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Abstract: During the previous decades, the growing demand for animal origin products has gained
considerable attention. As a result, livestock breeding has faced a rapid intensification in order to
fulfil market expectations. This increase in livestock production has led to a large scale of manure that
is associated with many environmental impacts, such as climate change, to an increase of greenhouse
gases (GHG) emissions. Livestock production is considered to generate significant amounts of GHG,
mainly carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Methane and nitrous oxide are
the main emissions from livestock systems. Ruminants contribute highly to total livestock emissions.
In the present study, the contribution of livestock and especially of the small ruminants in GHG
emissions is reviewed. Additionally, useful sustainable strategies for farming and feeding of small
ruminants are highlighted. Some of the practices discussed include but are not limited to efficient
manure management, the replacement of mineral fertilizers by farm manure, the improvement of
feed efficiency and provision of feed supplements. Moreover, the use of food waste or agro-industrial
by-products is discussed as a sustainable strategy.

Keywords: agro-industrial by-products; farming; food waste; greenhouse gas emissions; small
ruminants; sustainability; sustainable strategies

1. Introduction

In 2022 around 8 billion people are estimated to live on Earth, while in 2050 this
number is expected to be 10.4 billion [1]. Nutritional demands are going to rise in order to
satisfy human needs. Meanwhile, the increasing human population in accordance with
urbanization will alter the dietary habits to more processed rather than natural origin
products. As a result, a large quantity of animal origin products will be necessary, putting
pressure on the food market [2]. Until 2050, around two times the amount of milk and
meat that is produced nowadays will be necessary to cover human needs; for instance,
1077 million tons of milk should be produced compared to the 580 tons that are produced
today [3]. In order to meet this demand, livestock farming grows constantly. However, there
are many concerns about the environmental impact of this intensified animal production [4].
The generation of greenhouse gas emissions (GHG) is the most important environmental
impact as far as livestock farming is concerned. As the emissions from livestock increase,
many changes concerning the atmosphere, the land and the oceans are occurring that lead
to climate change.
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Agriculture, and therefore livestock, is concurrently one of the main contributors
to GHG emissions and consequently to climate change [5]. The significant amounts of
GHG emissions are produced either through their physiological processes or during the
production of animal origin products. The livestock sector is responsible for 14.5% of total
anthropogenic GHG emissions, or 7.1 Gt CO2e [6]. Of this total, the share of feed production
and processing is approximately 45% or 3.2 Gt CO2e, the share of enteric fermentation is
approximately 39% or 2.8 Gt CO2e, and the share of manure management is approximately
10% or 0.71 Gt. The processing and transportation of animal products account for the
remaining 6% or 0.42 Gt CO2e. [6]. On the other hand, by accounting only for the direct
CH4 and N2O emissions from enteric fermentation, manure management and distribution,
the contribution is estimated to be 5.4 Gt CO2e [6,7]. In EU, a report by Perez Dominguez
et al. [8] indicates that agriculture accounts for 10.3% of total GHG emissions, with CH4
from enteric fermentation accounting for 32% and manure management contributing
another 16%. Cattle production is the largest contributor to global livestock emissions,
contributing 4.6Gt CO2e or 61%, while other species contribute much less: pigs 0.7 Gt CO2e
(9%), poultry 0.7 Gt CO2e (8%) and small ruminants 0.474 Gt CO2e (6%) [6,7].

An adequate level of reduction in GHG emissions by 2050 can be achieved, with
selected strategies including but not limited to policies, infrastructures and technology
in order to change human habits and behavior [9]. Agriculture could mitigate related
emissions. The era of climate denial is over, human being is the main contributor of climate
change and livestock farming could help reduce its footprint. Mitigation strategies need to
be adopted in the livestock sector to reduce the environmental impact.

This review aimed to demonstrate the contribution of livestock and especially small
ruminants in the climate change through its GHG emissions. It should be mentioned that
for research purposes cattle literature will be used when appropriate in the following parts,
since GHG mitigation strategies for small ruminants are sparse. Moreover, mitigation
techniques that would provide a sustainable approach for the emissions’ reduction con-
cerning feed, energy and manure are explained. Additionally, the inclusion of food waste
and agro-industrial by-products in ruminant diets are discussed as a circular bioeconomy
leverage which can improve livestock sustainability.

2. Contribution of Small Ruminants to GHG

Small ruminants’ contribution to GHG emissions are about 475 million tons CO2e,
which represents about 6.5% of the agriculture sector global emissions [7]. Sheep and
goat world meat and milk production accounts for around 254 and 175 million tons CO2e,
respectively [7]. Small ruminants’ milk production contributes about 12% of the total GHG
emissions that come from CH4 from enteric fermentation and manure and 19% from the
N2O of manure management [10]. The global average of GHG emission intensity of milk is
lower for goats than for sheep with 5.2 and 8.4 kg CO2e/kg product, respectively, mainly
because goats have higher milk yields on average at the global level [7]. The GHG emission
intensity of meat is very similar between the two species at about 23 kg CO2e/kg meat [7].

Different geographical regions and production systems have different carbon foot-
prints [7]. The term “carbon footprint” (CF) refers to the sum of greenhouse gas emissions
and removals in a product system related to the climate change and associated with any
human activity (e.g., livestock, domestic energy combustion, etc.) [11]. In extensive sys-
tems, the CF of goat milk is high while in semi-intensive and intensive systems, emissions
per kg of milk are low [12–14] because of the high productivity and the high amount of
compound feed used in the rations [13]. In the extensive, semi-intensive and intensive
farms, methane from milk production accounts for 75%, 65% and 52% of total emissions,
respectively [13]. More specifically, emission intensities for sheep and goat milk production
ranged from 1.6 kg to 14.2 kg of CO2e (in humid grassland areas of Western Europe and
arid grassland areas of North Africa, respectively), while emission intensities for lamb and
goat meat production ranged from 7.4 kg to 57.5 kg of CO2e (in mixed areas of Western
Europe and temperate grassland areas of North Africa, respectively) [7]. Nevertheless,
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to accurately develop mitigation options for the small ruminant farms, it is important to
detect all potential sources of GHG emissions. The three ‘greenhouse gases’ (GHG) which
contribute most to global warming are carbon dioxide (CO2), methane (CH4) and nitrous
oxide (N2O) [15]. The contribution of small ruminants is presented in Figure 1.
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Figure 1. Contribution of small ruminants to GHG/year, globally. Blue color letters: general data
about livestock’s GHG contribution such as feed production, including rice products and manure
management, and excluding manure application on feed crops or pasture, and total contribution
of small ruminant sector, were obtained by Gerber et al. [6]. Black color letters: data about small
ruminants’ GHG emission related to feed production, manure management and enteric fermentation
were accessed by GLEAMv3.0 on 14/02/2023 using the AR6 equation (CH4 = 27, N2O = 273) [16]).

2.1. Sources of Methane (CH4) Emissions

Methane is the most important greenhouse gas generated from the animal sector [17].
In ruminants, methane (CH4) is mainly produced by enteric fermentation and manure
storage [18]. More than 55 percent of emissions from small ruminant meat and milk
production originate from enteric fermentation and the vast majority is formed in the rumen
by methanogenic microbes. Therefore, any mitigation strategy that reduces methanogen
populations and consequently methane emissions should not be limited to it but also
include an alternative pathway for H2 neutralization since its accumulation can impair
rumen function [19]. In ruminants, methane emissions represent a loss of about 2 to 15% of
dietary gross energy [20]. Sheep and goats produce 10 to 16 kg CH4/year and cattle 60 to
160 kg/year, depending on their size and dry matter intake (DMI) [21] and, especially in
Greece, CH4 represents the main GHG from agriculture, with a contribution ranging from
48% to 58% [22].

2.2. Sources of Nitrous oxide (N2O) Emissions

Slightly more than 35 percent of N2O emissions derive from feed production, whereas
manure emissions are lower because manure is mainly deposited onto pasture [6]. Crop
activities in small ruminants’ farms involve forage and grain production for livestock
feeding but also crop production for sale. Direct N2O emissions from manure storage are
lower compared with CH4 emissions. Direct N2O emissions occur from when manure
is treated aerobically; at that time, organic N is converted to NO3- and NO2- through
nitrification and then manure is treated aerobically where N2O and NO are produced
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through denitrification [23]. The N2O emissions from manure management account for
20%, 25%, and 34% of total emissions for the extensive, semi-intensive, and intensive dairy
goat farming systems, respectively [13].

2.3. Sources of Carbon Dioxide (CO2) Emissions

Carbon dioxide emissions are mainly generated from anaerobic degradation of manure,
producing biogas [24] and combustion of fuel [25]. Carbon dioxide is linked to the energy
combustion of mixed crop and livestock farms. This energy use is related to fuel use (mainly
diesel) and electricity [26], which is attributed to the milking machinery, the transportation,
the ventilation equipment used in the animal houses, and the whole crop production use if
the feed is produced on site. The emissions from this combustion can be accounted for by
estimating the requirements for energy use, fuel, electricity, and type of machinery used for
every farm operation, multiplied by the appropriate emission factors.

3. Sustainable Strategies for Mitigation of GHG Emissions
3.1. Feed Related Strategies

Methane represents a significant loss of dietary energy; thus, the aim is to reduce its
production favoring both environment and feed conservation rate. Therefore, the key role
on the mitigation practices for small ruminants is the manipulation of the methanogenesis
route. Although there are several options for reducing methane, it has to be balanced so
that an economically sustainable way for producers, together with the ability to improve
the production efficiency, are supported simultaneously.

3.1.1. Forage Quality, Growth Stage, and Legumes Grazing

By improving pasture quality, the animal productivity may be enhanced and lower
CH4 will be emitted, with less dietary energy loss [27]. A mitigation option is the harvest-
ing of forages at an earlier growth stage, in order to increase the soluble carbohydrates
and decrease the lignification of cell walls (less NDF) [28]. This also would increase its
digestibility, leading to a reduction in GHG emissions. A methane reduction is reported
with the replacement of fibrous forage with unlignified immature grasses and early cut
forage at a level of 15%, while for processed forages, the reduction was 21%, while for
grass forage and good quality silage the reduction was 28% and 20%, respectively [29].
The overall objective is to combine the maximum yield of dry matter per hectare with
the highest digestibility. For example, by shifting from higher cell wall content (C4) to
lower (C3) grasses or even grazing on less mature pastures, mitigation of CH4 production
can be achieved [27]. Archimède et al. [30] recommended the use of C3 legumes in warm
climates as a mitigation option, as animals fed warm climate legumes produced 20% less
CH4 than animals fed C4 grasses. Consumption of several levels of legumes by ruminants
results in lower CH4 yield than that associated with the consumption of grasses [27], due
to the tannins content of some legumes [31]. In sheep fed diets with legumes such as white
clover, Lotus pedunculatus, the outcome was 16% lower CH4 production compared to sheep
fed ryegrass [32]. At the same time, ryegrass cut at 21 d revealed ameliorated nutrient
intake than that cut at 35 d, as well as increased microbial crude protein formation with
silage feeding than with hay fed lambs [33]. Moreover, as reported by Gonzalez-Ronquillo
et al. [33], the ensiling of ryegrass at 21 d had no negative effects in the nutrient intake,
N balance, and sustainability of locally produced feed which could be an overall aim.
Nevertheless, there are important benefits of legumes such as the replacement of mineral N
fertiliser [34]. Further, the supplementation of 300 g/kg DM of rapeseed forage harvested
at pod stage, presented assuring results as functioning as an alternative protein source for
alfalfa hay, without affecting nutrient intake and digestibility [35]. Overall, the inclusion of
less lignified forages into ruminants’ diets appears to be an efficient strategy to increase
organic matter digestibility and feed efficiency, therefore reducing the overall carbon foot-
print of meat and milk production while the optimum rumen conditions are preserved.
However, further holistic studies should evaluate if the collection of forages at an earlier
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growth stage could negatively affect other socio-economic balances such as feed-food or
inter-species feed competition.

3.1.2. Elevated Proportion of Concentrate Feed in Diets

The inclusion of concentrate feed at elevated rates of 35% to 40% of DMI in ruminants’
diets may conceivably decrease the enteric CH4, although it unambiguously depends on
other factors such as the type of grain, etc. [19]. By including grain, the starch is raised
while the NDF (Neutral Detergent Fiber) intake is lessened, a fact that subsequently reduces
rumen pH and advances propionate over acetate production in the rumen [36]. Lovett
et al. [37] indicated that the emissions of CH4, N2O, and CO2 were reduced by 9.5%, 16%,
and 5%, respectively, by increasing the feeding of concentrates in dairy cows. The inclusion
of concentrate feeds will enhance animal productivity and a shrink in GHG emissions
intensity will occur, but the absolute GHG emissions may not always decrease as a result
of intense feed production [7]. Additionally, special attention should be paid to forage
to concentrate ratio since the overload of rapidly fermentable carbohydrate reaching the
rumen can impair its degradative potential and therefore animal performance.

3.1.3. Inclusion of Feed Supplements in Diets Manipulating Rumen Methanogenesis
Dietary Lpids

Dietary lipids’ supplementation reduces CH4 emissions [38] by interfering in rumen
function. The effectiveness depends on the influence on animals’ productivity and the cost
of oil products. Researchers in Australia observed a 12% CH4 reduction in dairy cattle [39]
and a 42% CH4 reduction in dairy cows [40] following the inclusion of cottonseed meal. For
adding 1% lipids (limited to 6% supplementation level), the decrease of CH4 was 3.5–5.4%,
as measured in cattle and sheep [27,41,42]. Specifically, Grainger and Beauchemin [43]
demonstrated that addition 10 g/kg of dietary fat in the sheep diet would decrease CH4
emissions for meat production by 2.6 g/kg. Dietary lipids can be found in a plethora of
feeds such as coconut oil and whole crushed oil seeds (rapeseed, sunflower seed, etc.) [44].
Moreover, Vargas et al. [45] added 6% of olive and linseed oil in rumen’ diets and managed
to reduce methane production by 21 to 28%. In recent studies, supplementing long chain
fatty acids in the goat diet decreased methanogens population on both liquid and solid
fraction in the rumen [46,47] unveiling promising scenarios for methane suppression. On
the contrary, Cosgrove et al. [48] reported no mitigation result of lipid supplementation
(in 0, 1.2, 2.5, 3.8, and 5%) to the sheep diet. The quantity of inclusion for avoiding
negative effects in ruminants was kept between 4% and 8% of DMI [49]. However, it
has been stated that it is the fatty acid profile of the fat source, rather than the fat level
per se, that impairs rumen methanogenesis [50]. In this light, a plethora of scientific
questions remain open such as, is it the absolute number of methanogens that correlated
with methane formation or is it the microbiome structure [51]. Additionally, it must be
highlighted if specific fatty acids affect specific rumen “residents” per se or if the disruption
of their biofilm is compromising their structure or their metabolism. Understanding the
regulatory mechanisms of specific fatty acids in rumen methane formation will shape the
key manipulation strategy for ruminants GHG mitigation. On the other hand, it has been
observed that fat mode of action in the rumen microbiome is not methanogenic-specific;
thus, other microorganisms involved in feed degradation and volatile fatty acid production
could be harmed as well. The deeper exploring of the inhibitory specificity of certain fatty
acids against methanogenic species or the synergetic action of fatty acids and other feed
additives and bioactive compounds aiming to target manipulate rumen populations can
facilitate the on-farm scale implementation of such strategies.

Electron Receptors

In rumen, archaea produce CH4 during fermentation, mainly by using H2 and CO2
as substances [49]. Nitrates are used as electron acceptors, replacing CO2, so that NH3 is
produced instead of CH4 [36], which also negatively affect soil and water. Further, nitrates
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have been shown to reduce CH4 production in sheep [52], with the actual level of reduction
being 23% in KNO3-supplemented sheep [53], 16% with nitrate supplementation in dairy
cows [54], and 17% after supplementing forage-based diets in finishing beef cattle [55].
However, nitrate must be supplemented with caution as it can be toxic above certain
doses [21]. Other electron receptors such as fumaric or myristic acid have been tested and
reviewed, showing reductions of CH4 [36]. In cattle, inclusion of 2% fumaric acid in silage
reduced CH4 by 23% [56]. Wood et al. [57] provided 100 g kg−1 fumaric acid in a free form
to lambs and reported a 62% reduction in CH4 output while in an encapsulated form found
a 76% reduction. Moreover, in sheep, myristic acid (50 mg kg−1 DM) reduced CH4 by 22%
when fed in a forage-based diet and 58% in a concentrate-based diet [58]. However, due to
the high doses required, dicarboxylic acids are too expensive to be used widely [59].

Microorganisms

This category contains mainly suggestions based on the activity of yeast and some
bacteria, widely known as acetogens. Previous research conducted by McGinn et al. [60]
using two strains of yeast (Levucell SC and Procreatin-7) in beef cattle demonstrated no
effects on CH4 production. Conversely, yeast products, based on Saccharomyces cerevisiae,
can decrease CH4 by promoting rumen fermentation [61]. Similarly, Grainger and Beau-
chemin [44] reduced CH4 emissions by 7% but negative effects on rumen pH followed.
Moreover, another effective way could be the utilization of bacteriophages [62], based on
their ability to specifically target methanogenic archaea and surpass host’s cells, which has
already shown promising results for methane mitigation [63]. However, more emphasis on
the metagenomics part of the phages’ identification is needed.

Antibodies and Vaccines

Due to the rising concern over the use of antibiotics, new areas of interest have been
researched. Subharat et al. [64] examined the prospect of immunization and production of
antibodies over methanogens. A vaccine targeting the cell surface or membrane proteins
of methanogens may establish vaccination as an effective CH4 mitigation practice [36,65],
by diminishing the methanogen population or its activity in rumen. In the same context,
Wright et al. [66] managed to decrease CH4 production in Australian sheep using a vaccine
over specific methanogens, but did not have the expected results with different microbial
species or rearing conditions [36]. Nevertheless, this approach is based on the possible
cost neutrality of the action but needs further research regarding the complexity of the
target species.

Enzymes

In a meta-analysis on the effects of exogenous fibrolytic enzymes in ruminant diets,
Tirado-González et al. [67] reported that enzymes may improve the productive performance
of dairy cows and beef cattle, but the response depends upon the proper ratio of cellulases to
xylanases according to the diet’s composition. The addition of cellulases and hemicellulases
in ruminants’ diets improved fiber digestion and productivity [27,68] and, thus, reduced
in vivo CH4 production by 28% and 9%, respectively [27].

Plant Bioactive Compounds

This category includes a variety of plant secondary compounds that are used as feed
supplements, such as tannins, saponins, essential oils, plant extracts and their ingredients,
that have exert anti-protozoal effects and decrease the enteric emissions [69]. Tannins have
a great variety of type, concentration, and protein-binding capacity as well as technique
accounting for the plants’ concentration [70], so the effects differ among studies. For
instance, the dietary supplementation of chestnut tannins, examined in vitro, portrayed
beneficial results for methane and ammonia emissions without affecting acetate production
and thus inducing a promising solution for reducing them [71]. Moreover, low CH4 yield
has been shown on pastures rich in condensed tannins [32]. Furthermore, Carulla et al. [72]
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managed to decrease CH4 emission by 13% with a partial replacement of tannins from Acacia
mearnsii included in the sheep diet. Similarly, Tiemann et al. [73] indicated that 25 g/kg DM
of tannins of Calliandra calothyrsus and Flemingia macrophylla reduced CH4 yield by 13%.
Further, for Angora goats fed with Lespedeza cuneata containing condensed tannins, CH4
production was reduced compared to goats fed a combination of Digitaria ischaemum and
Festuca arundinacea [74]. Likewise, the same anti-protozoal properties can be ascertained for
plant saponins [27], flaunting some vital potential, but still more and extended studies are
required before they could be recommended for use [21]. The same potential was presented
by in vitro research of green tea ethanolic extracts to lessen methanogenic processes by
using four doses (250, 500, 750, and 1000 µg/mL) which concluded in supplementing the
lowest dose as better adapted [75]. However, considering methane mitigation through
essential oils, Cobellis et al. [76] pointed out by summarizing the effect of essential oils as
rumen modifiers that the in vivo reduction of methane yield seems to be fictitious since
there is ample evidence that indicates an overall degradative suppression in the rumen due
to their action.

Although essential oils and other bioactive compound derivatives of plant materials
have been extensively investigated as rumen methane mitigation agents, their on-farm scale
implementation, accompanied by crucial limitations such as the amount that the livestock
sector needed, the financial sustainability of its inclusion in animal diets, the food-feed and
nutraceutical industry competition, etc.

Chemical Inhibitors

Halogenated analogues, such as bromochloromethane (BCM), 2-bromo-ethane sulphonate
(BES), and chloroform are potent inhibitors of CH4 formation in ruminants [49]; thus, con-
siderable reduction can be achieved by utilizing them [21,77]. Although some compounds
such as BCM are banned and therefore cannot be recommended, other compounds with a
similar mode of action could be acquired [21]. Such compounds can be found in macroal-
gae, such as Asparagopsis taxiformis, which is acknowledged to potentially reduce enteric
CH4 production, by inhibiting cobamide-dependent methanogenesis [78]. The same re-
searchers reported 50 to 80% CH4 reduction over a 72-day feeding period by adding 3%
of Asparagopsis taxiformis to the sheep diet, in comparison with lower inclusion levels.
Roque et al. [79] mentioned a 95% reduction in CH4 by adding 5% of feed organic matter
of the same macroalgae species to the diet of dairy cows. Similar results were shown by
Kinley et al. [80] when steers received 0.10% and 0.20% of Asparagopsis taxiformis and CH4
decreased up to 40% and 98%, respectively. However, Patra [69] described the risk of toxic-
ity, even up to death, after a long period of consumption. Recent research has identified
alternative approaches capable of inhibiting methanogenesis, such as 3-nitrooxypropanol
(3NP) [81], which achieved 24% reduction in CH4 emissions in sheep [77] and up to 70% in
cattle [82,83], while nontoxic effects were observed [21,84].

Amino Acid

Furthermore, more practices should be adapted in order to decrease the environmental
burden and maximize the exploitation of nutrients. Amongst these, amino acids operate
a fundamental role not only in fulfilling the protein needs but also in the bioavailability
of nutrients, such as nitrogen efficiency [85], thus reducing the cost and increasing the
environmental effectiveness [86]. Furthermore, amino acids are vastly involved in animals’
metabolic processes, improving growth and reproductive performance plus strengthening
the immune system [87]. In spite of this, the combination of amino acids with trace elements,
under the format of chelated amino acid, could also be a favorable practice not only for the
N use efficiency but to the total feed efficiency and performance burden [88]. A summary
of the practices mentioned below is presented in Table 1.
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Table 1. Feed-related strategies applied for the mitigation of GHG emissions.

Feed-Related Strategies Nutritional Practice Impact on GHGs
Emissions Animals Reference

Replacing fibrous forage

Unlignified immature grasses and
early cut forage ↓ 15% CH4 (g/kg DMI)

Ruminants—modelling
approach [29]Processed forage ↓ 21% CH4 (g/kg DMI)

Use of grass forage ↓ 28% CH4 (g/kg DMI)

Good quality silage ↓ 20% CH4 (g/kg DMI)

Replacing C4 grasses Use of C3 legumes in warm climates ↓ 20% CH4 (L/kg OM) Ruminants—meta-analysis [30]

Replacing ryegrass

Legumes white clover, Lotus
pedundulatus (condensed tannins) ↓ 16% CH4 (g/kg DMI) Sheep—in vivo [32]

Ryegrass cut at 21 d instead of 35 d ↑ nutrient intake, N balance Sheep—in vitro [33]

300 g/kg DM rapeseed forage
harvested at pod stage

− nutrient intake and
digestibility Sheep—in vitro [35]

Inclusion of concentrate
feed

Elevated levels of concentrate feed
(35–40%)

↓ 9.5% CH4
↓ 16% N2O
↓ 5% CO2

Ruminants
—modelling approach [37]

Inclusion of dietary lipids

Cottonseed meal ↓ 12% CH4 (g/cow/day) Dairy cattle
—in vivo [38]

Cottonseed meal ↓ 42% CH4 in dairy cows Dairy cows—in vivo [40]

10 g/kg dietary fat ↓ CH4 for meat by 2.6 g/kg
DMI Sheep—meta-analysis [43]

6% oil and linseed oil ↓ 21–28% CH4 (mL/d) Sheep—in vitro [45]

Lipid supplementation in 0, 1.2, 2.5,
3.8, and 5% in sheep diet − alteration (g/kg DMI) Sheep—in vivo [48]

Inclusion of electron
receptors

Nitrate KNO3 in sheep ↓ 23% CH4 (L/kg DMI) Sheep—in vivo [53]

Nitrate in dairy cows ↓ 16% CH4 (g/kg DMI) Dairy cows—in vivo [54]

Nitrates in forage-based diets in beef
cattle ↓ 17% CH4 (g/kg DMI) Beef cattle—in vivo [55]

2% fumaric in cattle silage ↓ 23% CH4 (L/d) Cattle—in vivo [56]

100 g/kg fumaric acid in free form ↓ 62% CH4 (L/d) Lambs—in vivo
[57]100 g/kg fumaric acid in

encapsulated form ↓ 76% CH4 (L/d) Lambs—in vivo

50 mg/kg DM myristic acid to
concentrate based diet ↓ 58% CH4

Sheep—in vivo [58]
50 mg/kg DM myristic acid to

forage-based diet ↓ 22% CH4

Inclusion of
microorganisms

2 strains of yeast (Levucell SC
and Procreatin-7) − CH4 (g/kg of DMI) Beef cattle—in vivo [60]

Enzymes Addition of cellulases and
hemicellulases in ruminants

↓ 28% CH4 and 9%
respectively (g/g DMI) Dairy cows—in vitro [28]

Plant bioactive
compounds

Tannins from Acacia mearnsii ↓ 13% CH4 (kJ/MJ energy
intake) Sheep—in vivo [72]

25 g/kg DM of Calliandra calothyrsus
and Flemingia macrophylla

↓ 13% CH4 (kJ/MJ gross
energy intake) Lambs—in vivo [73]

Chemical inhibitors

3% of Asparagopsis taxiformis in sheep
for 72-day feeding period ↓ 50–80% CH4 (g/kg DMI) Sheep—in vivo [78]

5% feed organic matter of
Asparagopsis taxiformis ↓ 95% CH4 (ml/g OM) Dairy cattle—in vitro [79]

0.10–0.20% of Asparagopsis taxiformis ↓ 40–98% CH4 (g/kg DMI) Steers—in vivo [80]

↓ = decrease, ↑ = increase, − = no effect, DMI = dry matter intake, OM = organic matter.
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3.2. Energy-Related Strategies

Energy management is an important factor for sustainable livestock production and
mitigation strategies. Primarily, measures should be taken to improve the heating require-
ments of livestock buildings. Furthermore, using, selecting, and maintaining efficient
lighting systems, exhaust fans or milking machines, and improving building insulation
appear to be of paramount importance. In addition, an immediate reduction in GHG
emissions can be achieved by replacing fossil fuels with renewable fuels such as wind, solar,
biomass, energy crops, and energy from CH4 produced from manure [89]. In addition, farm
buildings should be heated, ventilated, cooled, and lit using renewable energy sources, such
as roof-mounted solar panels [90]. In addition, LED technology is more reliable, energy
efficient, longer lasting, and greener. Nonetheless, it is crucial to install and maintain a
simple control sensor system, for example, temperature control sensors to preserve the
appropriate temperature.

3.3. Manure-Related Strategies

Animal manure is generally classified into liquid, slurry, and solid. Its management can
lessen the hazards for GHG emissions as well as environmental pollution and public health.
Manure management includes collecting, storing, treating, transporting, and disposing
of manure. An efficient system needs to keep manure and its hazardous constituents off
the environment, and concurrently be profitable. Furthermore, by applying it properly on
the field for fertilization and feed production, the reduced use of nitrogen fertilizer and
subsequently nitrogen loss can be achieved.

3.3.1. Storage

For proper management, animal houses must allow the easy collection to prevent
losses. The floor of the house should be covered from rain to prevent loss of nutrients due
to evaporation, runoff, and leaching. Frequent removal from animal housing is required for
the prevention of manure fermentation and GHG emissions, as a storage period extension
can raise CH4 emissions [21,83]. The area in which the manure is to be stored should be
in compliance with the appropriate time limits so that there is proper time for digestion.
Additionally, the duration of storage is highly dependent on the climatic conditions and, as
a result, may vary depending on the conditions, from 3 months in drier countries including
Greece to even 10 months in Finland [91].

Covering

Storage of liquids should be assembled in tanks that can be covered or opened, and
sealed with specific water permeability indicators [21,92–94]. Covering liquid manure
maintains aerobic conditions during storage that can help reduce N2O and CH4 emissions
and regulate the odors from NH3 emissions. Less CH4 is produced by solid manure or
when deposited on pasture or rangelands [23]. The average CH4 emissions as reported
by Chianese et al. [25] were 6.5, 5.4, and 2.3 kg per m2 per year from covered, uncovered
slurry, and manure in stacks, respectively. N2O emissions from liquid manure are negligible
during storage unless a surface crust is present, while a crust may create N2O emissions
while drying and aerobic conditions are developed [92,95]. The use of straw as a cover for
dairy cattle slurry, instead of a solid cover may produce higher CH4 and N2O emissions [96].
Covering semipermeable manure may reduce NH3, CH4, and odor emissions, but possibly
increase N2O emissions [93,94].

Cooling

An applicable practice, not expensive yet simple and efficient, is the cooling of ma-
nure [97]. Nevertheless, the proper temperature conditions for the storage of liquid manure
should be lower than 15 oC, as this has been reported to decrease the methane emissions [98].
In the same line, the combination of frequent emptying and slurry cooling can be used in
cold or mild climates under conditions of significant temperature difference [99].
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3.3.2. Process

There are various methods available for treating manure from simple to extremely
complex. Firstly, the separation into liquids and solids. The addition of solid materials
to the liquid manure is appropriate. Külling et al. [100] showed that farmyard manure
and deep litter manure handling systems tend to produce greater N2O emissions than
slurry-based systems.

Anaerobic Digestion

The process of anaerobic digestion refers to the deprivation of microorganisms oc-
curring under anaerobic conditions. The outcome is the generation of CH4, CO2, and
other gases as by-products. The aftermath is energy production, mainly biogas in the first
place. However, the biogas can produce electricity, and electricity is on the last level of the
process, thus signifying a very promising approach for lessening the burden of the GHG
emissions from manure and energy [101]. Therefore, biogas can replace and decrease farms’
fuel combustion, implying it as one of the most promising practices. The production of
biogas by materials such as biomass, manure, sewage, municipal waste, green waste, or
plant material and energy crops [102–104] makes it a relatively simple practice that can be
efficient at a large or small scale (village and household level) [105].

Composting

Composting is a natural exothermic process of aerobic decomposition, where mi-
croorganisms transform degradable organic matter into CO2 and water [95,106], providing
several advantages pertaining to manure handling, odor, pathogen control, organic matter
equilibrium, additional farm income, etc. [21] as well as lower density. Composting can be
organized in piles or ditches, either on a small or large scale whereas solid or liquid manure
can be used. Aeration may reduce CH4 but increase N2O and NH3 emissions [21,107,108]
due to the probability of generating aerobic environment, but the benefits on lessened
odor and CH4 emissions, compared with anaerobically stored manure, make it a favorable
option [21].

Acidification

Another modest recommendation is the use of acidic agents for NH3 emissions [21,109].
For instance, 14 to 100% reduction in NH3 emissions was reported by Ndegwa et al. [110],
by applying sulfuric, hydrochloric, or phosphoric acids and 67 to 87% reductions in CH4
by using sulfuric acid (pH of 5.5) [111]. However, the long-term impact of acidified manure
applied on soil pH have not yet been reported [21].

Ventilation-Biofiltration

A ventilation system provides the opportunity to filtrate emissions from facilities or
absorb them. Singh and Mallick [112] reported that the utilization of ventilation air methane
is considered as the most effective strategy to reduce methane emissions but nonetheless a
challenging one from the economical perspective. Additionally, some chemical compounds
show promising results based on filtration of NH3, NO2, or even CO2. For example, the
stimulation of photocatalytic properties the using of TiO2 by UV light, oxidates NH3 and
NOx [113,114] by using titanium dioxide (TiO2) paint on the walls [115,116]. Another
option is the use of oxides or hydroxides as well as carbonates or bicarbonates which are
known to exert high CO2 absorption and have therefore been examined as such [117].

3.3.3. Distribution and Deposition of Manure

Manure is a valuable source of available nutrients for crops, successfully replacing
artificial fertilizer [21]. However, there are a plethora of factors such as the type of soil,
moisture or the application technique affecting the level of emissions. Measures such as
improved timing (e.g., avoiding application before a rain), fitting nutrient application to
crop requirements [12,21], as well as avoiding spreading slurry on wet soils [118] can reduce
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emissions and additional cost for farmers. Another option is the dilution or reduction of
degradable carbon by solid separation or pre-treatment of anaerobic degradation [96,119].
Useful also could be the control of the nitrogen amount available for nitrification and
denitrification in soil [21].

A summary of the described applications is presented in Table 2.

Table 2. Sustainable strategies applied in manure for the mitigation of GHG emissions.

Manure Related Strategies Practice Impact on GHG Emissions References

Storage of manure

Covering dairy cattle slurry with
straw instead of solid cover ↓ CH4 and N2O [96]

Semipermeable covering ↓ NH3, CH4 and odour
↑ N2O [93,94]

Cooling slurry below 15 °C ↓ CH4 [98]

Process of manure Anaerobic digestion ↓ emissions from manure and energy [101]

Acidification Sulfuric, hydrochloric or
phosphoric acids ↓ 14–100% NH3 [110]

Sulfuric acid (pH = 5.5) ↓ 67–87% CH4 (mg/kg/h) [111]

↓ = decrease, ↑ = Increase

3.4. Other Strategies
3.4.1. Precision Feeding

Precision feeding is a technique that aims to harmonize nutrient requirements of the
different animals with the nutrient supply. A sustainable technique for nutrition is precision
feeding in order to maintain a healthy rumen and to maximize feed efficiency as to decrease
CH4 production [21]. Some promising results have already been shown, presented as
enhanced ewes’ milk production efficiency by 50%, as well as 42% lower environmental
impact measured as kg of FPCM milk (fat protein corrected milk) in a comparative study
of innovative farms that used precision feeding versus conventional ones [120]. However,
since it needs specific feed, equipment and management practices, it is not easily adapted
by extensive farmers because there is a lack of data on the nutrient requirements of the
animal breeds and on the quality of feed [21].

3.4.2. Genetics and Selection

The concept of this category is the selection of breeds that emit low levels of GHG; so,
to attain this, it is of foremost importance to further understand the mechanisms underlying
the correlation between host genetics and the rumen microbial consistency to obtain optimal
production with low environmental impact [121,122]. Therefore, a suggestion considerably
effective yet simple and reliable, is the handling of animals with low emissions through
genetics selection, as the trait for low emissions is heritable [123,124]. Moreover, the
host’s genome can affect the CH4 generation by triggering the growth of certain microbes
that regulate the amount of H2 [125]. This premise is based on the perception that host–
microbiome interaction is substantially orchestrated by host’s genes; thus, the methanogens
inhabitation and the methane formation could be manipulated through animal selection.

4. Circular Bio-Economy Sustainable Strategies in Ruminant Nutrition
4.1. WASTE Material: Food Waste as an Alternative Feed Source

Every year on a global scale about 32% of the food produced gets lost or wasted [126].
About 800 million people could cover their needs for food more than four times with this
portion of food [127]. One third of the total food produced every year are lost or wasted,
which accounts for 1.3 billion tons of food that was destined for human consumption. In
the food supply chain, food might be lost or wasted in every stage. In the early stages of the
food chain, during production, post-harvest and processing the food loss occurs [127–129],
while in the stages of retail and consumption the food waste occurs [128–130].
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Inadequate handling of food waste is responsible for negative environmental impacts
and many methods are used for disposal. Some widely used methods are anaerobic
digestion, composting or discarding in landfills. An alternative option of recycling food
waste might be its use as feedstuffs [131]. Food waste is a valuable source of energy and
nutrients and can be used in animal diets. The utilization of food waste is an economic
and sustainable method that also reduces the cost of animal feeding [132]. However, there
are many obstacles that makes difficult the reutilization of food waste as feedstuffs. The
high content of moisture [132], the variability of nutrients [19] or the potential content
of pathogenic microorganisms are some of them. Moreover, factors such as the source
of collection [133], the period of the year [134] and others [135–138] could determine the
composition of food waste.

The mixing of food waste with other feedstuffs is a practical method to overcome
these nutritional obstacles and create a balanced diet for animals [139]. Food waste can
be fed in different forms, such as wet, dried or ensiled. In the angle of safety, many
safety concerns emerge for the direct utilization of food waste in animal diets. This is the
reason that many prohibitions are enforced in the European Union about its use in animal
diets [140] and many regulations are applied in the United States [141], Japan, South Korea
and Taiwan [142].

4.2. Use of Agro-Industrial By-Products in the Diets

Agro-industrial by-products are considered as a valuable and cheap feed ingredient for
animal nutrition. A sustainable utilization of these products is supported within the food
chain, developing a circular economy strategy. Meanwhile, in the last decades consumers
seem to have moved towards natural and clean animal products from farms which follow
a sustainable approach in order to be safe and healthy [143]. The use of agro-industrial
by-products in ruminant diets could support their growth and productivity, resulting in
edible food for human consumption. Many assets could emerge, such as a reduced feed
cost for farmers, the production of value-added products or an improved health profile for
animals [144].

The different types of agro-industrial by-products are obtained during processing
methods, such as the production of oil, sugar, products derived from fruits or vegetables,
roots or tubes [145]. Production of wine and oil are corresponded for grape and olive
pomace, fruit by-products (apple, citrus) are derived from fruits, jelly or jam industries and
vegetable by-products from the processing of tomatoes, potatoes or carrots [146]. All of
them can be used as raw materials or after processing with several methods, for example
drying or more advanced techniques in order to pick specific compounds. However, there
are some limitations concerning their use, with the most important of them the large
compositional variability depending on the processing method used, as their availability
is strictly affected by the season of the year and the area, while undesirable contaminants
with or inorganic origin are present [147,148]. Preservation treatments are important for
product stabilization, seasonal availability and for the increasing of products’ shelf-life,
especially for those rich in moisture and lipids [149,150].

4.2.1. Apple By-Products

The process of apple fruit generates large quantities of solid and liquid by-products.
As far as the solid part is concerned, it consists mainly of skin, pulp and seeds that are
generated from the production of apple juice, jam and sweets and is known as apple
pomace. The disposal of apple waste is connected with the release of greenhouse gases,
because as a high biodegradable material it is disposed of in landfills, incinerated or sent
for composting [151].

Using apple pomace in animal diets could help to reduce the environmental issues of
disposal. Rich in fermentable carbohydrate, pectin, crude fiber and minerals, it is a valuable
industrial by-product for ruminant diets [152]. Steyn et al. [153] replaced ground maize
with dried apple pomace in the diets of Jersey cows in order to study its effect on milk
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yield, with four inclusion levels (0, 25, 50, 75%). They found no differences concerning
the composition of the protein and fat of the milk. A mix of ensiled apple and tomato
pomace in a ratio of 50:50 was used by Abdollahzadeh et al. [154] in order to evaluate the
performance of Holstein cows. According to their results, this mix could replace 30% of
cows’ diet with a small increase in milk production, and with no other adverse effect.

4.2.2. Citrus By-Products

The remaining residues of citrus fruits from juice extraction are considered as the
citrus by-products [155]. It consists mainly of peels at about 60–65%, 30–35% is the pulp
and 0–10% from seeds. Citrus pulp is an extraordinary source of energy for ruminants.
The utilization in animal diets could limit management problems concerning the disposal
of citrus residues. The dried citrus pulp is also rich in fiber and calcium and can be a
valuable and cheap feedstuff. Fibers from citrus contains associated bioactive compounds
(flavonoids) and this is a remarkable trait compared to the usual dietary fibers.

In the diet of dairy cows a replacement of corn grain (in 0, 15, 30%) with pelleted citrus
pulp was studied by Santo et al. [156]. They did not observe any negative effect on the
composition and quantity of the milk produced. Moreover, effects in many parameters
were studied after the inclusion of citrus pulp and the replacement of cereals in sheep diets.
Accordingly, meat oxidative could improve with an inclusion of 24–35% [157,158] of the
protein content [159] and an increased concentration of meat PUFAs [160]. Different levels
of citrus pulp (10–45%) were evaluated [161,162] and no significant effects were found in
lamb growth performance parameters, feed intake and carcass traits.

4.2.3. Grape By-Products

Grape by-products are derived during the destemming, pressing and extracting pro-
cess of grapes. Annually, large portions of grape waste are produced, posing management
concerns [163]. Waste from grape processing are mainly stems and grape pomace such as
grape skins, stems and seeds that compose the solid part [164]. From the total amount of
waste, grape pomace accounts for 62%, wine lees accounts for 14% and stems 12% [165].

In a study carried out by Moate et al. [166], a reduction of methane emissions of
about 20% was observed when dairy cows consumed about 5 kg of grape pomace per day.
Moreover, no negative effects were found in milk quality traits and plasma biochemical
parameters with the exception of urea in cows fed 3 kg/day grape pomace [167]. In fattening
lambs, the inclusion of 10% in their diets did not affect their growth performance [168].
Furthermore, as far as the meat fatty acid concentration is concerned, a significant increase
in linolenic acid and an improvement in oxidative stability of the meat was observed [169].

4.2.4. Olive By-Products

The extraction of olive oil generates large quantities of olive by-products that can lead
to the degradation of the environment (pulp, skin, olive grains) [170]. An approximate
amount of 800 g olive cake are produced by 1 kg olives [171]. The use of olive by-products in
livestock diets would alleviate the environmental impacts caused and eliminate the feeding
cost of animals [172]. Due to its high fiber content, olive cake could be used in ruminant
diets. The composition content of it depends on the cultivation technique, the method of
oil extraction, factors that affect the nutritional value and the preservation techniques that
were followed [173].

Many studies were carried out in order to investigate any possible effects on the
growth performance, after the inclusion of olive cake in ruminant diets, with neutral or
positive results. An addition of 15% olive cake had no significant negative results in the
daily weight gain, final body weight and dressing percentage of lambs [174]. Farmers
could reduce lambs’ feeding cost by 75%, with the use of olive-cake based feed blocks, with
no negative effect on their performance [174]. Moreover, Chiofalo et al. [175] used olive
cake to substitute cereals in beef cattle diets. In that study, after the inclusion of 7 and 15%
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olive cake an increase in the body weight, average daily weight gain and carcass traits
was found.

4.2.5. Tomato By-Products

The quantity of tomato grown every year on a global scale is estimated at 180 million
tons [176]. The production of tomato juice and puree related with the generation of
several wastes, mainly peels and seeds. About 4.5% of the fresh tomato weight accounts
as residues, 3.5% comes from peels and 1.5% comes from seeds. Tomato pomace is a
by-product of the canning industry depending on the following procedure and the source
of raw tomatoes. The high moisture content is a limiting factor that decreases the storage
life of this by-product. It can be used in animal diets fresh, dried or ensiled as an alternative
and economic feed.

Tomato by-products could be used in ruminant diets as a valuable and cheap in-
gredient, representing a rich source of energy and nutrients. The addition of tomato
by-product at a level of 40% could improve the quantity and the quality of milk but did
not affect physiological characteristics of goats [177]. The supplementation of fattening
ruminants diets with tomato pomace at the level of 180 g/kg did not affect negatively
rumen fermentation [178,179].

A summary of the aforementioned strategies is presented in Table 3.

Table 3. Circular bio-economy sustainable strategies applied in ruminants’ nutrition.

Strategies Practice Effects in the Sustainability Reference

Precision feeding Innovative vs. conventional farming systems ↑ 50% in milk production of ewes and ↓ 42%
CF (kg CO2eq/kg FPCM) [120]

Amino acids and trace elements ↑ feed and N efficiency [88]

Waste valorization Food waste
Recycling food waste [131]

Reduce cost of feeding [132]

Agro-industrial By-Products

Replacement of ground maize

0, 25, 50, 75% dried apple pomace in diets of
dairy cows − protein and fat in milk [153]

50:50 ensiled apple and tomato pomace ↑milk production
[154]− adverse effect with inclusion of 30%

Replacement of corn grain in
dairy cows

0, 15, 30% of pelleted citrus pulp in dairy
cows’ diet − composition and quality of milk [156]

Replacement of cereals

Different levels of citrus pulp in sheep diet
↑ 24–35% oxidative stability [157,158]

↑ protein content [159]
↑meat PUFAs [160]

Different levels 10–45% in lambs − growth performance parameters, feed
intake, carcass traits [161,162]

5 kg of grape pomace/day in dairy cows ↓ 20% CH4 [166]
10, 15, 20% grape pomace in lamb diet – performance on level of 10% [167]

15% olive cake − daily weight gain, final body weight,
dressing percentage of lambs [174]

7 and 15% olive cake ↑ body weight, average daily weight gain,
carcass traits of beef cattle [175]

40% tomato by-product in goat diet ↑milk composition and production
[177]− physiological characteristics of goats

60, 120, 180 g/kg tomato pomace in
fattening ruminants − rumen fermentation [179]

↓ = decrease, ↑ = increase, − = no effect

5. Conclusions

Conclusively, there is a plethora of actions for maintaining sustainable and envi-
ronmentally friendly small ruminant production. As has been described, the nutritional
strategies, mainly through the utilization of novel feed ingredients, additives and practices
over those previously well established (e.g., insects, agro waste or by-products) have been
regarded as potentially promising options. Moreover, the nutrition also affects manure
content and thus the emissions generated. Therefore, options for the manure as well as the
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energy, needed for the farm operations, underline another way of sustainable production.
The composition of the proportions and additives affect the form and amount of N manure.
The future is promising if available strategies are applied in time.
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