$ . In principle, larger values of  $SDRL_0$  indicate we need more RL to ensure the  $ARL_0$  is precise enough and close to prespecified  $ARL_0$ . Generally, the distribution of RL is skewed; hence, MRL is a robust version of the ARL, and we can use  $MRL_0$  to measure the central tendency.

We further adopt the algorithm in Appendix A to run the simulation and assess the control limits of the EWMA variance chart ( $UCL_1$  and  $LCL_2$ ), considering  $p_0 = 0.1(0.05)0.45$ ,  $ARL_0 = 370.4$  and  $\lambda = 0.05$ . Numerical results are placed in Table 1, where some values of  $L_2$  do not exist since  $LCL_2$  may not converge under small  $p_0$  and n. We find that the widths of the two control charts become narrower when  $p_0$  or the sample size n increases.

| 0.5 <i>n</i> | $p_0$             | 0.1     | 0.15    | 0.2     | 0.25    | 0.3     | 0.35    | 0.4     | 0.45    | 0.5 <i>n</i> | $p_0$             | 0.1     | 0.15    | 0.2     | 0.25    | 0.3     | 0.35    | 0.4     | 0.45    |
|--------------|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|--------------|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|
|              | $L_1$             | 2.613   | 2.487   | 2.415   | 2.377   | 2.317   | 2.269   | 2.243   | 2.208   |              | $L_1$             | 2.346   | 2.291   | 2.284   | 2.260   | 2.236   | 2.215   | 2.206   | 2.201   |
|              | $UCL_1$           | 0.226   | 0.292   | 0.355   | 0.415   | 0.470   | 0.523   | 0.576   | 0.626   |              | $UCL_1$           | 0.150   | 0.209   | 0.265   | 0.320   | 0.373   | 0.426   | 0.477   | 0.528   |
|              | $A\hat{R}L_0$     | 369.420 | 369.675 | 370.404 | 370.474 | 369.596 | 370.991 | 370.363 | 370.821 |              | $A\hat{R}L_0$     | 370.226 | 370.838 | 370.620 | 371.295 | 369.494 | 370.277 | 369.487 | 370.062 |
|              | $M\hat{R}L_0$     | 235.000 | 239.000 | 254.000 | 246.000 | 251.000 | 254.000 | 252.000 | 250.000 |              | $M\hat{R}L_0$     | 243.000 | 251.000 | 248.000 | 246.000 | 244.500 | 251.000 | 248.000 | 249.000 |
| 1            | SDRL <sub>0</sub> | 412.550 | 403.998 | 389.989 | 398.119 | 383.980 | 395.516 | 387.791 | 381.086 | 5            | SDRL <sub>0</sub> | 396.058 | 396.092 | 394.681 | 393.823 | 393.857 | 384.115 | 387.144 | 386.935 |
| 1            | L <sub>2</sub>    | -       | -       | -       | 1.950   | 2.005   | 2.058   | 2.099   | 2.141   | 5            | L <sub>2</sub>    | 1.983   | 2.035   | 2.067   | 2.079   | 2.100   | 2.132   | 2.144   | 2.161   |
|              | $LCL_2$           | -       | -       | -       | 0.115   | 0.153   | 0.193   | 0.235   | 0.279   |              | $LCL_2$           | 0.057   | 0.098   | 0.141   | 0.186   | 0.231   | 0.277   | 0.325   | 0.373   |
|              | $ARL_0$           | -       | -       | -       | 370.255 | 369.771 | 370.948 | 370.163 | 370.738 |              | $ARL_0$           | 369.530 | 369.474 | 370.561 | 369.588 | 370.623 | 369.479 | 371.332 | 369.727 |
|              | $MRL_0$           | -       | -       | -       | 257.000 | 251.500 | 256.000 | 249.000 | 251.000 |              | $MRL_0$           | 254.000 | 253.000 | 249.000 | 254.500 | 254.000 | 255.000 | 253.000 | 251.000 |
|              | $SDRL_0$          | -       | -       | -       | 372.858 | 377.576 | 375.234 | 379.337 | 378.038 |              | $SDRL_0$          | 371.532 | 377.845 | 376.666 | 376.126 | 382.532 | 381.160 | 386.535 | 384.101 |
|              | $L_1$             | 2.476   | 2.394   | 2.357   | 2.334   | 2.257   | 2.226   | 2.188   | 2.206   |              | $L_1$             | 2.298   | 2.267   | 2.260   | 2.225   | 2.213   | 2.205   | 2.200   | 2.188   |
|              | $UCL_1$           | 0.184   | 0.247   | 0.307   | 0.364   | 0.417   | 0.470   | 0.521   | 0.574   |              | $UCL_1$           | 0.135   | 0.191   | 0.246   | 0.299   | 0.351   | 0.403   | 0.455   | 0.505   |
|              | $ARL_0$           | 369.991 | 370.072 | 370.145 | 371.292 | 369.780 | 370.679 | 370.073 | 369.673 |              | $ARL_0$           | 370.617 | 370.869 | 371.290 | 370.122 | 370.993 | 370.213 | 370.239 | 370.927 |
|              | $MRL_0$           | 243.000 | 245.000 | 243.000 | 237.000 | 253.000 | 247.000 | 246.000 | 245.000 |              | $MRL_0$           | 249.000 | 248.000 | 242.000 | 245.500 | 251.000 | 245.000 | 247.000 | 248.000 |
| 2            | SDRL <sub>0</sub> | 402.733 | 398.480 | 402.038 | 418.830 | 383.062 | 390.341 | 394.619 | 391.579 | 10           | SDRL <sub>0</sub> | 388.704 | 394.289 | 400.223 | 392.066 | 382.948 | 394.178 | 396.160 | 402.867 |
| 2            | $L_2$             | -       | 1.929   | 1.994   | 2.038   | 2.077   | 2.096   | 2.130   | 2.160   | 10           | $L_2$             | 2.042   | 2.069   | 2.104   | 2.107   | 2.127   | 2.141   | 2.156   | 2.166   |
|              | $LCL_2$           | -       | 0.072   | 0.110   | 0.150   | 0.192   | 0.237   | 0.282   | 0.328   |              | $LCL_2$           | 0.069   | 0.113   | 0.157   | 0.204   | 0.251   | 0.298   | 0.347   | 0.395   |
|              | $A\hat{R}L_0$     | -       | 369.795 | 370.292 | 369.624 | 371.360 | 369.707 | 370.198 | 369.799 |              | $A\hat{R}L_0$     | 369.625 | 370.507 | 369.704 | 370.791 | 369.860 | 370.264 | 370.703 | 370.200 |
|              | $M\hat{R}L_0$     | -       | 254.000 | 253.000 | 255.000 | 258.000 | 257.500 | 252.500 | 248.000 |              | $M\hat{R}L_0$     | 257.000 | 254.000 | 250.000 | 253.000 | 253.000 | 255.000 | 253.000 | 254.000 |
|              | $S\hat{DRL}_0$    | -       | 366.828 | 374.765 | 372.839 | 370.337 | 375.441 | 382.434 | 387.196 |              | $S\hat{DRL}_0$    | 372.408 | 381.782 | 384.500 | 383.480 | 384.760 | 384.321 | 386.322 | 383.801 |
|              | $L_1$             | 2.413   | 2.379   | 2.297   | 2.260   | 2.258   | 2.247   | 2.211   | 2.191   |              | $L_1$             | 2.278   | 2.256   | 2.244   | 2.225   | 2.207   | 2.199   | 2.193   | 2.188   |
|              | $UCL_1$           | 0.167   | 0.229   | 0.285   | 0.340   | 0.396   | 0.449   | 0.500   | 0.551   |              | $UCL_1$           | 0.128   | 0.183   | 0.237   | 0.290   | 0.342   | 0.393   | 0.444   | 0.495   |
|              | $ARL_0$           | 370.040 | 370.235 | 370.268 | 370.666 | 370.045 | 371.308 | 370.140 | 369.708 |              | $ARL_0$           | 369.836 | 370.626 | 371.081 | 370.033 | 370.043 | 369.848 | 369.514 | 370.129 |
|              | $MRL_0$           | 241.000 | 239.000 | 249.000 | 250.000 | 247.000 | 247.000 | 247.000 | 252.000 |              | $MRL_0$           | 248.000 | 241.000 | 253.000 | 247.000 | 249.000 | 245.000 | 252.000 | 248.000 |
| 3            | SDRL <sub>0</sub> | 410.201 | 419.206 | 388.305 | 393.618 | 394.359 | 393.442 | 392.217 | 382.364 | 15           | SDRL <sub>0</sub> | 393.615 | 397.972 | 393.131 | 387.314 | 393.538 | 398.568 | 387.483 | 390.523 |
| 5            | $L_2$             | 1.903   | 1.987   | 2.039   | 2.070   | 2.096   | 2.119   | 2.128   | 2.142   | 10           | $L_2$             | 2.060   | 2.099   | 2.111   | 2.130   | 2.140   | 2.151   | 2.160   | 2.164   |
|              | $LCL_2$           | 0.047   | 0.084   | 0.125   | 0.167   | 0.211   | 0.257   | 0.304   | 0.351   |              | $LCL_2$           | 0.074   | 0.119   | 0.165   | 0.212   | 0.259   | 0.308   | 0.356   | 0.405   |
|              | $ARL_0$           | 370.466 | 369.623 | 370.715 | 370.609 | 369.563 | 370.330 | 371.315 | 369.499 |              | $ARL_0$           | 369.405 | 369.883 | 369.477 | 370.392 | 370.871 | 370.095 | 3/0.566 | 369.836 |
|              | $MRL_0$           | 259.000 | 256.000 | 251.000 | 252.000 | 251.000 | 249.000 | 255.000 | 251.000 |              | $MRL_0$           | 252.000 | 254.000 | 248.000 | 253.000 | 253.000 | 254.000 | 246.000 | 248.000 |
|              | SDRL <sub>0</sub> | 365.805 | 373.471 | 378.276 | 378.575 | 380.180 | 386.924 | 381.078 | 380.577 |              | $SDRL_0$          | 380.427 | 378.320 | 383.260 | 388.381 | 381.714 | 386.921 | 387.769 | 390.595 |
|              | $L_1$             | 2.397   | 2.323   | 2.283   | 2.283   | 2.238   | 2.231   | 2.207   | 2.201   |              | $L_1$             | 2.261   | 2.244   | 2.234   | 2.213   | 2.209   | 2.199   | 2.191   | 2.185   |
|              | $UCL_1$           | 0.158   | 0.216   | 0.273   | 0.329   | 0.382   | 0.435   | 0.487   | 0.538   |              | $UCL_1$           | 0.124   | 0.179   | 0.232   | 0.284   | 0.336   | 0.388   | 0.438   | 0.489   |
|              | ARL <sub>0</sub>  | 3/1.321 | 370.706 | 370.574 | 3/0.321 | 370.476 | 370.325 | 369.423 | 369.420 |              | $ARL_0$           | 371.387 | 369.791 | 369.980 | 369.997 | 369.858 | 370.371 | 369.666 | 371.246 |
|              | $MRL_0$           | 242.000 | 247.000 | 244.000 | 246.000 | 254.000 | 246.000 | 250.000 | 249.000 |              | $MRL_0$           | 251.000 | 242.000 | 244.000 | 250.000 | 248.000 | 247.000 | 245.000 | 258.000 |
| 4            | SDRL <sub>0</sub> | 407.499 | 395.937 | 401.268 | 404.545 | 384.346 | 397.136 | 390.870 | 395.529 | 20           | SDRL <sub>0</sub> | 391.442 | 400.053 | 394.166 | 386.493 | 394.756 | 394.480 | 399.119 | 384.545 |
| -            |                   | 1.953   | 2.020   | 2.054   | 2.083   | 2.098   | 2.108   | 2.146   | 2.155   |              | $L_2$             | 2.078   | 2.106   | 2.123   | 2.132   | 2.143   | 2.154   | 2.160   | 2.171   |
|              | $LCL_2$           | 0.053   | 0.092   | 0.134   | 0.178   | 0.223   | 0.270   | 0.316   | 0.364   |              | $LCL_2$           | 0.078   | 0.123   | 0.170   | 0.217   | 0.265   | 0.313   | 0.362   | 0.411   |
|              | AKL <sub>0</sub>  | 370.922 | 371.149 | 370.306 | 370.275 | 369.723 | 3/1.398 | 3/1.107 | 370.641 |              | $AKL_0$           | 369.451 | 371.155 | 369.614 | 371.117 | 369.757 | 370.893 | 370.751 | 371.368 |
|              | $MRL_0$           | 259.000 | 250.000 | 248.500 | 255.000 | 249.000 | 250.000 | 251.000 | 248.000 |              | $MRL_0$           | 253.000 | 250.000 | 253.000 | 247.000 | 248.000 | 252.000 | 250.500 | 247.000 |
|              | $SDRL_0$          | 371.410 | 379.139 | 380.352 | 373.165 | 382.879 | 383.836 | 392.866 | 380.232 |              | $SDRL_0$          | 385.076 | 382.976 | 385.942 | 388.587 | 395.258 | 393.000 | 389.536 | 392.700 |

**Table 1.** The  $L_1$  and  $L_2$  of the two one-sided EWMA variance charts with  $ARL_0 \approx 370.4$  and  $\lambda = 0.05$  for various 0.5*n*.

2.2. The EWMA Variance Chart with Measurement Error

In applications, instead of observing  $X_{t,j}$ , we usually collect the surrogate version of  $X_{t,j}$ , denoted as  $X_{t,i}^*$ . To characterize  $X_{t,j}$  and  $X_{t,j}^*$ , we adopt the classical measurement error model

$$X_{t,j}^* = X_{t,j} + \varepsilon_{t,j},\tag{8}$$

where  $\varepsilon_{t,j}$  is a random sample with  $E(\varepsilon_{t,j}) = 0$  and  $Var(\varepsilon_{t,j}) = \delta_2^2 \sigma^2$  for some positive constant  $\delta_2$ . We assume that  $\varepsilon_{t,j}$  is independent of  $X_{t,j}$ . By (8), it is straightforward that the variance of  $X_{t,j}^*$  is equal to  $\sigma^2 + \delta_2^2 \sigma^2$ .

To construct the variance control chart with measurement error, we can use the same method in Section 2.1, and define

$$Y_{t,j'}^* = \frac{\left(X_{t,\,2j'}^* - X_{t,2j'-1}^*\right)^2}{2},$$

and

$$I_{t,j'}^* = \begin{cases} 1, & \text{if } Y_{t,j'}^* > \sigma^2 + \delta_2^2 \sigma^2 \\ 0, & \text{otherwise} \end{cases}$$

for fixed *t* and  $j' = 1, 2, \dots, 0.5n$ .

Similarly, let  $Y_0^*$  denote the observed in-control random variable, then we obtain  $E(Y_0^*) = \sigma^2 + \delta_2^2 \sigma^2$ .

We denote  $V_t^*$  as the sum of  $I_{t,j'}^*$  at the  $t^{th}$  sampling period, i.e.,

$$V_t^* = \sum_{j'=1}^{0.5n} I_{t,j'}^* \sim Bin(0.5n, p_0^*) \text{ for } t = 1, \cdots, \infty,$$
(9)

where  $p_0^* \triangleq P(Y_0^* > \sigma^2 + \delta_2^2 \sigma^2)$  is an error-prone probability based on the in-control process.

To find the relationship between  $p_0$  and  $p_0^*$ , we need to analyze the possible relative situations for  $(Y_0 > \sigma^2, Y_0 < \sigma^2)$  and  $(Y_0^* > \sigma^2 + \delta_2^2 \sigma^2, Y_0^* < \sigma^2 + \delta_2^2 \sigma^2)$ . There are four situations, (1) given  $Y_0 > \sigma^2$ , and  $Y_0^* > \sigma^2 + \delta_2^2 \sigma^2$ , (2) given  $Y_0 < \sigma^2$ , and  $Y_0^* < \sigma^2 + \delta_2^2 \sigma^2$ , (3) given  $Y_0 > \sigma^2$ , and  $Y_0^* < \sigma^2 + \delta_2^2 \sigma^2$ , and (4) given  $Y_0 < \sigma^2$ , and  $Y_0^* > \sigma^2 + \delta_2^2 \sigma^2$ . For (1) and (2) situations, we can define their proportions as

$$\pi_{1} = P(Y_{0}^{*} > \sigma^{2} + \delta_{2}^{2}\sigma^{2}|Y_{0} > \sigma^{2})$$
  
and  
$$\pi_{2} = P(Y_{0}^{*} < \sigma^{2} + \delta_{2}^{2}\sigma^{2}|Y_{0} < \sigma^{2}).$$
(10)

Hence,

$$1 - \pi_1 = P(Y_0^* < \sigma^2 + \delta_2^2 \sigma^2 | Y_0 > \sigma^2)$$
  
and  
$$1 - \pi_2 = P(Y_0^* > \sigma^2 + \delta_2^2 \sigma^2 | Y_0 < \sigma^2)$$

We may derive the relationship of  $p_0$  and  $p_0^*$  is

$$p_0^* = \pi_1 p_0 + (1 - \pi_2)(1 - p_0)$$
  
and  
$$1 - p_0^* = (1 - \pi_1)p_0 + \pi_2(1 - p_0).$$
 (11)

Denote the error-prone proportion statistic is

$$P_t^* = \frac{V_t^*}{0.5n}$$
 for  $t = 1, \dots, \infty$ . (12)

The EWMA statistic with measurement error based on the statistic  $P_t^*$  is given by

$$EWMA_{P_t^*} = \lambda P_t^* + (1 - \lambda) EWMA_{P_t^*}$$
(13)

for  $t = 1, 2, \dots, \infty$ , where  $\lambda$  is a smoothing parameter,  $\lambda \in (0, 1]$ .

The starting EWMA charting statistic for t = 0,  $EWMA_{P_0^*}$ , is given by  $E(EWMA_{P_t^*}) = p_0^*$ . Therefore, the mean and the variance of  $EWMA_{P_t^*}$  are

$$E\left(EWMA_{P_t^*}\right) = p_0^* \text{and} Var\left(EWMA_{P_t^*}\right) = \frac{p_0^*(1-p_0^*)\lambda\left[1-(1-\lambda)^{2t}\right]}{n(2-\lambda)}.$$

Consequently, we can construct the two one-sided EWMA variance charts with measurement error as follows.

$$UCL_{3}^{*} = p_{0}^{*} + L_{3} \sqrt{\frac{p_{0}^{*}(1-p_{0}^{*})\lambda[1-(1-\lambda)^{2t}]}{n(2-\lambda)}},$$

$$UCL_{3}^{*} = -\infty,$$
(14)

and

$$UCL_{4}^{*} = \infty,$$

$$LCL_{4}^{*} = p_{0}^{*} - L_{4}\sqrt{\frac{p_{0}^{*}(1-p_{0}^{*})\lambda[1-(1-\lambda)^{2t}]}{n(2-\lambda)}},$$
(15)

where  $L_3$  and  $L_4$  are determined to satisfy the preset  $ARL_0$ .  $L_3$  and  $L_4$  can be determined by the similar steps in the algorithm in Appendix A. Compared with (6) and (14) or (7) and (15), the key difference is the involvement of the error-prone proportion  $p_0^*$ . Since  $p_0^*$ is different from  $p_0$  due to measurement error (8), it is expected to see that two one-sided control limits (14) and (15) can be contaminated by measurement error, yielding unreliable detection. The calculated  $ARL_0$ ,  $MRL_0$ , and  $SDRL_0$  of the EWMA variance chart with measurement errors are denoted as  $ARL_0^*$ ,  $MRL_0^*$ , and  $SDRL_0^*$ .

To see the impact of measurement error on  $UCL_3^*$  or  $LCL_4^*$ , we find values of  $L_3$  and  $L_4$  under the prespecified  $ARL_0 \approx 370.4$ ,  $\lambda = 0.05$ ,  $p_0 = 0.1(0.05)0.45$ , and 0.5n = 1, 2, 3, 4, 5, 10, 15, 20. Here, we assume that, from historical experience,  $\pi_1 = \pi_2 = 0.95$ . From (11), given  $p_0, p_0^*$  are calculated and  $p_0^* = 0.140, 0.185, 0.230, 0.275, 0.320, 0.365, 0.41, 0.455$ . Similar to the findings in Section 2.1, there are some values of  $L_4$  that do not exist (see Table 2). From Table 2, we find that the widths of the two control charts become narrower when  $p_0^*$  or the sample size *n* increases. Compare the widths of the control limits of the EWMA variance chart with and without measurement error, say ( $UCL_1, LCL_2$ ) with ( $UCL_3^*, LCL_4^*$ ), we find that the width of the control limits with measurement error ( $UCL_3^*$  and  $LCL_4^*$ ) is larger. It indicates the out-of-control detection ability of the EWMA variance chart with measurement error would be worse than that of the true EWMA variance chart.

| 0.5n | $p_0$                                                                                               | 0.1                                             | 0.15                                            | 0.2                                             | 0.25                                            | 0.3                                             | 0.35                                            | 0.4                                             | 0.45                                            | 0.5n | $p_0$                                                                                                                                                 | 0.1                                             | 0.15                                            | 0.2                                             | 0.25                                            | 0.3                                             | 0.35                                            | 0.4                                             | 0.45                                            |
|------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
|      | $p_0^*$                                                                                             | 0.14                                            | 0.185                                           | 0.23                                            | 0.275                                           | 0.32                                            | 0.365                                           | 0.41                                            | 0.455                                           |      | $p_0^*$                                                                                                                                               | 0.14                                            | 0.185                                           | 0.23                                            | 0.275                                           | 0.32                                            | 0.365                                           | 0.41                                            | 0.455                                           |
| 1    | L <sub>3</sub><br>UCL <sub>3</sub><br>ARL <sub>0</sub><br>MRL <sub>0</sub><br>SDRL <sub>0</sub>     | 2.491<br>0.278<br>370.802<br>247.000<br>396.316 | 2.432<br>0.336<br>369.803<br>249.000<br>393.807 | 2.394<br>0.391<br>370.455<br>242.000<br>400.055 | 2.333<br>0.442<br>370.887<br>252.000<br>389.693 | 2.302<br>0.492<br>370.380<br>251.000<br>382.636 | 2.273<br>0.540<br>370.442<br>252.000<br>390.279 | 2.237<br>0.586<br>371.052<br>256.000<br>385.377 | 2.204<br>0.631<br>369.831<br>253.000<br>379.721 | 5    | L <sub>3</sub><br>UCL <sub>3</sub><br>ARL <sub>0</sub><br>MRL <sub>0</sub><br>SDRL <sub>0</sub>                                                       | 2.307<br>0.197<br>369.915<br>247.000<br>390.467 | 2.300<br>0.249<br>369.956<br>238.000<br>402.049 | 2.259<br>0.298<br>369.653<br>255.000<br>386.321 | 2.252<br>0.347<br>370.981<br>248.000<br>400.442 | 2.232<br>0.395<br>370.374<br>249.500<br>394.180 | 2.212<br>0.441<br>369.885<br>253.000<br>387.687 | 2.203<br>0.488<br>370.169<br>253.000<br>380.805 | 2.196<br>0.533<br>371.130<br>248.000<br>393.004 |
|      | $L_4 \\ LCL_4^* \\ A\hat{R}L_0^* \\ M\hat{R}L_0^* \\ SD\hat{R}L_0^* \\ $                            | -<br>-<br>-<br>-                                | -<br>-<br>-                                     | -<br>-<br>-                                     | 1.981<br>0.133<br>369.655<br>252.000<br>374.445 | 2.030<br>0.168<br>371.288<br>253.500<br>379.185 | 2.067<br>0.206<br>371.229<br>258.000<br>369.119 | 2.109<br>0.244<br>370.521<br>255.000<br>374.733 | 2.141<br>0.284<br>369.669<br>253.000<br>377.145 |      | L <sub>4</sub><br>LCL <sup>*</sup> <sub>4</sub><br>ÂRL <sup>*</sup> <sub>0</sub><br>M̂RL <sup>*</sup> <sub>0</sub><br>SD̂RL <sup>*</sup> <sub>0</sub> | 2.026<br>0.090<br>370.871<br>253.000<br>376.860 | 2.061<br>0.128<br>371.144<br>257.000<br>374.430 | 2.086<br>0.167<br>370.446<br>251.000<br>384.758 | 2.092<br>0.208<br>371.216<br>246.500<br>394.268 | 2.123<br>0.249<br>370.873<br>247.000<br>392.898 | 2.135<br>0.291<br>370.741<br>251.000<br>389.435 | 2.148<br>0.334<br>370.893<br>252.500<br>384.292 | 2.157<br>0.378<br>371.057<br>244.000<br>396.941 |
| 2    | L <sub>3</sub><br>UCL <sub>3</sub><br>ARL <sub>0</sub><br>MRL <sub>0</sub><br>SDRL <sub>0</sub>     | 2.407<br>0.235<br>370.529<br>247.000<br>394.420 | 2.360<br>0.289<br>369.800<br>251.000<br>397.566 | 2.339<br>0.341<br>370.701<br>241.000<br>409.576 | 2.296<br>0.391<br>369.584<br>244.000<br>404.872 | 2.243<br>0.438<br>370.267<br>248.000<br>386.432 | 2.221<br>0.486<br>371.126<br>247.000<br>393.633 | 2.198<br>0.532<br>370.981<br>246.000<br>395.366 | 2.192<br>0.579<br>371.179<br>252.000<br>385.613 | 10   | L <sub>3</sub><br>UCL <sub>3</sub><br>ARL <sub>0</sub><br>MRL <sub>0</sub><br>SDRL <sub>0</sub>                                                       | 2.281<br>0.180<br>369.598<br>243.000<br>402.437 | 2.264<br>0.230<br>371.205<br>247.000<br>394.855 | 2.239<br>0.278<br>369.898<br>246.000<br>395.043 | 2.236<br>0.326<br>370.620<br>249.000<br>400.215 | 2.215<br>0.372<br>370.152<br>247.000<br>396.627 | 2.202<br>0.419<br>370.686<br>252.000<br>389.155 | 2.195<br>0.465<br>371.031<br>246.000<br>396.764 | 2.189<br>0.510<br>370.697<br>250.000<br>393.875 |
|      | $ \begin{array}{c} L_4 \\ LCL_4^* \\ A\hat{R}L_0^* \\ M\hat{R}L_0^* \\ SD\hat{R}L_0^* \end{array} $ | -<br>-<br>-<br>-                                | 1.977<br>0.098<br>370.171<br>257.000<br>373.830 | 2.023<br>0.134<br>371.315<br>252.000<br>377.031 | 2.063<br>0.171<br>371.041<br>259.000<br>370.843 | 2.088<br>0.210<br>369.703<br>256.000<br>374.409 | 2.114<br>0.250<br>369.635<br>251.000<br>380.628 | 2.137<br>0.291<br>370.214<br>252.000<br>376.959 | 2.158<br>0.333<br>370.588<br>250.000<br>387.839 |      | $ \begin{array}{c} L_4 \\ LCL_4^* \\ A\hat{R}L_0^* \\ M\hat{R}L_0^* \\ S\hat{DR}L_0^* \end{array} $                                                   | 2.061<br>0.104<br>370.503<br>250.000<br>374.628 | 2.098<br>0.144<br>369.659<br>252.000<br>382.189 | 2.110<br>0.185<br>371.018<br>256.000<br>380.017 | 2.127<br>0.227<br>370.553<br>249.000<br>388.631 | 2.145<br>0.269<br>371.151<br>247.000<br>398.728 | 2.148<br>0.313<br>370.695<br>251.000<br>387.840 | 2.156<br>0.356<br>369.468<br>246.000<br>393.845 | 2.170<br>0.400<br>369.858<br>245.000<br>395.435 |
| 3    | L <sub>3</sub><br>UCL <sub>3</sub><br>ARL <sub>0</sub><br>MRL <sub>0</sub><br>SDRL <sub>0</sub>     | 2.384<br>0.216<br>370.679<br>242.000<br>410.674 | 2.312<br>0.268<br>369.730<br>250.000<br>384.391 | 2.274<br>0.318<br>370.148<br>244.000<br>398.588 | 2.256<br>0.368<br>371.339<br>250.000<br>390.102 | 2.252<br>0.417<br>369.787<br>238.000<br>403.263 | 2.247<br>0.465<br>370.887<br>244.000<br>399.591 | 2.206<br>0.510<br>370.664<br>248.000<br>393.939 | 2.187<br>0.556<br>370.063<br>249.000<br>380.186 | 15   | L <sub>3</sub><br>UCL <sub>3</sub><br>ARL <sub>0</sub><br>MRL <sub>0</sub><br>SDRL <sub>0</sub>                                                       | 2.254<br>0.172<br>370.050<br>250.000<br>387.818 | 2.243<br>0.221<br>370.031<br>252.000<br>386.994 | 2.221<br>0.269<br>371.010<br>249.000<br>393.219 | 2.224<br>0.316<br>370.186<br>247.000<br>395.215 | 2.216<br>0.363<br>369.899<br>249.000<br>392.916 | 2.200<br>0.409<br>369.702<br>251.000<br>389.165 | 2.189<br>0.455<br>369.413<br>254.000<br>385.537 | 2.186<br>0.500<br>370.462<br>245.500<br>400.136 |
|      | L <sub>4</sub><br>LCL <sub>4</sub><br>ARL <sub>0</sub><br>MRL <sub>0</sub><br>SDRL <sub>0</sub>     | 1.974<br>0.077<br>370.497<br>251.000<br>379.630 | 2.026<br>0.112<br>370.783<br>253.000<br>373.100 | 2.058<br>0.150<br>371.038<br>255.000<br>377.646 | 2.089<br>0.189<br>369.720<br>249.000<br>383.434 | 2.106<br>0.229<br>371.089<br>253.000<br>378.893 | 2.124<br>0.270<br>370.909<br>252.000<br>387.068 | 2.126<br>0.313<br>371.201<br>251.000<br>389.182 | 2.149<br>0.356<br>371.095<br>249.000<br>385.862 |      | $L_4 \\ LCL_4^* \\ A\hat{R}L_0^* \\ M\hat{R}L_0^* \\ S\hat{DR}L_0^* \\ S\hat{DR}L_0^*$                                                                | 2.092<br>0.110<br>370.113<br>253.500<br>382.921 | 2.110<br>0.151<br>371.373<br>250.000<br>386.978 | 2.122<br>0.193<br>369.544<br>247.000<br>390.430 | 2.133<br>0.236<br>369.748<br>251.000<br>388.225 | 2.151<br>0.279<br>371.290<br>251.000<br>388.648 | 2.153<br>0.322<br>370.283<br>253.000<br>384.561 | 2.165<br>0.366<br>370.542<br>246.000<br>391.979 | 2.169<br>0.410<br>370.016<br>250.000<br>388.679 |
| 4    | L <sub>3</sub><br>UCL <sub>3</sub><br>ARL <sub>0</sub><br>MRL <sub>0</sub><br>SDRL <sub>0</sub> *   | 2.333<br>0.205<br>369.840<br>250.000<br>389.850 | 2.288<br>0.256<br>369.469<br>241.000<br>402.562 | 2.286<br>0.307<br>371.300<br>245.000<br>402.794 | 2.257<br>0.356<br>369.582<br>245.500<br>388.964 | 2.241<br>0.404<br>370.869<br>253.000<br>379.662 | 2.228<br>0.451<br>370.429<br>247.000<br>396.789 | 2.194<br>0.496<br>371.232<br>247.000<br>401.228 | 2.189<br>0.542<br>371.146<br>250.500<br>383.538 | 20   | $L_{3} \\ UCL_{3}^{*} \\ A\hat{R}L_{0}^{*} \\ M\hat{R}L_{0}^{*} \\ SD\hat{R}L_{0}^{*}$                                                                | 2.249<br>0.168<br>370.625<br>248.000<br>393.430 | 2.237<br>0.216<br>370.400<br>249.000<br>390.740 | 2.224<br>0.264<br>369.594<br>246.000<br>393.528 | 2.213<br>0.310<br>370.624<br>254.000<br>386.900 | 2.205<br>0.357<br>370.552<br>247.000<br>394.144 | 2.191<br>0.403<br>369.730<br>248.500<br>391.991 | 2.188<br>0.448<br>369.765<br>245.000<br>393.345 | 2.187<br>0.494<br>371.371<br>252.500<br>390.015 |
|      | $L_4 \\ LCL_4^* \\ A\hat{R}L_0^* \\ M\hat{R}L_0^* \\ SD\hat{R}L_0^*$                                | 2.005<br>0.084<br>370.030<br>254.000<br>376.628 | 2.047<br>0.121<br>371.203<br>254.000<br>383.430 | 2.075<br>0.160<br>370.534<br>252.000<br>384.793 | 2.092<br>0.200<br>369.814<br>250.000<br>387.164 | 2.097<br>0.242<br>370.413<br>253.000<br>382.458 | 2.129<br>0.283<br>370.822<br>256.000<br>386.103 | 2.149<br>0.325<br>370.202<br>250.000<br>388.277 | 2.160<br>0.369<br>369.665<br>251.000<br>383.637 |      | $L_4 \\ LCL_4^* \\ A\hat{R}L_0^* \\ M\hat{R}L_0^* \\ SD\hat{R}L_0^*$                                                                                  | 2.099<br>0.114<br>369.858<br>248.000<br>383.411 | 2.125<br>0.155<br>370.184<br>252.000<br>391.298 | 2.120<br>0.198<br>369.891<br>246.000<br>390.441 | 2.144<br>0.241<br>371.118<br>250.000<br>388.031 | 2.147<br>0.284<br>370.419<br>253.000<br>389.177 | 2.157<br>0.328<br>371.095<br>252.000<br>391.143 | 2.167<br>0.372<br>370.893<br>254.000<br>391.470 | 2.173<br>0.416<br>369.904<br>253.000<br>389.982 |

**Table 2.** The  $L_3$  and  $L_4$  of the two one-sided EWMA variance charts with measurement error for  $ARL_0 \approx 370.4$ ,  $\lambda = 0.05$ ,  $\pi_1 = \pi_2 = 0.95$ , and various 0.5*n*.

## 2.3. Design of the Error-Corrected EWMA Variance Chart

In Section 2.2, we find that the proposed EWMA variance chart with measurement error may induce worse out-of-control detection performance. To remedy this, we aim to propose a method to correct for measurement error effects.

From (11), we know the relationship of  $p_0$  and  $p_0^*$ , but we have no information on the true value of  $p_0$ . Hence, we let  $p_0^{**}$  be the estimator of  $p_0$ . Because we know the relationship of  $p_0$  and  $p_0^{**}$  are derive the relationship of  $p_0^*$  and  $p_0^{**}$  as

$$p_0^* = \pi_1 p_0^{**} + (1 - \pi_2)(1 - p_0^{**}).$$

Consequently, the error-corrected estimate  $p_0^{**}$  is

$$p_0^{**} \triangleq \frac{p_0^* + \pi_2 - 1}{\pi_1 + \pi_2 - 1}.$$
(16)

The error-corrected statistic  $P_t^{**}$  used to estimate the true statistic  $P_t$  using  $P_t^*$  is expressed as

$$P_t^{**} = \frac{P_t^* + \pi_2 - 1}{\pi_1 + \pi_2 - 1}.$$
(17)

Hence, the mean and variance of  $P_t^{**}$  are, respectively, given by

$$E(P_t^{**}) = \frac{p_0^* + \pi_2 - 1}{\pi_1 + \pi_2 - 1}$$

and

$$Var(P_t^{**}) = \frac{p_0^*(1-p_0^*)}{n(\pi_1 + \pi_2 - 1)^2}$$

The charting statistic of the error-corrected EWMA variance chart is

$$EWMA_{P_{t}^{**}} = \lambda P_{t}^{**} + (1 - \lambda) EWMA_{P_{t}^{**}}$$
(18)

for time  $t = 1, 2, \dots$ , where  $\lambda$  is a smoothing parameter,  $\lambda \in (0, 1]$ .

The starting value of  $EWMA_{P_t^{**}}$ , t = 0, is given by  $EWMA_{P_0^{**}} = E(EWMA_{P_t^{**}}) = p_0^{**}$ . The mean and the variance of  $EWMA_{P_t^{**}}$  are, respectively, given by

$$E(EWMA_{P_t^{**}}) = \frac{p_0^* + \pi_2 - 1}{\pi_1 + \pi_2 - 1}$$

and

$$Var(EWMA_{P_t^{**}}) = \frac{p_0^*(1-p_0^*)\lambda[1-(1-\lambda)^{2t}]}{n(2-\lambda)(\pi_1+\pi_2-1)^2}$$

Based on the mean and variance of  $EWMA_{P_t^{**}}$ , the control limits of the two one-sided error-corrected EWMA variance charts are expressed as follows.

$$UCL_{5}^{**} = p_{0}^{**} + L_{5}\sqrt{\frac{p_{0}^{*}(1-p_{0}^{*})\lambda[1-(1-\lambda)^{2t}]}{n(2-\lambda)(\pi_{1}+\pi_{2}-1)^{2}}}$$
$$LCL_{5}^{**} = -\infty,$$

and

$$\begin{aligned} UCL_6^{**} &= \infty, \\ LCL_6^{**} &= p_0^{**} - L_6 \sqrt{\frac{p_0^* (1 - p_0^*) \lambda [1 - (1 - \lambda)^{2t}]}{n(2 - \lambda)(\pi_1 + \pi_2 - 1)^2}}, \end{aligned}$$

where  $L_5$  and  $L_6$  are determined to satisfy the preset  $ARL_0$ .

The calculated  $ARL_0$ ,  $MRL_0$ , and  $SDRL_0$  of the error-corrected EWMA variance chart are denoted as  $A\hat{R}L_0^{**}$ ,  $M\hat{R}L_0^{**}$ , and  $S\hat{D}\hat{R}L_0^{**}$ . To assess the performance of corrected control charts, we mainly examine the setting  $\pi_1 = \pi_2 = 0.95$ ,  $\lambda = 0.05$ ,  $p_0 = 0.1(0.05)0.45$ , and 0.5n = 1, 2, 3, 4, 5, 10, 15, 20 with the prespecified  $ARL_0 \approx 370.4$ . Numerical results, including  $UCL_5^{**}$ ,  $LCL_6^{**}$ ,  $L_5$ ,  $L_6$ ,  $A\hat{R}L_0^{**}$ ,  $M\hat{R}L_0^{**}$ , and  $SD\hat{R}L_0^{**}$ , are summarized in Table 3.

Table 3 shows that  $p_0 = p_0^{**}$ , the values of  $L_6$  do not exist when 0.5n = 1, 2, and the widths of the two control charts become narrower when  $p_0^{**}$  or the sample size n increases. Compared with Tables 1–3, we find that the values of the error-corrected control limits ( $UCL_5^{**}$  and  $LCL_6^{**}$ ) in Table 3 are much closer to the reality control limits ( $UCL_1$  and  $LCL_2$ ) in Table 1 than the control limits with measurement error ( $UCL_3^{**}$  and  $LCL_4^{**}$ ). It is evidence that the control limits of the error-corrected EWMA variance charts are reliable for monitoring process dispersion when measurement error exists in the process.

## 3. Performance of the Error-Corrected EWMA Variance Chart

To assess the out-of-control detection performance of the proposed error-corrected charts, we conduct ARL for the out-of-control dispersion, denoted  $ARL_1$ . Detailed steps for  $ARL_1$  computation are shown in Algorithm 2. In principle, the smaller value of  $ARL_1$  means the better detection ability for a control chart.

We follow the setting in Section 2 to generate out-of-control samples. After that, we apply the control limits obtained in Section 2 to evaluate  $ARL_1$ . The calculated  $ARL_1$  of the EWMA variance chart without measurement error, with measurement error, and error-corrected EWMA variance chart are denoted as  $ARL_1$ ,  $ARL_1^*$ , and  $ARL_1^{**}$ . Hence, we use  $L_1$  and  $L_2$  to calculate  $ARL_1$ , use  $L_3$  and  $L_4$  to calculate  $ARL_1^*$ , and use  $L_5$  and  $L_6$  to calculate  $ARL_1^{**}$ .

When the process is out-of-control, the process variance of true value  $X_0$  shifts from  $\sigma^2$  to  $\delta_1^2 \sigma^2$ . Denote  $Y_1$  as the out-of-control random variable, then  $E(Y_1) = \delta_1^2 \sigma^2$ . The process variance of the observed value  $X_0^*$  shifts from  $\sigma^2 + \delta_2^2 \sigma^2$  to  $\delta_1^2 \sigma^2 + \delta_2^2 \sigma^2$  and denote  $Y_1^*$  as the out-of-control random variable, then  $E(Y_1^*) = \delta_1^2 \sigma^2 + \delta_2^2 \sigma^2$ . Denote the out-of-control proportions for the process without and with measurement error as  $p_1 \triangleq P(Y_1 > \sigma^2 + \delta_2^2 \sigma^2)$ , respectively. Same as Section 2, the relationship of  $p_1$  and  $p_1^*$  can be rewritten as follows.

$$p_1^* = \pi_1 p_1 + (1 - \pi_2)(1 - p_1).$$
<sup>(19)</sup>

Here, we assume that the values of  $\pi_1$  and  $\pi_2$  are the same as in Section 2. Let  $p_1^{**}$  to be the estimator of  $p_1$ . Similarly, we know the relationship of  $p_1^*$  and  $p_1^{**}$  is

$$p_1^* = \pi_1 p_1^{**} + (1 - \pi_2)(1 - p_1^{**}).$$
<sup>(20)</sup>

Consequently, the error-corrected estimate  $p_1^{**}$  is  $p_1^{**} = \frac{p_1^* + \pi_2 - 1}{\pi_1 + \pi_2 - 1}$ .

To see the impact of measurement error on  $ARL_1$ , we prespecify  $ARL_0 \approx 370.4$ ,  $\lambda = 0.05$ ,  $\pi_1 = \pi_2 = 0.95$ ,  $p_0 = 0.2$ , 0.3, 0.4,  $p_1 = 0.1(0.1)0.9$ , and 0.5n = 1, 2, 3, 4, 5, 10, 15, 20. From (19) and (20), given  $p_1$ ,  $p_1^*$  are calculated and  $p_1^* = 0.14$ , 0.23, 0.32, 0.41, 0.5, 0.59, 0.68, 0.77, 0.86, and given  $p_1^*$ ,  $p_1^{**}$  are calculated and  $p_1^{**} = 0.1(0.1)0.9$ . We further find that  $p_1 = p_1^{**}$ .

Tables 4–6 illustrate the resulting  $ARL_1$ s of the three charts. When  $p_1$  (or  $p_1^*$  or  $p_1^{**}$ ) is far away from  $p_0$  (or  $p_0^*$  or  $p_0^{**}$ ), the  $A\hat{R}L_1$  (or  $A\hat{R}L_1^*$  or  $A\hat{R}L_1^{**}$ ) decreases. We compare the out-of-control detection performance of the proposed error-corrected EWMA variance chart and the EWMA variance chart with and without measurement error. We find that  $A\hat{R}L_1^{**}$ is very closer to  $A\hat{R}L_1$  and is smaller than  $A\hat{R}L_1^*$ , which indicates that the error-corrected EWMA variance chart can detect the out-of-control process correctly, and almost has the same detection ability as that of the EWMA variance chart without measurement error. The EWMA variance chart with measurement error detects the out-of-control variance inefficiently. That is, the larger measurement error leads to a worse out-of-control detection ability. It is evidence to show the impact of measurement error on detecting the out-ofcontrol variance.

|      | $p_0$                                                                                                                                                   | 0.1                                                                       | 0.15                                                              | 0.2                                                               | 0.25                                                              | 0.3                                                               | 0.35                                                              | 0.4                                                               | 0.45                                                              |      | $p_0$                                                                                                                                  | 0.1                                                                            | 0.15                                                              | 0.2                                                               | 0.25                                                              | 0.3                                                               | 0.35                                                              | 0.4                                                               | 0.45                                                                                                  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 0.5n | $p_0^*$                                                                                                                                                 | 0.14                                                                      | 0.185                                                             | 0.23                                                              | 0.275                                                             | 0.32                                                              | 0.365                                                             | 0.41                                                              | 0.455                                                             | 0.5n | $p_0^*$                                                                                                                                | 0.14                                                                           | 0.185                                                             | 0.23                                                              | 0.275                                                             | 0.32                                                              | 0.365                                                             | 0.41                                                              | 0.455                                                                                                 |
|      | $p_{0}^{**}$                                                                                                                                            | 0.1                                                                       | 0.15                                                              | 0.2                                                               | 0.25                                                              | 0.3                                                               | 0.35                                                              | 0.4                                                               | 0.45                                                              |      | $p_{0}^{**}$                                                                                                                           | 0.1                                                                            | 0.15                                                              | 0.2                                                               | 0.25                                                              | 0.3                                                               | 0.35                                                              | 0.4                                                               | 0.45                                                                                                  |
| 1    | L <sub>5</sub><br>UCL <sub>5</sub> **<br>ARL <sub>0</sub><br>MRL <sub>0</sub> **<br>SDRL <sub>0</sub> **                                                | 2.036<br>0.226<br>370.770<br>239.000<br>416.265                           | 2.057<br>0.292<br>370.683<br>245.000<br>397.770                   | 2.062<br>0.354<br>371.201<br>246.500<br>394.942                   | 2.076<br>0.415<br>369.870<br>243.000<br>404.319                   | 2.048<br>0.470<br>370.799<br>254.000<br>386.555                   | 2.032<br>0.524<br>369.690<br>252.000<br>382.843                   | 2.009<br>0.576<br>371.359<br>255.000<br>381.767                   | 1.986<br>0.626<br>370.972<br>246.000<br>390.021                   | 5    | L <sub>5</sub><br>UCL <sub>5</sub> **<br>ARL <sub>0</sub><br>MRL <sub>0</sub> **<br>SDRL <sub>0</sub> **                               | 1.830<br>0.151<br>371.146<br>252.000<br>390.322                                | 1.898<br>0.209<br>370.054<br>249.000<br>393.370                   | 1.953<br>0.265<br>371.091<br>252.000<br>391.522                   | 1.972<br>0.320<br>370.070<br>247.000<br>395.568                   | 1.982<br>0.374<br>370.337<br>254.000<br>385.764                   | 1.978<br>0.426<br>369.840<br>249.000<br>392.892                   | 1.974<br>0.477<br>371.005<br>251.000<br>386.398                   | 1.980<br>0.528<br>369.472<br>241.000<br>399.644                                                       |
|      | L <sub>6</sub><br>LCL <sub>6</sub> **<br>ARL <sub>0</sub> **<br>MRL <sub>0</sub> **<br>SDRL <sub>0</sub> **                                             | -<br>-<br>-<br>-                                                          | -<br>-<br>-<br>-                                                  | -<br>-<br>-<br>-                                                  | 1.702<br>0.115<br>369.917<br>251.000<br>376.610                   | 1.773<br>0.153<br>370.980<br>244.000<br>376.881                   | 1.835<br>0.193<br>370.897<br>246.000<br>375.256                   | 1.881<br>0.235<br>369.765<br>258.000<br>371.011                   | 1.925<br>0.279<br>370.653<br>254.000<br>376.873                   |      | L <sub>6</sub><br>LCL <sub>6</sub> **<br>ARL <sub>0</sub> **<br>MRL <sub>0</sub> **<br>SDRL <sub>0</sub> **                            | 1.543<br>0.057<br>371.182<br>243.000<br>376.943                                | 1.684<br>0.098<br>369.456<br>255.000<br>377.758                   | 1.768<br>0.141<br>369.496<br>240.000<br>382.803                   | 1.819<br>0.186<br>369.440<br>242.000<br>379.653                   | 1.857<br>0.231<br>370.906<br>251.000<br>372.559                   | 1.901<br>0.277<br>370.649<br>245.500<br>375.615                   | 1.926<br>0.325<br>369.878<br>243.000<br>383.931                   | 1.943<br>0.373<br>370.064<br>260.000<br>372.138                                                       |
| 2    | $\begin{array}{c} L_5 \\ UCL_5^{**} \\ A\hat{R}L_0^{*} \\ M\hat{R}L_0^{**} \\ S\hat{DR}L_0^{**} \\ \hline \\ L_6 \\ LCL_6^{**} \end{array}$             | 1.923<br>0.184<br>370.195<br>246.000<br>396.609                           | 1.981<br>0.247<br>370.640<br>252.000<br>393.710<br>1.597<br>0.072 | 2.014<br>0.307<br>370.492<br>248.500<br>400.906<br>1.706<br>0.110 | 2.033<br>0.364<br>370.156<br>241.000<br>411.828<br>1.779<br>0.150 | 1.995<br>0.417<br>370.959<br>253.000<br>383.304<br>1.836<br>0.192 | 1.986<br>0.470<br>369.700<br>250.000<br>387.863<br>1.869<br>0.237 | 1.963<br>0.521<br>370.735<br>251.000<br>387.221<br>1.910<br>0.282 | 1.979<br>0.574<br>370.452<br>248.000<br>387.546<br>1.932<br>0.328 | 10   | $\begin{array}{c} L_5\\ UCL_{5^*}^{**}\\ A\hat{R}L_0^{**}\\ M\hat{R}L_0^{**}\\ S\hat{DR}L_0^{**}\\ \hline L_6\\ LCL_6^{**}\end{array}$ | 1.791<br>0.135<br>370.693<br>253.000<br>385.966<br>1.589<br>0.069              | 1.876<br>0.191<br>369.773<br>251.000<br>388.521<br>1.712<br>0.113 | 1.930<br>0.246<br>370.496<br>243.500<br>396.175<br>1.800<br>0.157 | 1.943<br>0.299<br>371.399<br>247.000<br>396.374<br>1.839<br>0.204 | 1.964<br>0.352<br>371.164<br>253.000<br>389.315<br>1.881<br>0.251 | 1.968<br>0.403<br>370.424<br>247.000<br>398.319<br>1.909<br>0.298 | 1.974<br>0.455<br>370.563<br>248.000<br>395.113<br>1.933<br>0.347 | $ \begin{array}{r} 1.970\\ 0.505\\ 371.194\\ 244.000\\ 401.072\\ \hline 1.948\\ 0.395\\ \end{array} $ |
|      | ARL <sub>0</sub> **<br>MRL <sub>0</sub> **<br>SDRL <sub>0</sub> **                                                                                      | -<br>-<br>-                                                               | 369.974<br>241.000<br>376.916                                     | 369.845<br>260.000<br>373.371                                     | 369.810<br>253.500<br>377.784                                     | 370.751<br>244.000<br>375.023                                     | 370.001<br>255.000<br>371.790                                     | 370.264<br>258.000<br>375.188                                     | 369.740<br>249.000<br>375.349                                     |      | ARL <sub>0</sub> **<br>MRL <sub>0</sub> **<br>SDRL <sub>0</sub> **                                                                     | 369.830<br>241.000<br>374.742                                                  | 369.761<br>253.000<br>371.335                                     | 371.347<br>256.000<br>371.302                                     | 370.448<br>251.000<br>373.453                                     | 371.368<br>249.000<br>373.179                                     | 370.626<br>250.000<br>379.957                                     | 370.933<br>252.000<br>379.488                                     | 370.719<br>249.000<br>383.361                                                                         |
| 3    | L <sub>5</sub><br>UCL <sub>5</sub> **<br>ARL <sub>0</sub><br>MRL <sub>0</sub> **<br>SDRL <sub>0</sub> **                                                | $\begin{array}{c} 1.872\\ 0.167\\ 369.966\\ 245.000\\ 394.683\end{array}$ | 1.970<br>0.229<br>369.694<br>239.500<br>409.185                   | 1.962<br>0.285<br>369.705<br>250.500<br>389.435                   | 1.967<br>0.340<br>369.553<br>252.000<br>387.567                   | 2.000<br>0.396<br>371.260<br>246.500<br>400.738                   | 2.005<br>0.449<br>369.851<br>242.000<br>405.672                   | 1.980<br>0.500<br>369.868<br>251.000<br>382.863                   | 1.968<br>0.551<br>371.235<br>253.000<br>383.664                   | 15   | L5<br>UCL5*<br>ARL0<br>MRL0<br>SDRL0                                                                                                   | $\begin{array}{c} 1.771 \\ 0.128 \\ 369.586 \\ 253.000 \\ 384.480 \end{array}$ | 1.868<br>0.183<br>371.052<br>248.000<br>392.424                   | 1.917<br>0.237<br>369.834<br>243.000<br>395.926                   | 1.945<br>0.290<br>369.490<br>245.000<br>399.772                   | 1.955<br>0.342<br>370.212<br>247.000<br>398.196                   | 1.958<br>0.393<br>370.171<br>249.000<br>390.475                   | 1.962<br>0.444<br>370.816<br>247.000<br>392.052                   | $1.968 \\ 0.495 \\ 369.704 \\ 246.000 \\ 392.359$                                                     |
|      | L <sub>6</sub><br>LCL <sub>6</sub> <sup>**</sup><br>ARL <sub>0</sub> <sup>**</sup><br>MRL <sub>0</sub> <sup>**</sup><br>SDRL <sub>0</sub> <sup>**</sup> | 1.481<br>0.047<br>370.514<br>240.000<br>379.844                           | 1.644<br>0.084<br>370.885<br>257.000<br>374.058                   | 1.744<br>0.125<br>370.204<br>249.000<br>377.115                   | 1.806<br>0.167<br>369.635<br>251.000<br>370.562                   | 1.853<br>0.211<br>370.776<br>254.000<br>381.193                   | 1.882<br>0.257<br>370.103<br>252.000<br>378.334                   | 1.912<br>0.304<br>370.658<br>245.000<br>372.995                   | 1.936<br>0.351<br>371.103<br>250.000<br>381.300                   |      | L <sub>6</sub><br>LCL <sub>6</sub> **<br>ARL <sub>0</sub><br>MRL <sub>0</sub> **<br>SDRL <sub>0</sub> **                               | 1.603<br>0.074<br>369.706<br>241.000<br>375.379                                | 1.737<br>0.119<br>369.446<br>254.000<br>373.600                   | 1.806<br>0.165<br>371.059<br>245.000<br>374.213                   | 1.859<br>0.212<br>369.896<br>244.000<br>377.326                   | 1.892<br>0.259<br>370.847<br>242.000<br>376.303                   | 1.918<br>0.308<br>369.979<br>255.000<br>371.170                   | 1.936<br>0.356<br>370.660<br>242.000<br>378.973                   | 1.950<br>0.405<br>369.638<br>244.000<br>379.919                                                       |

**Table 3.** The  $L_5$  and  $L_6$  of the two one-sided error-corrected EWMA variance charts with  $ARL_0 \approx 370.4$ ,  $\lambda = 0.05$ ,  $\pi_1 = \pi_2 = 0.95$ , and various 0.5*n*.

| Table | 3  | Cont |
|-------|----|------|
| Table | э. | Com. |

|      | $p_0$                 | 0.1     | 0.15    | 0.2     | 0.25    | 0.3     | 0.35               | 0.4     | 0.45    |      | $p_0$                 | 0.1     | 0.15    | 0.2     | 0.25    | 0.3     | 0.35    | 0.4     | 0.45    |
|------|-----------------------|---------|---------|---------|---------|---------|--------------------|---------|---------|------|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.5n | $p_0^*$               | 0.14    | 0.185   | 0.23    | 0.275   | 0.32    | 0.365              | 0.41    | 0.455   | 0.5n | $p_0^*$               | 0.14    | 0.185   | 0.23    | 0.275   | 0.32    | 0.365   | 0.41    | 0.455   |
|      | $p_{0}^{**}$          | 0.1     | 0.15    | 0.2     | 0.25    | 0.3     | 0.35               | 0.4     | 0.45    |      | $p_{0}^{**}$          | 0.1     | 0.15    | 0.2     | 0.25    | 0.3     | 0.35    | 0.4     | 0.45    |
|      | L5                    | 1.871   | 1.919   | 1.954   | 1.995   | 1.979   | 1.989              | 1.975   | 1.980   |      | L5                    | 1.760   | 1.860   | 1.912   | 1.934   | 1.956   | 1.960   | 1.967   | 1.967   |
|      | $UCL_{5}^{**}$        | 0.158   | 0.216   | 0.273   | 0.329   | 0.382   | 0.435              | 0.486   | 0.538   |      | $UCL_{5}^{**}$        | 0.124   | 0.179   | 0.232   | 0.284   | 0.336   | 0.388   | 0.438   | 0.489   |
|      | $AKL_0$               | 3/0.667 | 369.462 | 370.836 | 370.362 | 3/1.128 | 369.641<br>245.500 | 370.488 | 370.015 |      | $AKL_0$<br>$MDI^{**}$ | 370.938 | 370.013 | 251.000 | 3/0.117 | 3/0.702 | 370.188 | 369.775 | 370.498 |
|      | $MKL_0$               | 248.000 | 252.000 | 243.000 | 243.000 | 247.000 | 245.500            | 249.000 | 245.000 |      | $MKL_0$               | 251.500 | 250.000 | 251.000 | 248.000 | 249.000 | 252.000 | 247.500 | 252.000 |
| 4    | SDRL <sub>0</sub>     | 405.430 | 393.077 | 397.028 | 404.027 | 389.157 | 395.987            | 392.472 | 396.368 | 20   | SDRL <sub>0</sub>     | 390.757 | 389.009 | 391.911 | 391.459 | 397.959 | 389.407 | 395.704 | 388.175 |
|      | $L_6$                 | 1.520   | 1.672   | 1.757   | 1.818   | 1.855   | 1.885              | 1.924   | 1.938   |      | $L_6$                 | 1.617   | 1.743   | 1.816   | 1.861   | 1.895   | 1.921   | 1.936   | 1.952   |
|      | $LCL_{6}^{**}$        | 0.053   | 0.092   | 0.134   | 0.178   | 0.223   | 0.270              | 0.316   | 0.364   |      | $LCL_{6}^{**}$        | 0.078   | 0.123   | 0.170   | 0.217   | 0.265   | 0.313   | 0.362   | 0.411   |
|      | $A\hat{R}L_0^{**}$    | 370.920 | 369.486 | 371.219 | 371.277 | 370.547 | 370.518            | 370.474 | 370.682 |      | $A\hat{R}L_0^{**}$    | 370.281 | 371.365 | 369.645 | 371.218 | 370.567 | 371.139 | 369.561 | 370.783 |
|      | $\hat{MRL_0^{**}}$    | 255.000 | 243.000 | 245.000 | 252.000 | 244.000 | 260.000            | 246.000 | 239.000 |      | $\hat{MRL_0^{**}}$    | 251.000 | 253.000 | 249.000 | 242.000 | 258.000 | 245.000 | 244.000 | 250.000 |
|      | $S\hat{DRL}_{0}^{**}$ | 370.550 | 372.249 | 372.176 | 379.388 | 370.533 | 379.291            | 375.253 | 376.105 |      | $SDRL_0^{**}$         | 374.017 | 372.668 | 373.120 | 372.286 | 376.836 | 370.779 | 377.065 | 376.040 |

|              | $p_1$                 | 0.1    | 0.2     | 0.3    | 0.4    | 0.5    | 0.6   | 0.7   | 0.8   | 0.9   |
|--------------|-----------------------|--------|---------|--------|--------|--------|-------|-------|-------|-------|
| 0.5 <i>n</i> | $p_1^*$               | 0.14   | 0.23    | 0.32   | 0.41   | 0.5    | 0.59  | 0.68  | 0.77  | 0.86  |
|              | $p_{1}^{**}$          | 0.1    | 0.2     | 0.3    | 0.4    | 0.5    | 0.6   | 0.7   | 0.8   | 0.9   |
|              | $A\hat{R}L_1$         | -      | 370.404 | 48.113 | 18.703 | 10.363 | 6.915 | 5.120 | 4.051 | 3.400 |
| 1            | $A \hat{R} L_1^*$     | -      | 370.455 | 59.239 | 23.333 | 12.995 | 8.600 | 6.274 | 4.896 | 3.985 |
|              | $A\hat{R}L_1^{**}$    | -      | 371.201 | 48.160 | 18.565 | 10.362 | 6.900 | 5.114 | 4.044 | 3.401 |
|              | $A\hat{R}L_1$         | 27.153 | 370.145 | 28.772 | 10.382 | 5.618  | 3.599 | 2.543 | 1.858 | 1.394 |
| 2            | $A \hat{R} L_1^*$     | 34.662 | 370.701 | 35.115 | 12.707 | 6.821  | 4.328 | 3.017 | 2.213 | 1.669 |
|              | $A\hat{R}L_1^{**}$    | 27.015 | 370.492 | 28.817 | 10.338 | 5.588  | 3.595 | 2.546 | 1.869 | 1.402 |
|              | $A\hat{R}L_1$         | 17.492 | 370.268 | 21.545 | 7.706  | 4.192  | 2.757 | 2.043 | 1.607 | 1.285 |
| 3            | $A \widehat{R} L_1^*$ | 25.712 | 370.148 | 28.186 | 10.363 | 5.809  | 3.850 | 2.758 | 2.068 | 1.556 |
|              | $A\hat{R}L_1^{**}$    | 17.523 | 369.705 | 21.552 | 7.721  | 4.209  | 2.767 | 2.046 | 1.598 | 1.288 |
|              | $A\hat{R}L_1$         | 14.691 | 370.574 | 17.866 | 6.250  | 3.426  | 2.207 | 1.577 | 1.229 | 1.057 |
| 4            | $A \hat{R} L_1^*$     | 20.767 | 371.300 | 21.406 | 7.524  | 4.063  | 2.640 | 1.875 | 1.426 | 1.150 |
|              | $A\hat{R}L_1^{**}$    | 14.731 | 370.856 | 17.572 | 6.262  | 3.430  | 2.208 | 1.580 | 1.234 | 1.057 |
|              | $A\hat{R}L_1$         | 12.426 | 370.620 | 14.982 | 5.486  | 3.165  | 2.181 | 1.636 | 1.294 | 1.083 |
| 5            | $A \hat{R} L_1^*$     | 17.481 | 369.653 | 18.424 | 6.648  | 3.694  | 2.441 | 1.768 | 1.386 | 1.150 |
|              | $A\hat{R}L_1^{**}$    | 12.430 | 371.091 | 15.024 | 5.529  | 3.161  | 2.177 | 1.640 | 1.295 | 1.081 |
|              | $A\hat{R}L_1$         | 7.839  | 371.290 | 8.507  | 3.010  | 1.689  | 1.215 | 1.051 | 1.007 | 1.000 |
| 10           | $A\hat{R}L_{1}^{*}$   | 10.420 | 369.898 | 11.027 | 3.989  | 2.244  | 1.548 | 1.212 | 1.061 | 1.007 |
|              | $A\hat{R}L_1^{**}$    | 7.821  | 370.496 | 8.511  | 2.994  | 1.685  | 1.217 | 1.053 | 1.006 | 1.000 |
|              | $A\hat{R}L_1$         | 5.875  | 371.081 | 6.410  | 2.352  | 1.405  | 1.103 | 1.016 | 1.001 | 1.000 |
| 15           | $A \widehat{R} L_1^*$ | 7.654  | 371.010 | 8.084  | 3.018  | 1.771  | 1.276 | 1.073 | 1.010 | 1.000 |
|              | $A\hat{R}L_{1}^{**}$  | 5.896  | 369.834 | 6.365  | 2.331  | 1.402  | 1.103 | 1.015 | 1.001 | 1.000 |
|              | $A\hat{R}L_1$         | 4.616  | 369.980 | 4.942  | 1.793  | 1.160  | 1.021 | 1.001 | 1.000 | 1.000 |
| 20           | $A \widehat{R} L_1^*$ | 6.104  | 369.594 | 6.373  | 2.305  | 1.365  | 1.077 | 1.009 | 1.000 | 1.000 |
|              | $A \hat{R} L_1^{**}$  | 4.617  | 369.811 | 4.930  | 1.796  | 1.165  | 1.021 | 1.001 | 1.000 | 1.000 |

**Table 4.** The *ARL*<sub>1</sub> s of the three EWMA variance charts when  $p_0 = 0.2$ ,  $\lambda = 0.05$ ,  $\pi_1 = \pi_2 = 0.95$ , and *ARL*<sub>0</sub>  $\approx$  370.4.

**Table 5.** The *ARL*<sub>1</sub> s of the three EWMA variance charts when  $p_0 = 0.3$ ,  $\lambda = 0.05$ ,  $\pi_1 = \pi_2 = 0.95$ , and *ARL*<sub>0</sub>  $\approx$  370.4.

|              | $p_1$                | 0.1    | 0.2    | 0.3     | 0.4    | 0.5    | 0.6    | 0.7   | 0.8   | 0.9   |
|--------------|----------------------|--------|--------|---------|--------|--------|--------|-------|-------|-------|
| 0.5 <i>n</i> | $p_1^*$              | 0.14   | 0.23   | 0.32    | 0.41   | 0.5    | 0.59   | 0.68  | 0.77  | 0.86  |
|              | $p_{1}^{**}$         | 0.1    | 0.2    | 0.3     | 0.4    | 0.5    | 0.6    | 0.7   | 0.8   | 0.9   |
|              | $A\hat{R}L_1$        | 20.215 | 55.228 | 369.596 | 55.213 | 20.982 | 11.411 | 7.283 | 5.111 | 3.827 |
| 1            | $A \hat{R} L_1^*$    | 24.235 | 65.200 | 370.380 | 66.986 | 26.277 | 14.773 | 9.829 | 7.103 | 5.493 |
|              | $A\hat{R}L_1^{**}$   | 20.207 | 55.327 | 370.799 | 55.604 | 20.920 | 11.369 | 7.239 | 5.124 | 3.842 |
|              | $A\hat{R}L_1$        | 11.731 | 33.986 | 369.780 | 35.338 | 13.020 | 7.197  | 4.657 | 3.298 | 2.505 |
| 2            | $A\hat{R}L_1^*$      | 14.311 | 40.631 | 370.267 | 41.469 | 15.181 | 8.217  | 5.233 | 3.683 | 2.777 |
|              | $A\hat{R}L_1^{**}$   | 11.709 | 33.823 | 370.959 | 35.303 | 13.115 | 7.193  | 4.658 | 3.314 | 2.503 |
|              | $A\hat{R}L_1$        | 8.669  | 25.058 | 370.045 | 25.667 | 9.078  | 4.848  | 3.063 | 2.048 | 1.406 |
| 3            | $A\hat{R}L_1^*$      | 10.393 | 30.228 | 369.787 | 30.174 | 10.671 | 5.657  | 3.505 | 2.350 | 1.632 |
|              | $A\hat{R}L_1^{**}$   | 8.674  | 25.091 | 371.260 | 25.682 | 9.032  | 4.867  | 3.048 | 2.052 | 1.405 |
|              | $A\hat{R}L_1$        | 6.935  | 20.175 | 370.476 | 20.928 | 7.498  | 4.088  | 2.657 | 1.864 | 1.380 |
| 4            | $A\hat{R}L_1^*$      | 8.510  | 24.835 | 370.869 | 25.348 | 9.036  | 4.918  | 3.242 | 2.327 | 1.727 |
|              | $A\hat{R}L_{1}^{**}$ | 6.939  | 20.145 | 371.128 | 21.026 | 7.483  | 4.102  | 2.656 | 1.867 | 1.385 |

|      | $p_1$                    | 0.1   | 0.2    | 0.3     | 0.4    | 0.5   | 0.6   | 0.7   | 0.8   | 0.9   |
|------|--------------------------|-------|--------|---------|--------|-------|-------|-------|-------|-------|
| 0.5n | $p_1^*$                  | 0.14  | 0.23   | 0.32    | 0.41   | 0.5   | 0.59  | 0.68  | 0.77  | 0.86  |
|      | $p_{1}^{**}$             | 0.1   | 0.2    | 0.3     | 0.4    | 0.5   | 0.6   | 0.7   | 0.8   | 0.9   |
|      | $A\hat{R}L_1$            | 6.935 | 20.175 | 370.476 | 20.928 | 7.498 | 4.088 | 2.657 | 1.864 | 1.380 |
| 4    | $A\hat{R}L_1^*$          | 8.510 | 24.835 | 370.869 | 25.348 | 9.036 | 4.918 | 3.242 | 2.327 | 1.727 |
|      | $A\hat{R}L_1^{**}$       | 6.939 | 20.145 | 371.128 | 21.026 | 7.483 | 4.102 | 2.656 | 1.867 | 1.385 |
|      | $A\hat{R}L_1$            | 5.769 | 17.194 | 369.494 | 16.992 | 5.785 | 3.018 | 1.930 | 1.369 | 1.095 |
| 5    | $A\hat{R}L_{1}^{*}$      | 7.363 | 21.094 | 370.374 | 20.977 | 7.280 | 3.885 | 2.457 | 1.693 | 1.243 |
| 0    | $A\hat{R}L_1^{\hat{**}}$ | 5.761 | 17.170 | 370.337 | 17.045 | 5.795 | 3.021 | 1.931 | 1.375 | 1.090 |
|      | $A\hat{R}L_1$            | 3.731 | 10.175 | 370.993 | 10.618 | 3.886 | 2.193 | 1.457 | 1.130 | 1.013 |
| 10   | $A \widehat{R} L_1^*$    | 3.886 | 11.945 | 370.152 | 12.460 | 4.355 | 2.358 | 1.581 | 1.206 | 1.041 |
|      | $\hat{ARL}_{1}^{**}$     | 3.722 | 10.247 | 371.164 | 10.637 | 3.882 | 2.190 | 1.462 | 1.127 | 1.013 |
|      | $A\hat{R}L_1$            | 2.588 | 7.445  | 370.043 | 7.747  | 2.804 | 1.582 | 1.146 | 1.019 | 1.000 |
| 15   | $A \widehat{R} L_1^*$    | 3.221 | 9.274  | 369.899 | 9.195  | 3.265 | 1.780 | 1.227 | 1.040 | 1.003 |
|      | $A\hat{R}L_1^{**}$       | 2.582 | 7.449  | 370.212 | 7.712  | 2.798 | 1.576 | 1.145 | 1.018 | 1.000 |
|      | $A\hat{R}L_1$            | 2.026 | 6.012  | 369.858 | 6.158  | 2.220 | 1.315 | 1.051 | 1.003 | 1.000 |
| 20   | $A \hat{R} L_1^*$        | 2.552 | 7.312  | 370.552 | 7.212  | 2.545 | 1.419 | 1.082 | 1.008 | 1.000 |
|      | $A\hat{R}L_1^{**}$       | 2.019 | 6.010  | 370.702 | 6.130  | 2.217 | 1.309 | 1.050 | 1.002 | 1.000 |

Table 5. Cont.

**Table 6.** The *ARL*<sub>1</sub> s of the three EWMA variance charts when  $p_0 = 0.4$ ,  $\lambda = 0.05$ ,  $\pi_1 = \pi_2 = 0.95$ , and *ARL*<sub>0</sub>  $\approx$  370.4.

|      | $p_1$                 | 0.1    | 0.2    | 0.3    | 0.4     | 0.5    | 0.6    | 0.7    | 0.8   | 0.9   |
|------|-----------------------|--------|--------|--------|---------|--------|--------|--------|-------|-------|
| 0.5n | $p_1^*$               | 0.14   | 0.23   | 0.32   | 0.41    | 0.5    | 0.59   | 0.68   | 0.77  | 0.86  |
|      | $p_1^{**}$            | 0.1    | 0.2    | 0.3    | 0.4     | 0.5    | 0.6    | 0.7    | 0.8   | 0.9   |
|      | $A\hat{R}L_1$         | 12.330 | 22.771 | 60.580 | 370.363 | 61.333 | 23.735 | 13.063 | 8.622 | 6.316 |
| 1    | $A\hat{R}L_1^*$       | 14.809 | 27.070 | 70.377 | 371.052 | 70.666 | 27.655 | 15.209 | 9.893 | 7.169 |
|      | $A\hat{R}L_1^{**}$    | 12.277 | 22.830 | 60.493 | 371.359 | 61.423 | 23.614 | 13.018 | 8.622 | 6.292 |
|      | $A\hat{R}L_1$         | 7.401  | 13.516 | 38.026 | 370.073 | 38.297 | 13.624 | 7.451  | 5.007 | 3.751 |
| 2    | $A\hat{R}L_1^*$       | 8.093  | 15.492 | 43.587 | 370.981 | 44.619 | 16.145 | 8.731  | 5.650 | 4.188 |
|      | $A\hat{R}L_{1}^{**}$  | 7.373  | 13.578 | 37.927 | 370.735 | 38.151 | 13.717 | 7.493  | 5.005 | 3.759 |
|      | $A\hat{R}L_1$         | 5.180  | 9.723  | 27.989 | 370.140 | 28.614 | 10.274 | 5.620  | 3.747 | 2.706 |
| 3    | $A \widehat{R} L_1^*$ | 6.257  | 11.785 | 33.473 | 370.664 | 33.857 | 12.098 | 6.680  | 4.403 | 3.163 |
| 0    | $A\hat{R}L_1^{**}$    | 5.162  | 9.745  | 27.993 | 369.868 | 28.911 | 10.262 | 5.638  | 3.725 | 2.718 |
|      | $A\hat{R}L_1$         | 4.578  | 8.135  | 23.101 | 369.423 | 22.797 | 7.805  | 4.110  | 2.480 | 1.558 |
| 4    | $A\hat{R}L_1^*$       | 5.319  | 9.583  | 27.069 | 371.232 | 26.819 | 9.357  | 4.960  | 3.034 | 1.937 |
|      | $A\hat{R}L_1^{**}$    | 4.582  | 8.132  | 23.069 | 370.488 | 22.635 | 7.805  | 4.109  | 2.465 | 1.554 |
|      | $A\hat{R}L_1$         | 3.494  | 6.659  | 19.258 | 369.487 | 19.461 | 6.945  | 3.796  | 2.447 | 1.643 |
| 5    | $A\hat{R}L_1^*$       | 4.168  | 7.811  | 22.522 | 370.169 | 22.841 | 8.004  | 4.336  | 2.799 | 1.935 |
|      | $A\hat{R}L_1^{**}$    | 3.502  | 6.624  | 19.208 | 371.005 | 19.478 | 6.943  | 3.807  | 2.457 | 1.639 |
|      | $A\hat{R}L_1$         | 2.032  | 3.993  | 11.366 | 370.239 | 11.582 | 4.054  | 2.173  | 1.402 | 1.070 |
| 10   | $A\hat{R}L_1^*$       | 2.588  | 4.760  | 13.463 | 371.031 | 13.302 | 4.596  | 2.464  | 1.583 | 1.167 |
|      | $A\hat{R}L_{1}^{**}$  | 2.031  | 3.992  | 11.356 | 370.563 | 11.528 | 4.055  | 2.180  | 1.402 | 1.072 |
|      | $A\hat{R}L_1$         | 1.530  | 2.916  | 8.368  | 369.514 | 8.549  | 3.146  | 1.740  | 1.182 | 1.013 |
| 15   | $A \widehat{R} L_1^*$ | 1.576  | 3.201  | 9.642  | 369.413 | 10.016 | 3.567  | 1.974  | 1.308 | 1.049 |
|      | $A\hat{R}L_{1}^{**}$  | 1.528  | 2.904  | 8.330  | 370.816 | 8.577  | 3.128  | 1.742  | 1.182 | 1.012 |

|              | $p_1$                | 0.1   | 0.2   | 0.3   | 0.4     | 0.5   | 0.6   | 0.7   | 0.8   | 0.9   |
|--------------|----------------------|-------|-------|-------|---------|-------|-------|-------|-------|-------|
| 0.5 <i>n</i> | $p_1^*$              | 0.14  | 0.23  | 0.32  | 0.41    | 0.5   | 0.59  | 0.68  | 0.77  | 0.86  |
|              | $p_{1}^{**}$         | 0.1   | 0.2   | 0.3   | 0.4     | 0.5   | 0.6   | 0.7   | 0.8   | 0.9   |
|              | $A\hat{R}L_1$        | 1.146 | 2.179 | 6.617 | 369.666 | 6.743 | 2.374 | 1.315 | 1.033 | 1.001 |
| 20           | $\hat{ARL}_1^*$      | 1.391 | 2.688 | 7.905 | 369.765 | 8.133 | 2.959 | 1.662 | 1.168 | 1.016 |
|              | $A\hat{R}L_{1}^{**}$ | 1.147 | 2.173 | 6.584 | 369.775 | 6.750 | 2.375 | 1.321 | 1.033 | 1.000 |

Table 6. Cont.

#### 4. Example

In this section, we implement the error-corrected EWMA variance control chart to analyze the SECOM data that are available in the UC Irvine Machine Learning Repository [28]. A complex modern semiconductor manufacturing process is normally under consistent surveillance via the monitoring of signals/variables collected from sensors and/or process measurement points. The data set includes 591 variables, 1567 in-control data, and 104 out-of-control data. To demonstrate the application of the proposed variance control chart, we take the second variable column as a quality variable with measurement error. For in-control observed data  $X_0^*$ , we take 300 in-control observations. We take thirty samples of size 10 for the 300 observations. We do not need to know the distribution of  $X_0^*$ . Based on the samples from the in-control process, the empirical estimate of  $\sigma_0^{2*}$  is given by  $\hat{\sigma}_0^{2*} = 1709.029$ .

For out-of-control observed data  $X_1^*$ , we take 90 out-of-control observations. We take nine samples of size 10 for the 90 observations. We do not need to know the distribution of  $X_1^*$ , either. The empirical estimator of the out-of-control variance is given by  $\hat{\sigma}_1^{2*} = \delta_1^2 \hat{\sigma}_0^{2*} = 3611.624$ . Hence,  $\delta_1 = \sqrt{\frac{3611.624}{1709.029}} = 1.453$ . We find the out-of-control variance is much larger than the in-control variance. Hence, we only consider the one-sided EWMA variance chart with the *UCL*.

 $P_t^*$  is the sample proportion of  $(Y_{t,j'}^* > 1709.029)$  for  $j' = 1, \dots, 10$  and  $t = 1, \dots, 30$ . The estimate of  $p_0^*$  is using  $\hat{p}_0^* = \frac{\sum_{i=1}^{30} P_t^*}{30} = 0.287$ . The  $L_3$  of the  $UCL_3^*$  of the EWMA variance control chart with measurement error is 2.757 and  $UCL_3^* = 0.473$  for  $\lambda = 0.05$  and  $A\hat{R}L_0^* \approx 370.4$ . For constructing the error-corrected variance control chart, we need to know the two proportions of truly classified  $\pi_1$  and  $\pi_2$ . We specify several combination values for  $(\pi_1, \pi_2)$  and examine the impact of measurement error. In this study, we specify  $\delta_2 = 0.3, 0.5, 0.75$ , and consider  $(\pi_1, \pi_2) = (0.823, 0.918), (0.720, 0.870)$  and (0.616, 0.821). Hence, the corresponding error-corrected proportion is  $\hat{p}_0^{**} = 0.277, 0.266$ , and 0.247. By implementing the estimate procedure in Section 2.3, the error-corrected  $L_5$  and  $UCL_5^{**}$  under  $\delta_2 = 0.3, 0.5, 0.75, \lambda = 0.05$  and  $A\hat{R}L_0^{**} \approx 370.4$  are summarized in Table 7.

**Table 7.** The  $L_5$  and  $UCL_5^{**}$  based on error-corrected EWMA variance chart for SECOM data under  $\delta_2 = 0.3, 0.5, 0.75$ .

| $\delta_2$ | $\pi_1$ | $\pi_2$ | $\hat{p}_{0}^{**}$ | $L_5$ | $UCL_{5}^{**}$ |
|------------|---------|---------|--------------------|-------|----------------|
| 0.3        | 0.823   | 0.918   | 0.277              | 1.652 | 0.348          |
| 0.5        | 0.720   | 0.870   | 0.266              | 1.298 | 0.337          |
| 0.75       | 0.616   | 0.821   | 0.247              | 0.943 | 0.316          |

Figure 1 is the EWMA variance charts with measurement error for monitoring the in-control samples and the out-of-control samples. The EWMA variance chart with measurement error detects out-of-control signals in the fifth sample. Figure 2 is the error-corrected EWMA variance charts with different values of  $\delta_2$  for the same data and the error-corrected EWMA variance charts detect out-of-control signals in the fourth sample under  $\delta_2 = 0.3$ ,



in the third sample under  $\delta_2 = 0.5$  and  $\delta_2 = 0.75$ . Therefore, the ability of the out-ofcontrol detection performance of the error-corrected EWMA variance chart is better than the EWMA variance chart with measurement error in this example.

**Figure 1.** (a) In-control SECOM data; (b) out-of-control SECOM data. The monitoring results of the variance control chart with measurement error for SECOM data.



**Figure 2.** (a) In-control SECOM data; (b) out-of-control SECOM data. The monitoring results of the error-corrected control chart for SECOM data.

#### 5. Conclusions

In this paper, we develop a new variance control chart with the correction of measurement error for a distribution-free continuous observed quality variable. Our idea is to consider the EWMA variance chart for a process with non-normal or unknown distribution and investigates the effects of measurement error on the EWMA variance chart. To correct the effects of measurement error, we propose the error-corrected variance control chart. Numerical results justify the validity of the proposed error-corrected variance control chart. The control limits of the error-corrected EWMA variance chart are more reliable, and the corresponding out-of-control detection ability is very close to the EWMA variance chart without measurement error. On the contrary, without suitable correction of measurement error effects, we find that the control limits and the out-of-control detection ability of the variance control chart with measurement error are extremely unreliable, especially when moderate and large levels of measurement error are involved. As commented by a referee, it is interesting to compare with other existing methods to show the advantages of our proposed method. However, to the best of our knowledge, few methods have been available to correct for measurement error effects when constructing control charts. We will keep exploring alternative approaches and then compare them with our method in the near future.

**Author Contributions:** Conceptualization: S.-F.Y. and L.-P.C.; methodology: S.-F.Y. and L.-P.C.; software: C.-K.L.; validation: S.-F.Y., L.-P.C. and C.-K.L.; formal analysis: C.-K.L.; investigation: S.-F.Y. and L.-P.C.; data curation: C.-K.L.; writing—original draft preparation: C.-K.L., S.-F.Y. and L.-P.C.; visualization: C.-K.L.; supervision: S.-F.Y. and L.-P.C.; funding acquisition: S.-F.Y. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research was funded by The National Science and Technology Council, grant number 110-2118-M-004-006 MY2.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

**Data Availability Statement:** The SECOM data can be found in UC Irvine Machine Learning Repository (UCI Machine Learning Repository: SECOM data set).

Conflicts of Interest: The authors declare no conflict of interest.

# Appendix A

Algorithm 1 The Monte Carlo simulation steps to find  $L_1$  and  $L_2$  in  $UCL_1$  and  $LCL_2$  of the EWMA variance chart with given  $ARL_0$ 

Given in-control  $p_0$ ,  $\lambda$ , n and a value of  $ARL_0$ . 1: 2: Set  $a < L_1$  (or  $L_2$ ) < b, with a = 0.01 and b = 5. Monte Carlo procedure: 3: for *m* from 1 to *M* and set M = 10000 perform the following: 4: 5: Let  $EWMA_{P_0} = p_0$ , and t = 1. Simulate  $X_t$  from  $Bin(n, p_0)$ , and calculate  $\hat{p}_t = \frac{X_t}{n}$ ; 6: 7: if t = 1 then 8:  $EWMA_{P_1} = \lambda \hat{p}_1 + (1 - \lambda)EWMA_{P_0}.$ 9: end if 10: if  $t \neq 1$  then  $EWMA_{P_t} = \lambda \hat{p}_t + (1 - \lambda) EWMA_{P_{t-1}}.$ 11: 12: end if Give  $L_1$ (or  $L_2$ ) and calculate  $UCL_1$  (or  $LCL_2$ ); 13: 14: if  $EWMA_{P_t} \ge UCL_1$  (or  $\le LCL_2$ ), then 15: take  $t_m = t$  as run length, let  $m \leftarrow m + 1$ . Go to step line 5. 16: end if 17: if  $EWMA_{P_t} \leq UCL_1$  (or  $\geq LCL_2$ ) then  $t \leftarrow t + 1$ . Go to line 6. 18: 19: end if 20: end for Calculate  $\frac{\sum_{m=1}^{M} t_m}{M}$ , take it to be the estimator of the  $ARL_0$ , denoted as  $A\hat{R}L_0$ , and determine  $L_1$  (or  $L_2$ ) by  $|ARL_0 - A\hat{R}L_0| < 1$ , 21: subject to  $a < L_1$  (or  $L_2$ ) < b. 22: return  $L_1$  (or  $L_2$ ).

**Algorithm 2** The Monte Carlo simulation steps to calculate  $ARL_1$  for  $p_1$ 

1: Given out-of-control  $p_1$ ,  $\lambda$ , n,  $p_0$ , and  $L_1$  (or  $L_2$ ), where  $L_1$  (or  $L_2$ ) is determined by assigned  $ARL_0$  in Algorithm 1...

2: **if**  $p_1 > p_0$  **then** 

4: end if

5: **if**  $p_1 < p_0$  **then** 

6: we used one-sided  $LCL_2$ , which be calculated by  $L_2$ .

7: end if

<sup>3:</sup> we used one-sided  $UCL_1$ , which be calculated by  $L_1$ .

#### Algorithm 2 Cont.

Monte Carlo procedure: 8: for *m* from 1 to *M* and set M = 10000 perform the following: 9: 10: Let  $EWMA_{P_0} = p_0$ , and t = 1. Simulate  $X_t$  from  $Bin(n, p_1)$ , and calculate  $\hat{p}_t = \frac{X_t}{n}$ ; 11: 12: if t = 1 then  $EWMA_{P_1} = \lambda \hat{p}_1 + (1 - \lambda)EWMA_{P_0}.$ 13: 14: end if if  $t \neq 1$  then 15:  $EWMA_{P_t} = \lambda \hat{p}_t + (1 - \lambda) EWMA_{P_{t-1}}.$ 16: 17: end if 18: Give  $L_1$  (or  $L_2$ ) and calculate  $UCL_1$  (or  $LCL_2$ ); 19: if  $EWMA_{P_t} \ge UCL_1$  (or  $\le LCL_2$ ), then take  $t_m = t$  as run length, let  $m \leftarrow m + 1$ . Go to step line 10. 20: 21: end if if  $EWMA_{P_t} \leq UCL_1$  (or  $\geq LCL_2$ ) then 22: 23:  $t \leftarrow t + 1$ . Go to line 11. 24: end if 25: end for 26: **return**  $\frac{\sum_{m=1}^{M} t_m}{M}$ , and take it to be the estimator of the  $ARL_1$ .

# References

- 1. Shewhart, W.A. Some applications of statistical methods to the analysis of physical and engineering data. *Bell Syst. Tech. J.* **1924**, *3*, 43–87. [CrossRef]
- 2. Roberts, S.W. Control chart tests based on geometric moving averages. *Technometrics* 1959, 1, 239–250. [CrossRef]
- Amin, R.W.; Reynolds, M.R., Jr.; Saad, B. Nonparametric quality control charts based on the sign statistic. Commun. Stat. Theory Methods 1995, 24, 1597–1623. [CrossRef]
- 4. Bakir, S.T. A distribution-free Shewhart quality control chart based on signed-ranks. Qual. Eng. 2004, 16, 613–623. [CrossRef]
- Bakir, S.T. Distribution-free quality control charts based on signed-rank-like statistics. *Commun. Stat.-Theory Methods* 2006, 35, 743–757. [CrossRef]
- 6. Yang, S.F.; Lin, J.S.; Cheng, S.W. A new nonparametric EWMA sign control chart. Expert Syst. Appl. 2011, 38, 6239–6243. [CrossRef]
- Yang, S.F.; Cheng, T.C.; Hung, Y.C.; Cheng, S.W. A new chart for monitoring service process mean. *Qual. Reliab. Eng. Int.* 2012, 28, 377–386. [CrossRef]
- 8. Chowdhury, S.; Mukherjee, A.; Chakraborti, S. A new distribution-free control chart for joint monitoring of unknown location and scale parameters of continuous distributions. *Qual. Reliab. Eng. Int.* **2014**, *30*, 191–204. [CrossRef]
- 9. Yang, S.F.; Arnold, B.C. A simple approach for monitoring business service time variation. *Sci. World J.* **2014**, 2014, 238719. [CrossRef]
- 10. Yang, S.F.; Arnold, B.C. A new approach for monitoring process variance. J. Stat. Comput. Simul. 2016, 86, 2749–2765. [CrossRef]
- 11. Tang, A.; Castagliola, P.; Hu, X.; Sun, J. The adaptive EWMA median chart for known and estimated parameters. *J. Stat. Comput. Simul.* **2019**, *89*, 844–863. [CrossRef]
- 12. Riaz, M.; Abid, M.; Shabbir, A.; Nazir, H.Z.; Abbas, Z.; Abbasi, S.A. A non-parametric double homogeneously weighted moving average control chart under sign statistic. *Qual. Reliab. Eng. Int.* **2021**, *37*, 1544–1560. [CrossRef]
- Mittag, H.-J.; Stemann, D. Gauge imprecision effect on the performance of the X S control chart. J. Appl. Stat. 1998, 25, 307–317.
   [CrossRef]
- 14. Linna, K.W.; Woodall, W.H. Effect of measurement error on Shewhart control charts. J. Qual. Technol. 2001, 33, 213–222. [CrossRef]
- 15. Stemann, D.; Weihs, C. The EWMA-XS-control chart and its performance in the case of precise and imprecise data. *Stat. Pap.* **2001**, 42, 207. [CrossRef]
- 16. Maravelakis, P.; Panaretos, J.; Psarakis, S. EWMA chart and measurement error. J. Appl. Stat. 2004, 31, 445–455. [CrossRef]
- 17. Abbas, N.; Riaz, M.; Does, R.J. An EWMA-type control chart for monitoring the process mean using auxiliary information. *Commun. Stat. Theory Methods* **2014**, *43*, 3485–3498. [CrossRef]
- 18. Daryabari, S.A.; Hashemian, S.M.; Keyvandarian, A.; Maryam, S.A. The effects of measurement error on the MAX EWMAMS control chart. *Commun. Stat. Theory Methods* **2017**, *46*, 5766–5778. [CrossRef]
- 19. Noor-ul-Amin, M.; Riaz, A.; Safeer, A. Exponentially weighted moving average control chart using auxiliary variable with measurement error. *Commun. Stat. Simul. Comput.* **2020**, *51*, 1002–1014. [CrossRef]
- Asif, F.; Khan, S.; Noor-ul-Amin, M. Hybrid exponentially weighted moving average control chart with measurement error. *Iran. J. Sci. Technol. Trans. A Sci.* 2020, 44, 801–811. [CrossRef]
- 21. Huwang, L.; Hung, Y. Effect of measurement error on monitoring multivariate process variability. Stat. Sin. 2007, 17, 749–760.

- 22. Nojavan, M.; Alishahi, M.; Rezaee, M.; Rahaee, M.A. The effect of measurement error on the performance of Mann-Whitney and Signed-Rank nonparametric control charts. *Qual. Reliab. Eng. Int.* **2021**, *37*, 2365–2383. [CrossRef]
- 23. Case, K.E.J. The *p* control chart under inspection error. *J. Qual. Technol.* **1980**, *12*, 1–9. [CrossRef]
- 24. Lu, X.S.; Xie, M.; Goh, T.N. An investigation of the effects of inspection errors on the run-length control charts. *Commun. Stat. Simul. Comput.* **2000**, *29*, 315–335. [CrossRef]
- 25. Shu, M.-H.; Wu, H.C. Monitoring imprecise fraction of conforming items using p control charts. J. Appl. Stat. 2010, 37, 1283–1297. [CrossRef]
- 26. Daryabari, S.A.; Malmir, B.; Amiri, A. Monitoring Bernoulli processes considering measurement errors and learning effect. *Qual. Reliab. Eng. Int.* **2019**, *35*, 1129–1143. [CrossRef]
- 27. Chen, L.-P.; Yang, S.-F. A new p-control chart with measurement error correction. Qual. Reliab. Eng. Int. 2023, 23, 81–98. [CrossRef]
- McCann, M.; Johnston, A. UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/datasets/SECOM (accessed on 1 December 2021).

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.