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Abstract: Vehicular platooning is one of the most challenging issues affecting the level of service
(LOS) of two-lane roads. This phenomenon has been involved with variables governing performance
measures. Thus, to improve the quality of these roads and predict a comprehensive model for future
plans under this phenomenon, the present study aimed to evaluate the effect of vehicular platooning
variables on performance measures and then identify the critical headways of vehicular platooning
associated with the vehicle-gap-acceptance behavior. Multiple linear regression (MLR) and Bayesian
linear regression (BLR) models were used to develop performance measurement models that are
based on conjugate Bayesian analysis. The vehicular platooning was formed in the threshold of a time
headway of 2.4 s. According to a comparative evaluation of the developed models, the best predictive
model was found between the traffic flow and the number of followers per capacity (NFPC). In
addition, the BLR model showed a higher accuracy rate in predicting NFPC compared with the
MLR model due to low errors and high prediction performance. Thus, NFPC was introduced as a
surrogate performance measure, which had a premier capability to predict the LOS for unsaturated
and saturated traffic conditions compared with the two performance measures from the Highway
Capacity Manual (2010), including percent time spent following and average travel speed.

Keywords: two-lane roads; vehicular platooning; performance measures; level of service; Bayesian
approach

1. Introduction

Two-way two-lane rural roads play important roles in road transportation facilities.
They serve two primary purposes of transportation and accessibility thanks to their unin-
terrupted traffic-flow facilities and no limitation on the movement of vehicles along the
roads. According to the Iranian Road Maintenance and Transportation Organization [1],
two-way two-lane rural roads account for approximately 30% of the network roads in Iran.
Owing to the complex interaction of vehicles in one direction and the opposite direction,
measuring traffic performance on two-lane roads is a challenging issue for traffic engineers
and managers. Further, because two-lane roads are the essential roads in rural districts,
platooning formation from the high percentage of heavy vehicles, the higher likelihood of
overtaking and lane changes is widespread in comparison with other urban roads [2–5].
On urban roads, owing to the high speed and the high number of lanes, the formation of
vehicular platooning is relatively lower than that on rural roads, such as two-lane roads [6].
Given the complexity of this phenomenon, traffic engineers frequently look for methods
and measures to define the traffic capacity and quality of traffic flows for two-lane roads.
According to some studies [7–11], vehicular platooning significantly affects the quality of the
operational performance of two-lane roads, including the average travel speed (ATS) and

Sustainability 2023, 15, 4037. https://doi.org/10.3390/su15054037 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15054037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-9113-524X
https://orcid.org/0000-0001-9667-252X
https://orcid.org/0000-0001-9005-4579
https://doi.org/10.3390/su15054037
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15054037?type=check_update&version=2


Sustainability 2023, 15, 4037 2 of 26

capacity, leading to a reduction in the level of service (LOS). When platoons form in two-lane
roads, variables that contribute to performance measures affect the quality of traffic flow and,
accordingly, decrease operational performance [3,12–16]. Consequently, reducing the quality
of the traffic flow and operational performance under the effect of vehicular platooning
has a negative impact on the safety and risk of drivers, playing a role in collisions [17–21].
The Highway Capacity Manual (HCM) [22] has defined two performance measures for
determining the LOS for two-lane roads, including percent time spent following (PTSF) and
ATS. Platooning is defined when the time headway between follower and leader vehicles is
3 s [22,23]. However, other studies have shown that PTSF under various traffic-flow condi-
tions is inconsistent with the 3 s rule [23–25]. Al-Kaisy and Durbin [2] introduced the ATS
measure as the average percentage of travel time for the platoon of vehicles at a speed rate
below the average. Owing to limitations in performance measures (PTSF and ATS), several
studies have been conducted, and they have resulted in the introduction of some additional
performance measures, including follower density (FD), the ATS of passenger cars (ATSpc),
the percentage of vehicles impeded (PI), and other measures [2,25–28].

Thus, introducing a surrogate measure as an alternative could help traffic engineers
to better measure traffic performance and the rate of the traffic stream. Further, the im-
provement of models for the performance measures leads to an accurate estimation of the
performance and thereby the LOS of two-lane roads. In addition, strategies and plans based
on the development of two-lane roads according to necessity would be competitive and
allow the implementation of road management organizations and road traffic controllers. In
this regard, the present study investigates the effect of vehicular platooning characteristics
on performance measures for two-lane roads, followed by identifying the critical headways
of platooning by accounting for the vehicle-gap-acceptance behavior. Four case studies
on two-lane roads in the Gilan province of Iran were used in this study. This province
has attractive sightseeing areas. Most of the roads leading to these areas are accessed by
two-lane roads. Additionally, the industrial areas in the province are accessed by two-lane
roads. These case studies were selected on the basis of the high demands of their traffic,
their heavy traffic flow, and thereby their more-frequent vehicular platooning.

Next, the Pearson correlation is applied to examine the relationships between vehicular
platooning and performance measures. Depending on the normal conjugate function, a
Bayesian approach or multiple linear regression (MLR) models are proposed for the BLR
model in order to develop performance measures for two-lane roads as a function of
vehicular platooning. Further, a comparative evaluation of Bayesian linear regression
(BLR) and MLR models is considered on the basis of prediction performance criteria
and statistical criteria, including the p-value, F-value, and R2 value, for finding the most-
influential vehicular platooning variable on performance measures. Thereafter, the LOS is
evaluated among the measures for identifying the optimal performance measure. Finally,
in accordance with the optimal measure, the classification results of two-lane roads are
compared with the HCM [22].

The remaining sections of this study are explained as follows. Section 2 reviews the
studies relevant to the examination of the platooning phenomenon and its effect on traffic
performance by using platooning variables and performance measures from two-lane roads.
Thereafter, it discusses the research gap in the previous studies to highlight the paper’s
overarching idea and its applied methods. Section 3 describes the research methodology for
two-lane roads and denotes the platooning variables and performance measures by using
the empirical data from different sites in Iran. Further, the Pearson correlation is evaluated
as the initial investigation of the relationship between variables and measures in this section.
Thereafter, the MLR and BLR models are applied to develop performance measurement
models and select a surrogate measure as the optimal performance measure under the effect
of vehicular platooning. Accordingly, a comparison evaluation is provided throughout the
proposed models. Section 4 presents the results and a discussion of the proposed measures
and developed models. Finally, Section 5 concludes the research findings.
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2. Literature Review

Numerous studies related to the evaluation of the effect of vehicular platooning on the
quality of traffic flow and traffic measures in two-lane roads are described, as follows. Kim
and Elefteriadou [29] investigated the effect of heavy vehicles (%HV) on the performance
measures of two-lane roads using ATS and capacity. The results indicated that capacity
decreased by 40% when ATS was reduced. Penmetsa et al. [30] proposed a measure for the
LOS classification by using the number of followers as a proportion of capacity (NFPC). The
results revealed the superiority of this measure over the PTSF measure in the HCM [22] to
evaluate the quality of traffic flow and traffic performance on Indian roads. Jrew et al. [31]
used performance measures such as ATS, free-flow speed (FFS), and the PTSF to evaluate
the LOS of two-lane roads in Jordan. They found that an increase in ATS and FFS led to an
improvement in the LOS.

Some studies have also investigated the effect of vehicle type, ATS, FFS, and PTSF on
the LOS of two-lane roads. The results revealed that capacity improved as ATS and FFS in-
creased, while PTSF was accompanied by a decrease in capacity and the LOS [32,33]. Bessa
and Setti [34] introduced PTSF and ATS as the main performance measures of two-lane
roads affecting the LOS of two-lane roads. Moreover, Gaur and Mirchandani [35] proposed
vehicular platooning in two-lane roads by using traffic flow, follower density (FD), number
of platoons, and time headway distribution for measuring traffic performance. Arasan and
Kashani [36] also identified platoon size as the most effective vehicular platooning variable
on two-lane-road performance measures, including ATS and percentage of followers (PF).
Some studies have emphasized the role of vehicle-gap acceptance, along with the traffic
flow of two-lane roads, on platoon size by using time headway as a threshold value for
identifying vehicular platooning [37–41]. Moreover, some other studies have indicated that
platooning depends on time headway. Time headway for platooning ranges from 3 to 7 s,
significantly affecting performance measures such as ATS, FD, and platoon speed [2,42,43].
Yang et al. [44] found that %HV and platoon size were negatively related to traffic flow on
Dutch highways.

Some studies have also reported that under the emergence of time headways and
%HV, vehicular platooning negatively affected the performance measures of two-lane roads,
including ATS and FFS [45–47]. Other studies have proposed that platoon size and %HV
are the main vehicular platooning variables influencing the performance measures of two-
lane roads, measures such as ATS, FFS, FD, and PF [6,48]. Hashim and Abdel-Wahed [49]
introduced FD as the surrogate performance measure among ATS, FFS, %HV, ATS of
passenger cars (ATSpc), ATSPC as a percentage of the free-flow speed of passenger cars
(ATSpc/FFSpc), and ATS as a percentage of free-flow speed (ATS/FFS) under vehicular
platooning for evaluating the LOS of two-lane roads in Egypt. They indicated that traffic
flow has the greatest effect on FD. Moreover, some studies have investigated the effect of
vehicular platooning variables (i.e., traffic flow and time headway) on ATS in two-lane
rural roads. They showed that time headway was strongly correlated with ATS rather
than with traffic flow [50,51]. Likewise, Moreno [52] introduced %HV as the variable most
common to cause platooning compared with other variables (i.e., traffic flow, time headway,
and opposing flow), impacting traffic performance variables such as the ATS and FD of
two-lane roads in Spain. Al-Zerjawi et al. [53] found a strong relationship between some
platooning variables, such as flow, time headway, the number of overtaking (NO) vehicles,
and performance measures such as the ATS and PF of two-lane roads in Al-Mishkhab, Iraq.
Furthermore, Ahmed and Easa [54] developed performance measurement models that were
based on the PTSF of two-lane roads by means of the threshold of time headway. Kim [55]
observed that the %HV is the most-influential vehicular platooning variable compared
with platoon size and NO on performance measures such as ATS, FD, and PTSF. Previous
studies have demonstrated that the most effective vehicular platooning variables on the
performance measures include the %HV and platoon size; other performance measures
include ATS, FD, and platoon speed [33,56–61].
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Jin et al. [62], in a study focused on evaluating the impact of vehicle platooning on
highway congestion, used a fluid-queuing approach. They showed that as the number of
platoons increases, it leads to more congestion in traffic flow. Mena-Oreja et al. [63] also
investigated the platooning maneuvers on traffic flow under mixed traffic conditions. They
concluded that mixed traffic flow has an influencing effect on increasing the number of
platoons. Kita and Yamada [64] introduced a vehicle velocity control approach that accounted
for platoon merging. They showed that their model could successfully control the speed of
drivers with a combination of platooning and merging. Zhu et al. [10] developed a dynamic
model that was based on the formation of vehicular platooning on two-lane roads. Their
results showed that an increase in the percentage of heavy vehicles led to more platooning in
traffic flow. Moreover, Zhu et al. [10] concluded that a heterogeneous traffic flow, compared
with a homogenous traffic flow, has a direct effect on the emergence of platoons. Al-Kaisy [4]
reported that two-lane roads have more potential for vehicular platooning compared with
other roads owing to the traffic composition of vehicles, overtaking maneuvers, and the
speed beneficence of cars in comparison with heavy vehicles. Mauro et al. [65] developed a
statistical model to evaluate the platoons of vehicles on two-lane roads. They indicated that
the platoons of vehicles play important roles in traffic-flow characteristics. Further, developed
statistical models provide a better performance prediction of the quality of two-lane roads
than conventional statistical models do.

Therefore, a review of the previous studies relevant to the effect of vehicular platooning
on the performance measures of two-lane roads, as shown in Table 1, revealed that no recent
study has comprehensively evaluated the effect of vehicular platooning characteristics on
the quality of traffic flow and traffic performance (i.e., time headway, platoon size, %HV, and
opposing flow) and performance measures (i.e., ATS, platoon speed, NO, FD, PI, PF, NFPC,
ATSpc, ATSpc/FFSpc, and ATS/FFS). The present study evaluated vehicular platooning
under the critical thresholds of time headway by using vehicle-gap-acceptance behavior
and the relationships between platooning variables influencing performance measures.
Thereafter, the MLR and BLR models, based on regression and conjugate Bayesian analysis,
respectively, were taken into consideration to develop performance measurement models.
Accordingly, the optimal surrogate measures were selected on the basis of statistical criteria.
Finally, the surrogate measure was compared with the HCM [22] regarding the effect of
vehicular platooning on the LOS of two-lane roads.

Table 1. Summary of literature review.

Author (Year) Subject Platooning Variable and
Performance Measure Conclusion

Gaur and
Mirchandani [35]

A method for real-time
recognition of vehicle platoons

Traffic flow, FD, number of
platoons, and time headway

Vehicular platooning as the
most-influential phenomenon on

performance measures

Arasan and
Kashani [36]

Investigating the most effective
vehicular platooning variables on

performance measures
Platoon size, ATS, and PF

Platoon size as the most effective
vehicular platooning variable on

performance measures

Al-Kaisy and
Karjala [6]

Evaluating indicators of
performance on two-lane

rural highways

Platoon size, heavy vehicle,
ATS, FFS, FD, and FP

Identification of performance
measures under the effect of

vehicular platooning

Kim and
Elefteriadou [29]

Evaluating the effect of %HV on
the capacity of two-lane roads HV, ATS, flow, capacity Reduction in capacity under the

effect of heavy vehicle

Hashim and
Abdel-Wahed [49]

Investigating performance
measures for rural two-lane

roads in Egypt
Flow, ATS, FD, and PF

Follower density as the surrogate
performance measure under

vehicular platooning



Sustainability 2023, 15, 4037 5 of 26

Table 1. Cont.

Author (Year) Subject Platooning Variable and
Performance Measure Conclusion

Nadimi et al. [45]
Time headway analysis using

vehicle types affecting on
performance measures

Time headways, heavy
vehicles, ATS, and FFS

Time headways and heavy
vehicles with a negative effect on

performance measures

Rossi et al. [50]

Flow-rate effects and the
relationship between vehicular

platooning and traffic
characteristics in two-lane roads

Flow, time headway, and ATS
Time headway with a strong

correlation with ATS
instead of flow

Penmetsa et al. [30] Evaluation of LOS under
vehicular platooning Flow, NF, NFPC, and PTSF

NFPC as the best platooning
indicator compared with
PTSF in the HCM (2010)

Jrew et al. [31]
Analysis and improvement of the

LOS in two-lane roads under
vehicular platooning

ATS, FFS, and PTSF An increase in ATS and FFS and a
reduction in PTSF

Boora et al. [33] A study of performance measures
in two-lane roads

ATS, FFS, vehicle type,
and PTSF

Improvement of traffic
performance in two-lane roads

Bessa and Setti [34]
Identifying the most effective

performance measures
in two-lane roads

PTSF and ATS
PTSF as the main performance

measure of two-lane roads
affecting the LOS

Al-Kaisy et al. [43]
An empirical analysis of vehicle
time headways on platooning

formation

Time headway, platoon size,
platoon speed, ATS, and FD

Time headway between 3 and 7 s
for forming vehicular platooning

Zhang et al. [41]
Examination of vehicle-gap

acceptance on the formation of
vehicular platooning

Time headway, platoon size,
flow, and gap acceptance

Platoon size by vehicle-gap
acceptance and the

critical headway

Yang et al. [44]
Evaluating the impacts of heavy

vehicles platooning on Dutch
highways

Heavy vehicles,
platoon size, and flow

Heavy vehicles and platoon
size have a negative

relationship with traffic flow

Moreno [52]
Identifying platooning variables

on performance measure in
two-lane roads in Spain

Flow, time headway, opposing
flow, %HV, ATS, and FD

%HV as the main platooning
variable affecting

performance measures

Al-Zerjawi et al. [53] Traffic characteristics of two-lane
roads in Iraq Flow, ATS, and NO

A strong relationship between
platooning variables and
performance measures

Ahmed and Easa [54]

Development of performance
measurement models under

vehicular platooning in two-lane
highways

Flow, ATS, and PTSF

PTSF as the main performance
measurement as compared

with the HCM (2010),
with low error in prediction

Kim [29]
Controlling heavy vehicle

platoons according to platooning
characteristics

Platoon size, %HV, NO,
ATS, FD, and PTSF

%HV as the main influencing
platooning variable on

performance measures in
comparison with others

Jain et al. [61]
Evaluating the most effective

vehicular platooning variables on
performance measures

ATS, PTSF, FD, HV (%),
flow, platoon size, and

platoon speed

Performance measures
contributing to the improvement

of traffic performance

Notes: ATS: average travel speed; NO: number of overtaking (vehicles); FD: follower density; PF: percentage of
followers; HV: percentage of a heavy vehicles; NFPC: number of followers per capacity; PTSF: percent time spent
following; LOS: level of service; HCM: Highway Capacity Manual; FFS: free-flow speed.
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3. Research Method

In the present study, first, vehicular platooning was evaluated by using vehicle-gap-
acceptance behavior to determine the threshold of time headway for measuring platooning
variables. Thereafter, the effects of vehicular platooning variables on the quality of traffic
performance on two-lane roads were investigated. In this step, the platooning variables were
extracted from the video recordings. Straight and longitudinal traps of 30 m were selected,
one per site at four sites in Iran. The weather conditions were daylight, clear, and sunny, and
the pavement had a suitable condition. In addition, during the videography, we controlled the
effects of longitudinal slope, intersections, and horizontal alignments in the straight sections
of the road. After collecting empirical data, the videography analysis method was performed
to extract field data at 30 frames per second by using videography software.

Second, the relationships between platooning variables and performance measures
were examined using the Pearson correlation to determine the initial relationships between
these variables. After examining the relationships, the MLR and BLR models, based on
the regression approach and the conjugate Bayesian analysis, respectively, were provided
for the development of performance measures for the variables and measures in order to
determine the most-influential variables on measures according to statistical criteria such as
R2 value, p-value, significant F-value, and errors. Thereafter, a surrogate measure associated
with the most effective variables was introduced by using the developed models and by
comparing it with the HCM [22]. Thus, in the present study, the following performance
measures were investigated:

• ATS: this measure is the best-known performance measure for evaluating road users’
perceptions of the quality of traffic flow on two-lane roads [22].

• ATSPC: this measure is more important than ATS on two-lane roads because passenger
cars have a greater variety of ATSs than heavy vehicles do under different traffic
conditions [6,66].

• ATS/FFS: this measure shows the average speed reduction from interactions with
other vehicles. Reducing this measure is accompanied by a decrease in the LOS.
Because the FFS of roads changes under various traffic conditions, including FFS in
the ATS could control the reduction rate of the LOS in two-lane roads [6].

• ATSPC/FFSPC: this measure is defined similarly to ATS/FFS, but it refers only to
passenger cars because of the sensitive interaction of their speeds under various traffic
conditions compared with heavy vehicles, especially under high traffic flow [26].

• PF: this measure denotes the percentage of vehicles with short headways in the traffic
flow. This measure is obtained on the basis of the headway, in which the HCM
considers 3 s [22] as the time headway for estimating PF. However, for other roads, the
time headway should be modified.

• FD: this measure represents the number of followers in a directional traffic flow over a
given unit of length, which is defined as 1 km or 1 mile. It is important to consider the
degree of congestion through PF and the density of two-lane roads [22,25]. This measure
is obtained by using density (D) and PF according to Equations (1) and (2), as follows:

D =
Q

ATS
. (1)

FD = D× PF. (2)

where Q is traffic flow (veh/h), ATS is the average travel speed (km/h), FD is the follower
density (veh/km), D is the density (veh/km), and PF is the percentage of followers (%).

• Percent impeded (PI): this measure represents the percentage of vehicles impeded in the
vehicular platoon’s traffic flow [2,67]. PI is calculated by using Equation (3), as follows:

PI = PP × Pi. (3)
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where PP is the probability of a vehicle in the vehicular platoon based on the time headway
considered for platoon and Pi is the probability that a vehicle will be impeded in the platoon.

• NO: this measure is the most popular measure for evaluating the LOS of two-lane
roads under platooning, reflecting the freedom of maneuverability [7,68,69].

• Platoon speed: one of the characteristics of vehicular platooning in a two-lane road
under the formation of the platoon of vehicles is platoon speed in the direction of
traffic flow, based on the following vehicle headway and slow-moving vehicles [70].
Vehicles in the platoon have a speed less than the ATS of the traffic flow [2].

• NFPC: this measure is introduced as a criterion for evaluating the effect of vehicular
platooning and potential followers in platoon size and the degree of congestion as
NFPC [30]. Thus, Equation (4) is proposed as a function of NF and capacity in two-lane
roads, as follows:

NFPC =
NF

max( f (Q))
. (4)

where NFPC is a number of followers per capacity in two-lane roads, NF is the number of
followers (veh/h), and max( f (Q)) is the maximum traffic flow (veh/h).

3.1. Case Study

In the present study, vehicular platooning variables and performance measures were
examined as the empirical data from four sites of two-lane roads in the Gilan and Mazan-
daran provinces of Iran, including Rasht-Somesara, Fuman-Saravan, Rasht-Jirdeh, and
Kiasar-Sari roads. During the collection of the field data, traffic flow varied, and the traffic
included mainly drivers with light or heavy vehicles. In addition, the speed limit was
90 km/h, and the width of each road lane was 3.65 m. Figure 1 represents the composition
of the traffic flow by the vehicle type passing on the two-lane roads. As shown in Figure 1,
Kiasar-Sari’s maximum percentage of passenger cars is about 96%, and the minimum
percentage of heavy vehicles is approximately 4%. However, Rasht-Somesara’s maximum
percentage of heavy vehicles was about 18%, and the minimum percentage of passenger
cars was nearly 82%.
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3.2. Data Collection

In the present study, the empirical data were collected from four sites of two-lane
roads using 5 min intervals over a total of 8 h. Thus, the sample size was considered as 96
for all roads. For modeling purposes and to obtain a comprehensive model that is based on
the proposed model, a summary of all data sets after the initial analysis is shown in Table 2.
All data sets consist of statistical information, including minimum, maximum, mean,
standard deviation, and variance for platooning variables such as flow, opposing flow, time
headway, %HV, and platoon size. Further, Table 2 represents the statistical information
for describing performance measures such as ATS, ATSpc, ATSpc/FFSpc, ATS/FFS, NO,
PF, FD, PI, platoon speed, and NFPC. The coefficient-of-variation (CV) values are highest
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for platoon size, flow, and opposing flow, indicating higher dispersion. This implies that
these performance measures such as FD, NO, and NFPC are more sensitive to variables
with higher CV. Thus, it is essential to investigate the effect of vehicular platooning on
performance and the relationships between the variables and measures.

Table 2. Total statistics of platooning variables and performance measures in all two-lane roads.

Variables Mean Std. Deviation Variance Minimum Maximum CV

Platooning
Variables

Flow (veh/h) 825.96 534.74 273,889.0 70.00 1810.00 0.65

Opposing Flow
(veh/h) 579.17 374.27 140,079.0 50.00 1268.00 0.64

Time Headway (s) 5.34 2.60 73.60 0.40 35.00 0.49

%HV (%) 11.00 5.88 34.54 3.00 25.00 0.53

Platoon Size (veh/h) 85.76 56.34 7.96 0.00 225.00 0.66

Performance
Measures

ATS (km/h) 66.87 10.75 110.50 36.00 81.00 0.16

ATSpc (km/h) 84.90 12.97 168.29 46.08 99.63 0.15

ATSpc/FFSpc 0.97 0.14 0.020 0.82 1.40 0.14

ATS/FFS 0.76 0.11 0.012 0.64 1.09 0.14

PF (%) 13.27 6.93 48.02 5.00 33.00 0.52

FD (veh/km) 7.89 5.19 27.12 1.17 20.75 0.66

PI (%) 0.20 0.08 0.006 0.02 0.31 0.40

NFPC 0.35 0.20 0.040 0.05 0.86 0.57

NO (veh/h) 33.38 21.45 445.20 0.00 96.00 0.64

Platoon Speed (km/h) 51.00 11.41 130.20 25.00 68.00 0.22

Notes: std. deviation: standard deviation; ATS: average travel speed; ATSPC: average travel speed of passenger
cars; ATS/FFS: average travel speed as a percentage of free-flow speed; ATSpc/FFSpc: ATSPC as a percentage of
free-flow speed of passenger cars; PI: percentage impeded; NO: number of overtaking (vehicles); FD: follower
density; PF: percentage of followers; %HV: percentage of heavy vehicles; NFPC: number of followers per capacity;
CV: coefficient of variation.

Figure 2 indicates the results from the examination of time headway after including
gap-acceptance behavior and platoon speed. Figure 2a illustrates a 1 s interval of time
headway for estimating the critical value as the threshold of vehicular platooning according
to the vehicle-gap-acceptance behavior and the intersection of the accepted and rejected
gaps from the selected four sites of two-lane roads. According to Figure 2a, the accepted
and rejected gaps intersect in a time headway of 2.4 s. Further, Figure 2b demonstrates the
relationship between the average platoon speed and the time headway of drivers regarding
the formation of vehicular platooning on the studied roads. According to Figure 2b, it
can be inferred that as the platoon speed of vehicles increases, this leads to a reduction
in time headway, and the gap acceptance of drivers reaches the critical point. Further, as
shown in Figure 2b, most of the platoons formed have a time headway longer than 2.4 s.
In time headways shorter than 2.4 s, platoon size based on the field data decreases. Thus,
an increase in the platoon speed causes a reduction in time headway, and the number
of platoons decreases. Further, as seen in Figure 2b, the platoon size of vehicles has its
maximum value as a platoon speed between 20 to 40 km/h.



Sustainability 2023, 15, 4037 9 of 26

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 28 
 

overtaking (vehicles); FD: follower density; PF: percentage of followers; %HV: percentage of heavy 
vehicles; NFPC: number of followers per capacity; CV: coefficient of variation. 

Figure 2 indicates the results from the examination of time headway after including 
gap-acceptance behavior and platoon speed. Figure 2a illustrates a 1 s interval of time 
headway for estimating the critical value as the threshold of vehicular platooning accord-
ing to the vehicle-gap-acceptance behavior and the intersection of the accepted and re-
jected gaps from the selected four sites of two-lane roads. According to Figure 2a, the ac-
cepted and rejected gaps intersect in a time headway of 2.4 s. Further, Figure 2b demon-
strates the relationship between the average platoon speed and the time headway of driv-
ers regarding the formation of vehicular platooning on the studied roads. According to 
Figure 2b, it can be inferred that as the platoon speed of vehicles increases, this leads to a 
reduction in time headway, and the gap acceptance of drivers reaches the critical point. 
Further, as shown in Figure 2b, most of the platoons formed have a time headway longer 
than 2.4 sec. In time headways shorter than 2.4 sec, platoon size based on the field data 
decreases. Thus, an increase in the platoon speed causes a reduction in time headway, and 
the number of platoons decreases. Further, as seen in Figure 2b, the platoon size of vehi-
cles has its maximum value as a platoon speed between 20 to 40 km/h. 

(a) 

(b) 

Figure 2. Examination of time headway, including gap-acceptance behavior and platoon speed: (a) 
1-s time interval of time headway for vehicle-gap-acceptance behavior and (b) relation between pla-
toon speed and time headway. 

  

0

10

20

30

40

0
10
20
30
40
50
60
70
80

1 4 7 1013161922252831343740434649525558616467707376798285889194

Ti
m

e 
he

ad
w

ay
 (s

)

Pl
at

oo
n 

sp
ee

d 
(k

m
/h

)

Sample number

Platoon speed (km/h) Time headway (s)

0

20

40

60

80

100

C
um

m
ul

at
iv

e n
um

be
r o

f g
ap

Gap acceptance (s)

Accepted gap Rejected gap

Critical gap equals  2.4 s

Figure 2. Examination of time headway, including gap-acceptance behavior and platoon speed:
(a) 1-s time interval of time headway for vehicle-gap-acceptance behavior and (b) relation between
platoon speed and time headway.

3.3. MLR Model

Linear regression models are one of the most widely used methods in statistical analy-
sis, and researchers have applied these methods in various applied sciences and engineering
fields. Different linear regression models are recommended depending on the number of
independent and dependent variables [71]. The MLR model is an appropriate statistical tool
to test whether there is an influence from independent variables on a dependent variable
and predict the value of the dependent variable, where the dependent variable y consists of
n observations and k independent variables (x1, x2, . . . , xj) [72]. Before applying the MLR
model, the Pearson correlation is used to determine whether there is statistical evidence
for a relationship between the independent and dependent variables [73]. Consider the
following regression model with various explanatory variables and coefficients by using
Equations (5) and (6), as follows [74]:

Y = β0 + β1X1 + β2X2 + . . . + β jXij + εi. (5)

Y = Xβ + ε. (6)

Thus, the MLR model in the form of a matrix is written as follows:

Y =


y1
y1
...

yn

; X =


1 x11 · · · x1j
1 x21 · · · x2j
...

...
. . .

...
1 xn1 · · · xnj

; β =


β0
β1
...

β j

; ε =


ε1
ε2
...

εn

. (7)
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where Y is the vector of observed random variables, which is a random normal vector
by dimension n; X is the independent observation matrix, which consists of n× (k + 1)
dimension and is named the design matrix; β is the vector of dimension (j + 1) of the
coefficient in the regression; and ε is the random error vector of dimension n of the ith
observation for i = 1, 2, . . . , n.

In Equation (7), β could be obtained by using Equation (8), based on the ordinary least
square (OLS) method, which is as expressed:

β̂ =
(
X′X

)−1X′Y. (8)

where X′ is the transpose of matrix X.

3.4. BLR Model Using Conjugate Prior Distribution

Recently, conjugate Bayesian analysis has been used as a predictive model of output
values in statistics and other engineering sciences [73]. This model, thanks to its utilizing
Bayesian theory, is better able to sufficiently predict output data compared with other
statistical models, such as multiple regression models [75–77]. Other advantages of using
conjugate Bayesian analysis compared with statistical models include having lower errors
and more-reliable accuracy [78]. Thus, the BLR model is one of the most common regression
techniques because the Bayesian approach uses the parameter estimation method. The
Bayesian approach is based on the prior function, likelihood distribution function, and
posterior distribution function. This approach is a new method among statistical methods,
playing a modifier role in the improvement of MLR models because the BLR model is
formulated on the basis of the MLR model [79–82]. The main difference between the
classical methods and the Bayesian approach is that the parameter β is an unknown
parameter. In classical methods, β is estimated via the probability distribution f (x, β),
while in the Bayesian approach, β is considered as a random variable with probability
distribution g2(β) as the function of the likelihood function L(x, β) and prior distribution
g1(β). Thus, in the Bayesian approach, the posterior distribution g2(β) is obtained by
multiplying the prior distribution by the likelihood function, leading to accurate parameter
estimation β [83–85]. In this approach, the parameter β is taken into account with random
variables, including β1, β2, . . . , βn and the probability function. The probability function
indicates all the information on and experiences from the parameters. Thereafter, the
prior information is added to the observed sample information. Because this approach is
unbiased, more samples lead to further average values of the samples and thus accurate
estimation of parameter β [86,87]. The steps involved in the BLR model are summarized in
Figure A1 in Appendix A. Consider the following regression model given in Equation (9):

Y = X β + ε (9)

where Y is the vector of observed random variables, which is a random normal vector
by dimension n; X is the independent observation matrix, which consists of n× (k + 1)
dimension and is named the design matrix; β is the vector of dimension (j + 1) of the
coefficient in the regression; and ε is the random error vector of dimension n. Thus, the
BLR model, based on the dependent variable and error ε, is written as follows:

Y ∼ n(Xβ, σ2 In)and ε ∼ n(0, σ2 In) (10)

where σ2 is the variance and In is the identity matrix. Therefore, the maximum likelihood
function, based on the sample information and normal distribution, is represented in
Equation (11), as follows:

L(β, σ|y, x ) =
1

(2π)
n
2 σn

exp
{
− 1

2σ2

[
(Y− Xβ)′(Y− Xβ)

]}
(11)
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For simplicity, Equation (11), in terms of its dependent and independent variables,
and Equations (12) and (13) are expressed as follows:

(Y− Xβ)′(Y− Xβ) = Y′Y−Y′Xβ− X′β′Y + β′X′Xβ. (12)

(Y− Xβ)′(Y− Xβ) = Y′Y− 2X′β′Y + β′X′Xβ. (13)

which assume that b0 = Z−1X′XY and Z = X′X.
Thereafter, by substituting the sum of the squared estimate of errors (SSE) into

Equations (12) and (13), Equation (14) is obtained, as follows:

(Y− Xβ)′(Y− Xβ) =
[
SSE(b0) + (β− b0)

′Z(β− b0)
]
. (14)

Thus, the maximum likelihood function of Equation (11) is rewritten in Equation (15),
as follows:

L(β, σ|y, x ) =
1

(2π)
n
2 σn

exp
{
− 1

2σ2

[
SSE(b0) + (β− b0)

′Z(β− b0)
]}

. (15)

By deleting the constants and the SSE(b0), which has the parameters β and the infor-
mation σ2, Equation (16) is expressed, as follows:

L(β) ∝ exp
{
− 1

2σ2

[
(β− b0)

′Z(β− b0)
]}

. (16)

The normal distribution of the parameter β is called the prior distribution, as g1(β),
which is estimated by Equation (17), as follows:

g1(β) ∝ exp
{
− 1

2σ2

[
(β− β0)

′Ω−1(β− β0)
]}

. (17)

where Ω is the precision matrix X that is estimated by Ω = X′X
S2 , where X′ and S2 are the

transpose of matrix X and an estimator of σ2, respectively. Thus, the posterior distribution
g2(β|y ) is obtained by using Bayes’s theory and merging the prior distribution function with
the maximum likelihood function L(β) according to Equation (16) and the prior distribution
g1(β) by using Equation (17), as denoted by g2(β|y ) ∝ g1(β).L(β) in Equation (18).

g2(β|y ) ∝ exp
{
− 1

2σ2

[
(β− b0)

′Z(b− β0) + (β− β0)
′Ω−1(β− β0)

]}
. (18)

Equation (18) is simplified by using assumptions such as c∗ = (b0− β0)
′ZΩ∗Ω−1(b0 + β0),

b∗ = Ω∗
(

Zb0 +Ω−1β0

)
, and Ω∗ =

(
Z +Ω−1

)−1
. Hence, the posterior distribution is refor-

mulated according to Equation (18) and written in Equation (19), as follows:

g2(β|y ) ∝ exp
{
− 1

2σ2

[
(β− b∗)′Ω∗−1(β− b∗) + c∗

]}
. (19)

Equation (19) indicates the posterior distribution as a normal distribution of a mean b∗, a
variance σ2, and covariance matrix σ2Ω∗, where β is N

(
b∗, σ2Ω∗

)
. In Equations (17) and (19),

the prior and posterior distributions have a normal distribution. Therefore, the prior distribu-
tion is named the conjugate prior distribution, which verifies the prior probability distribution.
Accordingly, the posterior distribution is applied to estimate the regression model parameters.
The following Bayes estimators are related to the parameters of the regression model β from
Equations (20)–(22), which are given as follows:

Ω∗ =
(

Z + Ω−1
)−1

, b∗bayes = Ω∗
(

Zb0 + Ω−1β0

)
. (20)
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b∗bayes =
(

Z + Ω−1
)−1

Zb0 +
(

Z + Ω−1
)−1

Ω−1β0. (21)

Thus, simplifying Equation (21) to calculate the estimated regression model leads to
the formation of Equation (22), which is written as follows:

b∗bayes = (H1b0) + (H2β0). (22)

where H1 =
(

Z + Ω−1
)−1

Z and H2 =
(

Z + Ω−1
)−1

Ω−1. In Equation (22), the regression
parameters are obtained to calculate the maximum likelihood weighted by the weights
matrix and the prior distribution average [86].

3.5. Comparison of Prediction Performance of Models

The prediction performance for the MLR and BLR models, using performance mea-
sures under vehicular platooning, is compared with the mean absolute percentage error
(MAPE). The purpose is to select the best predictive model in terms of acceptable error and
accuracy by using Equation (23), which is expressed as follows [30,80]:

MAPE =
1
N

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100%. (23)

where yi is the observed dependent variable based on the field data and ŷi denotes the
predicted value for the developed models based on the performance measures.

4. Results and Discussion

After examining the platooning variables and performance measures from the empiri-
cal data, the initial investigation of the relationships between these two variables using the
Pearson correlation is represented. Thereafter, the results of the development of the MLR
and BLR models for predicting performance measures concerning platooning variables
are obtained. Regarding the developed MLR and BLR models, the relationships between
dependent and independent variables are examined using statistical criteria such as the
R2, F-value, p-value, and t-value, along with errors in prediction performance, to select the
most-influential platooning variable on the performance measures. Thus, according to the
best fit model with low error and high prediction accuracy, a surrogate measure is proposed
as a performance measure to evaluate the LOS in two-lane roads. The results obtained
from the comparison evaluation in the present study with the HCM [22] are shown. The
obtained results and findings are described in the following section.

4.1. Pearson Correlation and MLR Model

After examining the platooning variables and performance measures in Table 2, a
Pearson correlation was performed, and the results are displayed in Table 3. According
to Table 3, it can be inferred that traffic flow has the highest correlation with NFPC,
ATS, platoon speed, FD, PI, PF, NO, and ATSPC, in that order. Opposing flow has a
strong correlation with NFPC, PF, ATS, FD, and PI, in that order. Further, examining the
relationships between %HV and performance measures revealed that %HV has a high
correlation with FD, ATS, PF, and PI, in that order. In addition, platoon size is significantly
related to platoon speed, PI, ATS, and ATSpc, in that order. Time headway also has a
significant correlation with ATS, NFPC, ATSpc, and FD, in that order.

After applying Equations (5)–(8) for the MLR model, the results were obtained, and
they are shown in Table 4. According to Table 4 and statistical criteria such as the R2,
F-value, p-value, and absolute value of the t-value, traffic flow significantly influences
the performance measures, including NFPC, ATS, platoon speed, FD, PI, PF, NO, and
ATSPC. Moreover, among the performance measures in Table 4, flow is identified as the
most-influential variable on NFPC thanks to its higher absolute value of coefficient, t-value,
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p-value (less than 0.05), and R2 for the best predictive model. However, other platooning
variables indicate a weak correlation with the performance measures in MLR models.

Table 3. Pearson correlation between platooning variables and performance measures.

Performance
Measures

Platooning Variables

Flow (veh/h) Opposing Flow (veh/h) %HV Platoon Size (veh/h) Time Headway (s)

ATS (km/h) −0.80 * −0.66 * −0.70 * −0.63 * −0.72 *

ATS/FFS −0.09 −0.09 −0.10 −0.15 −0.32

ATSPC (km/h) −0.48 * −0.27 −0.19 −0.56 * −0.60 *

ATSPC/FFSPC −0.07 −0.05 −0.08 −0.09 −0.08

FD (veh/km) 0.71 * 0.62 * 0.75 * 0.45 0.58 *

PI (%) 0.62 * 0.58 * 0.56 * 0.70 * 0.43

PF (%) 0.56 * 0.70 * 0.63 * 0.40 0.40

NO (veh/h) 0.52 * 0.36 0.20 0.37 −0.39

NFPC 0.84 * 0.75 * 0.38 0.39 0.67 *

Platoon Speed
(km/h) −0.76 * −0.41 −0.50 −0.75 * −0.33

Notes: ATS: average travel speed; ATSPC: average travel speed of passenger cars; ATS/FFS: average travel speed
as a percentage of free-flow speed; ATSpc/FFSpc: ATSPC as a percentage of the free-flow speed of passenger cars;
PI: percentage impeded; NO: number of overtaking (vehicles); FD: follower density; PF: percentage of followers;
%HV: percentage of a heavy vehicles; NFPC: number of followers per capacity. * The correlation is significant at
the 5% level (2 tailed). * r denotes the Pearson correlation. If r = 0, it is completely irrelevant; if 0 < r < 0.3, it is
incompletely relevant; if 0.3 < r < 0.5, it has low relevance; if 0.5 < r < 0.8, it has high relevance. However, if
0.8 < r < 1, it is a significant correlation. For r = 1, there is a high correlation between the two variables.

Table 4. Regression results of the performance measures.

Variable
Statistical
Analysis

Performance Measures

ATS
(km/h)

ATSpc
(km/h) ATSpc/FFSpc ATS/FFS PF (%) FD

(veh/km) PI (%) NFPC
Platoon
Speed
(km/h)

NO
(veh/h)

Constant

Coefficient 81.84 109.08 0.83 0.65 −1.27 0.25 0.21 −0.005 60.26 −3.21

t (p-value) 33.93
(0.00)

53.74
(0.00)

23.47
(0.001)

23.64
(0.00)

−0.98
(0.00)

0.27
(0.04)

12.85
(0.00)

−0.20
(0.001)

27.33
(0.00)

−1.35
(0.02)

Flow
(veh/h)

Coefficient −15.72 −2.54 −70.97 −69.27 1.22 4.34 1.78 0.53 −49.54 1.19

t (p-value) −4.28
(0.002)

−0.46
(0.001)

−10.30
(0.092)

−7.78
(0.081)

0.59
(0.04)

2.78
(0.00)

0.85
(0.003)

7.76
(0.004)

−3.34
(0.01)

0.50
(0.01)

Opposing
Flow

(veh/)

Coefficient −0.03 −0.023 −0.001 −0.003 0.016 0.008 0.001 0.001 −0.042 0.069

t (p-value) −3.91
(0.003)

−4.61
(0.06)

−3.89
(0.073)

−3.85
(0.082)

4.63
(0.003)

3.18
(0.02)

1.95
(0.004)

3.71
(0.01)

−7.07
(0.06)

10.73
(0.09)

%HV

Coefficient −0.65 −0.37 −0.016 −0.013 0.34 0.34 0.004 0.004 −0.28 0.034

t (p-value) −3.04
(0.03)

−2.03
(0.44)

−5.17
(0.081)

−5.17
(0.10)

2.92
(0.004)

4.18
(0.001)

2.84
(0.006)

1.96
(0.07)

−1.41
(0.059)

1.17
(0.11)

Platoon
Size

(veh/h)

Coefficient −1.09 −1.22 −0.025 −0.02 0.13 0.10 0.013 0.004 −3.19 1.43

t (p-value) −1.59
(0.01)

−0.86
(0.03)

−2.45
(0.32)

−2.47
(0.42)

0.34
(0.15)

0.383
(0.087)

2.80
(0.003)

0.59
(0.08)

−5.03
(0.02)

2.01
(0.13)
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Table 4. Cont.

Variable
Statistical
Analysis

Performance Measures

ATS
(km/h)

ATSpc
(km/h) ATSpc/FFSpc ATS/FFS PF (%) FD

(veh/km) PI (%) NFPC
Platoon
Speed
(km/h)

NO
(veh/h)

Time
Head-
way
(s)

Coefficient −0.40 −0.27 −0.01 −0.008 0.25 0.009 0.005 0.003 −0.081 −0.29

t (p-value) −3.49
(0.00)

−2.34
(0.007)

−6.08
(0.45)

−6.08
(0.50)

3.98
(0.21)

0.21
(0.031)

6.09
(0.07)

2.92
(0.021)

−0.77
(0.10)

−2.54
(0.21)

SSR 1983.67 9095.07 0.91 0.55 0.51 3343.82 0.39 3.24 6040.12 30,075.99

SSE 420.67 5886.96 0.85 0.46 0.19 1026.39 0.12 0.38 1421.36 12,436.42

SST 2404.34 14,982.03 1.76 1.01 0.70 4370.21 0.51 3.62 7461.48 42,512.41

R2 0.83 0.61 0.52 0.54 0.73 0.77 0.76 0.90 0.81 0.71

F (p-value) 100.69
(0.00)

60.45
(0.00)

35.97
(0.00)

56.24
(0.00)

79.22
(0.00)

90.86
(0.00)

87.86
(0.00)

189.44
(0.00)

94.21
(0.00)

66.07
(0.00)

Notes: ATS: average travel speed; ATSPC: average travel speed of passenger cars; ATS/FFS: average travel speed
as a percentage of free-flow speed; ATSpc/FFSpc: ATSPC as a percentage of free-flow speed of passenger cars;
PI: percentage impeded; NO: number of overtaking (vehicles); FD: follower density; PF: percentage of followers;
%HV: percentage of heavy vehicles; NFPC: number of followers per capacity. Values given in parentheses are the
t-statistic values of the coefficients. Sum of squares regression (SSR); sum of squares error (residual) (SSE); sum of
squares total (SST).

4.2. BLR Model

The platooning variables were applied to predict performance measures in two-lane
roads. The results were obtained for each performance measure as a function of platooning
variables in the BLR model by using Equations (9)–(22). The present study obtained the
prior and posterior distributions by using the Markov chain Monte Carlo (MCMC) method
for 600 iterations. Further, the noninformative independent normal prior distributions with
variance and the Gamma inverse distribution have been used for regression coefficients
and parameter σ2, respectively (Table 5). The highest posterior density (HPD) intervals for
all parameters have been determined at a significance level of 0.05 in all models. Owing
to the constraint of space, only the characteristics of prior and posterior distributions were
provided in Tables 5 and 6, as well as in Figure 3, which was used to estimate the parameters
of vehicular platooning affecting ATS on the basis of the trace plot of the MCMC chains.
A similar scheme is followed for estimating parameters in other performance measures,
the results of which are presented in Table 7. Thus, as it can be observed, the results based
on the Monte Carlo standard error (MCSE), Geweke’s test, and the p-value suggest that
the generated chains did not converge for all parameters of the investigated model at any
significant level. The results in Table 7 indicate that the relationship between platooning
variables and NFPC is stronger than the relationship between other platooning variables and
performance measures regarding the higher R2 value and the p-value among the proposed
BLR models. Further, flow significantly affects the performance measures, compared with
other variables, thanks to a higher coefficient and a p-value of less than 0.05.

The following general vector of parameter β for prior distribution is estimated ac-
cording to the noninformative independent normal prior distributions of each platooning
variable concerning ATS, which are obtained in Equation (24), as follows:

β0
′ = (75.34 − 10.99 − 0.09 − 0.23 − 0.61 − 1.23)′. (24)
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The precision matrix Ω is followed by Equation (25):

Ω = exp(+5)



0.0013 0.0378 0.0532 0.0771 0.0037 0.0643
0.0102 0.8512 1.3220 2.1080 0.6800 0.0489
0.0678 1.9710 6.5081 7.5501 0.6170 2.0130
0.0410 0.8830 7.2810 8.4600 0.5981 2.617
0.0026 0.0594 0.4406 0.6901 0.0047 0.0855
0.0112 0.3950 1.5980 2.5124 0.0051 0.8059

. (25)

Thus, Z, which is estimated according to Equation (26), is written as follows:

Z = exp(+5)



0.0020 0.0214 0.0841 0.0971 0.0043 0.0351
0.0235 0.9816 1.6319 2.3210 0.8760 0.0767
0.0863 1.4535 7.7646 8.6541 0.7640 2.1580
0.0753 0.6741 8.6531 9.6280 0.6530 2.7657
0.0033 0.0673 0.5421 0.8076 0.0053 0.0951
0.0233 0.4216 2.2670 2.7678 0.0071 0.8719

. (26)

To obtain the BLR model on the basis of using Equation (22), H1 and H2 are applied
as the weights matrix for the independent matrix and the prior distribution, respectively,
which are calculated by Equations (27) and (28), as follows:

H1 =
(

Z + Ω−1
)−1

Z =



0.0014 0.0015 −0.0046 0.0075 0.0049 0.0128
−0.0037 0.0018 −0.0023 0.0014 −0.0078 0.0269
−0.0064 −0.0038 0.0047 −0.0043 0.0642 −0.0050
−0.0057 0.0045 0.0033 0.0082 −0.0534 0.0087
0.0038 0.0077 −0.0026 0.0079 0.0155 0.0954
0.0036 −0.0019 0.0072 −0.8100 0.0137 0.2739

. (27)

H2 =
(

Z + Ω−1
)−1

Ω−1 =



−0.0011 −0.0012 0.0043 −0.0070 −0.0043 −0.0012
0.0035 −0.0016 0.0019 −0.0010 0.0760 −0.0025
0.0060 0.0031 −0.0042 0.0040 −0.0610 0.0480
0.0046 −0.0041 −0.0029 −0.0074 0.0481 −0.0076
−0.0033 −0.0067 0.0019 −0.0066 −0.0143 −0.0851
−0.0030 0.0016 −0.0065 0.7478 −0.0127 −0.2019

. (28)

Thus, the parameters are estimated and denoted by b0
′ for the platooning variables, as

expressed in Equation (29):

b0
′ = (+59.85 − 5.76 − 0.12 − 0.40 − 0.15 − 0.37)′. (29)

Thereafter, by applying Equation (22), the Bayes estimator for the parameters of the
BLR model is obtained from Equation (30):

b∗bayes
′ = (73.64 − 9.76 − 0.04 − 0.25 − 0.55 − 0.87)′. (30)

Therefore, the final BLR model is obtained by Equation (31), and shown in Table 7, as
follows:

Ŷbayes = 73.64− 9.76X1 − 0.04X2 − 0.25X3 − 0.55X4 − 0.87X5. (31)

4.3. Analysis of the Most-Influential Platooning Variable on Performance Measures

For an analysis of the effect of platooning variables and performance measures in MLR
and BLR models, see Tables 4 and 7 and Figure 4, which depict the results of the highest
relationships. As displayed in Figure 4, traffic flow has a strong relationship with NFPC,
ATS, platoon speed, and FD, in that order. This means that an increase in traffic flow leads
to a decrease in ATS and platoon speed and an increase in NFPC and FD. Further, according
to the results of Figure 4, the most-influential platooning variable on performance measure
regarding R2 coefficient is the relationship between flow and NFPC, compared with other
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variables, as verified by the results in Tables 4 and 7. Thus, the best predictive model
for representing the surrogate performance measure is the relationship between flow and
NFPC in the MLR and BLR models.

Table 5. The prior and posterior distributions.

Variable
Prior Distributions

Posterior Distributions

Mean Std. Deviation
HPD

Mean Std. Deviation Minimum Maximum

Intercept 75.34 2.7 73.64 2.64 68.80 78.22

Flow (veh/h) −10.99 1.29 −9.76 1.16 −11.61 −7.23

Opposing Flow (veh/h) −0.09 0.08 −0.04 0.04 −0.13 0.03

%HV (%) −0.23 0.009 −0.25 0.013 −0.26 −0.12

Platoon Size (veh/h) −0.61 0.012 −0.55 0.014 −0.93 −0.19

Time Headway (s) −1.23 0.015 −0.87 0.012 −1.32 −0.46

Notes: HPD: highest posterior density (HPD); σ2: the square of standard deviation.

Table 6. Geweke convergence diagnostics and MCSE.

Variable
Geweke Diagnostics

MCSE
z p-Value

Intercept 1.37 0.102 0.032
Flow (veh/h) 0.46 0.089 0.016

Opposing Flow
(veh/h) 0.12 0.076 0.013

%HV (%) −0.57 0.065 0.033
Platoon Size (veh/h) −0.24 0.059 0.028

Time Headway (s) −0.13 0.067 0.018
Notes: MCSE: Monte Carlo standard error; %HV: percentage of a heavy vehicles; Geweke’s test is a statistical test
for estimating the convergence of Markov chain Monte Carlo simulations [88].
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Figure 4. Relationship between traffic flow, platoon speed, FD, ATS, and NFPC: (a) Relationship
between flow and ATS, (b) relationship between flow and platoon speed, (c) relationship between
flow and FD, (d) relationship between flow and NFPC. Notes: ATS: average travel speed; FD: follower
density; NFPC: number of followers per capacity.
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Table 7. Coefficient for variables affecting performance measures.

Performance Measures

Platooning
Variables

ATS (km/h) ATSpc ATSpc/FFSpc ATS/FFS PF (%) FD (veh/km) PI (%) NFPC NO (veh/h) Platoon Speed (km/h)

β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value

Constant 73.64 0.001 98.65 0.003 0.39 0.002 0.41 0.001 −2.60 0.004 0.82 0.004 0.14 0.002 −0.009 0.001 −6.02 0.00 48.90 0.003

Flow (veh/h) −9.76 0.003 −2.07 0.002 −77.08 0.058 −49.87 0.084 2.98 0.003 4.30 0.0003 2.44 0.002 0.67 0.001 3.02 0.003 −5.43 0.002

Opposing
Flow (veh/h) −0.04 0.002 −0.01 0.083 −0.003 0.091 −0.002 0.13 0.05 0.002 0.032 0.0005 0.003 0.00 0.005 0.013 0.080 0.083 −0.030 0.077

%HV (%) −0.25 0.002 −0.57 0.51 −0.023 0.09 −0.016 0.07 0.14 0.001 0.54 0.004 0.005 0.003 0.007 0.073 0.48 0.091 −0.40 0.071

Platoon Size
(veh/h) −0.55 0.00 −0.35 0.002 −0.03 0.22 −0.011 0.31 0.18 0.10 0.39 0.091 0.72 0.007 0.006 0.12 0.10 0.08 −4.08 0.001

Time
Headway (s) −0.87 0.00 −0.18 0.002 −0.018 0.053 −0.060 0.43 0.34 0.18 0.10 0.003 0.002 0.09 0.004 0.002 −0.030 0.17 −0.040 0.07

SSR 2690.33 10,001.05 0.98 0.78 0.65 3989.06 0.70 6.78 38,022.68 8732.12

SSE 410.29 5476.12 0.86 0.52 0.22 1043.23 0.20 0.54 14,110.20 1721.08

SST 3100.62 15,477.17 1.84 1.30 0.87 5032.29 0.90 7.32 52,132.88 10,453.20

R2 0.87 0.65 0.53 0.60 0.75 0.80 0.78 0.93 0.73 0.84

F
(p-value) 183.06 (0.00) 63.55 (0.00) 43.80 (0.00) 58.71 (0.00) 81.20 (0.00) 130.51 (0.00) 96.22 (0.00) 225.08 (0.00) 70.49 (0.00) 159.20 (0.00)

Notes: average travel speed (ATS); average travel speed of passenger cars (ATSPC); average travel speed as a percentage of free-flow speed (ATS/FFS); ATSPC as a percentage of free-flow
speed of passenger cars (ATSpc/FFSpc); percentage impeded (PI); number of overtaking (NO) vehicles; follower density (FD); percentage of followers (PF); percentage of heavy vehicles
(%HV); number of followers per capacity (NFPC). Sum of squares regression (SSR); sum of squares error (residual) (SSE); sum of squares total (SST).
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Further, for the validation of and a comparative evaluation of the proposed models
regarding the best fit for platooning variables and performance measures, the results of
the predicted performance measures are examined via empirical data, and each measure’s
error (MAPE) under platooning variables is presented in Figure 5. As shown in Figure 5,
the BLR model has worse error prediction performance compared with the MLR model.
Further, the lowest error is related to NFPC in each model, suggesting that selecting this
measure is an optimal choice as a surrogate performance measure among the performance
measures, compared with other measures. Moreover, regarding the relationship between
flow and NFPC in both models, the results of the best fit models and errors are obtained for
MAPE according to Equation (23) (Table 8 and Figure 6). According to Table 8, the BLR
model is the best predictive model for evaluating NFPC under traffic flow. Further, it can be
inferred that the BLR model can predict NFPC as the most-influential performance measure
to classify the LOS of two-lane roads by using statistical analysis and overall error values
(Figure 6). Therefore, using BLR, based on the conjugate Bayesian analysis, is proposed as a
predictive tool for determining the effect of platooning variables on performance measures
thanks to its fewer errors and high prediction performance compared with the MLR model.
The results indicate that conjugate Bayesian analysis offers better prediction performance in
comparison with the MLP model. These results are the same as the results of other studies,
which showed that the BLR model is better than MLR in other engineering fields [30,76,77].
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average travel speed of passenger cars; ATS/FFS: average travel speed as a percentage of free-flow
speed; ATSpc/FFSpc: ATSPC as a percentage of free-flow speed of passenger cars; PI: percentage
impeded; NO: number of overtaking (vehicles); FD: follower density; PF: percentage of followers;
%HV: percentage of heavy vehicles; NFPC: number of followers per capacity; MLR: multiple linear
regression; BLR: Bayesian linear regression.

Table 8. Comparison of the best fit of the proposed models.

Model Best Fit R2 Value MAPE

BLR NFPC = 0.0003Flow + 4.02× 10−8Flow2 0.93 0.09

MLR NFPC = 0.0002Flow + 9× 10−8Flow2 0.70 0.20
Notes: MLR: multiple linear regression; BLR: Bayesian linear regression; MAD: mean average deviation; RMSE:
root mean square error; MAPE: mean absolute percentage error.
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Figure 6. Relationships between flow and NFPC. Notes: MLR: multiple linear regression;
BLR: Bayesian linear regression; NFPC: number of followers per capacity.

4.4. Evaluation of the LOS by Using the Preferred Performance Measure

To evaluate the LOS in two-lane roads, the surrogate measure is selected as the
preferred performance measure for the proposed models and the average values. As
displayed in Figures 4–6, the proposed surrogate performance measure is selected as NFPC
thanks to its higher statistical criteria compared with those of other performance measures.
Thus, the results of the proposed classification for the LOS are selected according to the
BLR model (Table 9). This measure can classify LOS A and LOS B as between 0.20 and 0.40,
respectively. Further, according to this measure, LOS C to LOS D ranges from 0.40 to 0.80.
However, the HCM [22] determines the ATS to be greater than 88 km/h and PTSF to be
less than 35% for LOS A. Moreover, LOS C to LOS E is classified by using an ATS between
64 and 80 km/h and a PTSF between 50% and 80%.

Table 9. Classification of the LOS, based on the present study and the HCM [22].

LOS
The HCM [22] This Study

ATS (km/h) PTSF (%) NFPC

A >88 ≤35 0.20≤

B >80–88 >35–50 >0.20–0.40

C >72–80 >50–65 >0.40–0.60

D >64–72 >65–80 >0.60–0.80

E ≤64 >80 >0.80
Notes: LOS: level of service; ATS: average travel speed; PTSF: percent time spent following; NFPC: number of
followers per capacity; HCM: Highway Capacity Manual.

Likewise, Table 10 illustrates the comparison between capacity and the LOS with the
HCM [22] for the selected four sites of the two-lane roads on the basis of the NFPC. As
demonstrated in Table 10, the HCM [22] classifies the LOS for the studied roads from C to E by
using the ATS and PTSF, respectively, while in the present study, the LOS is classified from B to
D according to NFPC measure. Thus, according to the surrogate measure in the present study,
the LOS for the Rasht-Jirdeh and Kiasar-Sari roads is classified as B. However, regarding the
HCM [22], the LOS for the Rasht-Jirdeh, Kiasar-Sari, and Fuman-Saravan roads is classified as
C and D. Further, for the Fuman-Saravan and Rasht-Somesara roads with high traffic flow,
the LOS is classified as C and D, respectively, on the basis of the NFPC. Accordingly, the
proposed surrogate measure can effectively predict the LOS for the unsaturated and saturated
conditions in two-lane roads when compared to the HCM [22]. Therefore, it can be concluded
that for class I roads, the NFPC could act as a surrogate performance measure to better predict
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the LOS of two-lane roads under unsaturated and saturated conditions compared to using the
two measures of the HCM [22], namely PTSF and ATS.

Table 10. Comparison between capacity and the LOS with the HCM [22] for two-lane roads.

Two-Lane Roads NFPC
LOS

This Study The HCM (2010) [22]

Fuman-Saravan 0.48 C D

Rasht-Jirdeh 0.32 B C

Rasht-Somesara 0.70 D E

Kiasar-Sari 0.23 B C
Notes: LOS: level of service; ATS: average travel speed; PTSF: percent time spent following; NFPC: number of
followers per capacity; HCM: Highway Capacity Manual.

4.5. Policy Implications

The results of the present study show that vehicular platooning is an important phe-
nomenon on two-lane roads. This traffic phenomenon involves traffic-flow characteristics
on these roads. Regarding the importance of these roads for rural areas, evaluating traffic-
flow characteristics and developing performance measures on two-lane roads will help
road and transportation organizations to improve the capacity of these roads under high
traffic demands in the future. Thus, to facilitate and increase the satisfaction of users on
two-lane roads, the first step is to accurately evaluate traffic-flow characteristics on the
basis of the developed performance measures.

The quality of two-lane roads should be examined on the basis of the obtained NFPC in
the present study rather than ATS and PTSF because the NFPC could efficiently be related to
the capacity of drivers and the number of vehicles following others. However, other studies
have focused on the assessment of the quality of two-lane roads by using ATS and PTSF,
and these studies did not mention the relation to the capacity of roads [22,48,89]. Because
the complexity of the LOS of two-lane roads at near free-flow speed and under congested
traffic-flow conditions increases, the measurement of the LOS under these conditions
might not provide an accurate LOS to traffic engineers, given that the obtained results
on performance measures such as ATS and PTSF in the present study showed that these
measures do not provide exact predictions.

Furthermore, to stabilize the traffic flow on two-lane roads, it is necessary to connect
the formation of platoons to capacity, as obtained from these variables in the present study,
thanks to the developed performance measure models. These models, owing to their in-
cluding the formation of platoons of vehicles and their effects on traffic-flow characteristics,
are reliable and inform optimal policy recommendations for future traffic environments
involving two-lane roads. Further, the criterion for the formation of platooning vehicles
regarding time headway and the gap acceptance of drivers helps to count the number of
followers in the queues on two-lane roads. Thus, to obtain the optimal policy regarding
the driver satisfaction on two-lane roads under traffic conditions, the present study recom-
mends the formation of platooning vehicles at intervals higher than 2.4 s, which decreases
as the speed of drivers increases. Additionally, NFPC, compared with ATS and PTSF, could
sufficiently work under various traffic conditions.

Moreover, new models must account for BLR, compared with conventional models
such as MLR, to offer better performance at predicting the LOS for two-lane roads. There-
fore, regarding the present threshold of forming platooning vehicles (2.4 s), the proposed
performance measures (NFPC), and the BLR model, policymakers could enhance the traffic
environment for drivers on two-lane roads.
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5. Conclusions

Two-lane rural roads play important roles in urban transportation and accessibility. Ve-
hicular platooning has been a challenging issue for engineers aiming to propose an optimal
performance measure for evaluating the traffic performance in two-lane roads. Therefore,
the present study aimed first to assess the effect of vehicular platooning variables on perfor-
mance measures at four selected two-lane roads in Iran. The vehicular platooning variables
included traffic flow, time headway, platoon size, %HV, and opposing flow. Performance
measures included ATS, FD, PI, PF, NFPC, ATSpc, ATSpc/FFSpc, ATS/FFS, NO, and platoon
speed. Further, this study identified the critical headways for the formation of vehicular
platooning on the basis of vehicle-gap-acceptance behavior. The MLR and BLR models were
applied to develop performance measurement models and find the best fit model for the
surrogate measure and statistical criteria. The obtained results are described as follows:

1. According to the vehicle-gap-acceptance behavior, it was found that headways less
than 2.4 s were identified as the thresholds for forming platooning in two-lane roads.

2. The results of the Pearson correlation indicated that the traffic flow has the highest
correlation with NFPC, ATS, platoon speed, FD, PI, PF, NO, and ATSPC, in that order.
Moreover, the opposing flow strongly correlated with NFPC, PF, ATS, FD, and PI, in
that order. Further, by examining the relationship between the %HV and performance
measures, it can be concluded that the %HV had a high correlation with FD, ATS, PF,
and PI, in that order. The relationships between platoon size and platoon speed, PI,
ATS, and ATSpc are significant, in that order. Time headway was also significantly
correlated with ATS, NFPC, ATSpc, and FD, in that order.

3. The results of the developed MLR and BLR models indicated that BLR could predict
NFPC as the most-influential performance measure to classify the LOS of two-lane
roads on the basis of accuracy and error values.

4. The comparison evaluation from the proposed surrogate measures with performance
measures recommended in the HCM [22] indicated that the NFPC could be a surrogate
performance measure for better predicting the LOS under unsaturated and saturated
conditions compared to the two measures of the HCM [22], namely PTSF and ATS,
under vehicular platooning.

The results of the present study could be useful for traffic engineers and road orga-
nizations aiming to estimate the quality of two-lane roads on the basis of the proposed
performance measure. Further, the criterion for the formation of vehicular platooning
regarding time headway and the gap acceptance of drivers on two-lane roads could help
traffic engineers to accurately investigate the beginning of the formation of platooning
for calculating queues and platoon size. Another application of the present study is the
development of new models for evaluating the quality of two-lane roads in terms of the
LOS and vehicular platooning and comparing them with conventional models, such as
regression models. Other macroscopic performance models can be developed on the basis
of the proposed surrogate performance measure in the present study to calibrate the models
according to the traffic conditions of other sites. From a road safety aspect, this research
could improve the quality of two-lane roads for the improvement of the driver’s gap-
acceptance behavior, which is involved in the proposed surrogate performance measure of
two-lane roads for preventing the occurrence of collisions that are due to the formation of
platoons and due to overtaking maneuvers.
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