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Abstract: The efficiency of renewable energy sources like PV and fuel cells is improving with
advancements in technology. However, maximum power point (MPP) tracking remains the most
important factor for a PV-based fuel cell power system to perform at its best. The MPP of a PV
system mainly depends on irradiance and temperature, while the MPP of a fuel cell depends upon
factors such as the temperature of a cell, membrane water content, and oxygen and hydrogen partial
pressure. With a change in any of these factors, the output is changed, which is highly undesirable in
real-life applications. Thus, an efficient tracking method is required to achieve MPP. In this research,
an optimal salp swarm algorithm tuned fractional order PID technique is proposed, which tracks
the MPP in both steady and dynamic environments. To put that technique to the test, a system was
designed comprised of a grid-connected proton exchange membrane fuel cell together with PV system
and a DC-DC boost converter along with the resistive load. The output from the controller was further
tuned and PWM was generated which was fed to the switch of the converter. MATLAB/SIMULINK
was used to simulate this model to study the results. The response of the system under different
steady and dynamic conditions was compared with those of the conventionally used techniques to
validate the competency of the proposed approach in terms of fast response with minimum oscillation.

Keywords: renewable energy sources; fuel cell; photovoltaic; maximum power point; fractional
order PID

1. Introduction

Conventional energy sources are being depleted at an alarming speed and becoming
scarce; thus, the usage of unconventional energy sources is growing. Coal, petroleum,
natural gas, and nuclear power are all major conventional sources. Because of their contin-
ued use, these resources have been exhausted to a great extent. Additionally, the usage of
these sources contributes significantly to pollution, which contributes to global warming.
Owing to these issues, scientists are forced to employ renewable energy sources (RES).
Non-conventional/RES are sources of energy that are reproduced by natural processes
regularly and do not deplete [1]. These sources do not damage our environment, are mostly
cost-effective, and often do not require a huge investment, hence widely being accepted as
more reliable. Moreover, these sources are called renewable because they are renewed or
reproduced at an equal or greater rate with respect to the rate of their use.

Among all RES, solar PV, which utilizes the photovoltaic effect to produce electric-
ity, is being widely used worldwide. Sunlight is absorbed using semiconductor materi-
als—mostly silicon—and converted into electrical energy. The foremost drawback of solar
energy is that a large area is required to install solar PV systems [2,3]. The fuel cell is, in fact,
a device (electro-chemical) that uses a chemical reaction to produce electrical energy [4].
A fuel cell utilizes the energy of hydrogen (chemical energy) or other fuels to generate
electricity in a clean and effective manner. When hydrogen is utilized as a fuel, the only
things created are heat, electricity, and water. The prominent and unusual aspect of fuel
cells is that they can be used for an extensive range of applications [5,6].
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Fuel cells and batteries differ significantly from each other, as fuel cells do not require
recharging since they do not run out of fuel. The fuel cell will keep producing heat
and power until the fuel supply stops. A fuel cell is constructed using two electrodes
sandwiched around an electrolyte. In a fuel cell, the anode is the negative (−) electrode
while the cathode is the positive (+) electrode. Hydrogen is widely used as fuel in fuel
cells and is provided to the anode [7], while the oxygen (from the air) is supplied to the
cathode. A catalyst is needed to initiate the redox reaction. Platinum is used as a catalyst
and, in some cases, enzymes are used. The catalyst converts hydrogen into electrons and
protons (hydrogen ions). Here, electrons take an exterior circuit path and can be utilized to
power a load, while protons cross through the electrolyte to combine with oxygen to form
water [8].

Several classifications of fuel cells are currently under research, each using different
fuels with different electrochemical reactions and construction. Each has a different catalyst
requiring different operating conditions like temperature and has its own applications and
drawbacks. Polymer Electrolyte Membrane Fuel Cells (PEMFC), also identified as proton
exchange membrane fuel cells, provide a higher power density than other traditional fuel
cells while being lighter in weight and smaller in size [9,10].

One vital aspect of the PV based fuel cell is tracking its maximum power point (MPP).
For reliable and efficient use, it is important to use a PV based fuel cell at MPP, which
depends on several factors, including irradiance, temperature, water content in membrane,
and hydrogen and oxygen partial pressures. The Perturb and Observe (P&O) algorithm is
the most popular to track MPP, owing to its simplicity. However, it may cause fluctuations
across MPP due to excessive switching. To reduce these fluctuations, the step size can be
reduced; but this will cause the tracking time to increase. The incremental conductance
method is proposed in [11,12], which gives better results than the P&O, but still causes an
overshoot. Sliding mode controller (SMC) is studied in [13], using a fuel cell stack with a
boost converter, and performance is compared with incremental conductance and P&O.
However, while it yields a significantly lower overshoot, the calculations are extensive and
the design of the filter is difficult.

The Water cycle algorithm (WCA) is an effective algorithm to track MPP and it is
inspired by the naturally occurring water cycle. The drawback of WCA is that it can trap in
local optima [14]. The incremental conductance method has been implemented for MPP
tracking, but its implementation is complex as it requires multiple sensors [15]. The author
in [16] suggested a smart drive algorithm using a boost converter to track the MPP of the
fuel cell, but the efficiency of the method turned out to be less than other metaheuristic
techniques. Particle swarm optimization (PSO) is another technique used for MPP tracking,
which is based on the natural process. Ref [17] discussed the PSO technique using a fuel
cell stack with a boost converter. PSO is a metaheuristic approach, but the drawback is that
it can also be stuck in local optima. Extremum seeking control is an efficient method but
converges slowly [18].

A fuel cell model with a cuke converter is discussed in [19] and the firefly algorithm
(FFA) is proposed to reach MPP. FFA is a metaheuristic technique, but it has a drawback,
namely, in that it may be stuck in local optima. Backstepping techniques proposed in [20],
show good efficiency, but the implementation requires great effort as it is very complex.
Fuzzy logic control (FLC) is another important technique used to track MPP and is being
used widely. FLC has been implemented using both Boost and Buck converters. The
accuracy of FLC is low and one cannot be sure that the MPP calculated by the controller
is accurate [21,22]. Convergence time for FLC, if used independently, can be very large.
Another technique proposed in [23] is an artificial neural network (ANN); however, this
technique requires an excessive amount of data.

A Jaya controller with cuke converter is implemented in [24] to improve MPP. The
presented technique is metaheuristic but requires excessive computational time. The
grey wolf optimization (GWO) method is also introduced in [25] to track MPP. GWO
technique is motivated by the leadership hunting and hierarchy methodology of grey wolf
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packs. GWO is a metaheuristic technique, but its convergence rate is slow and it can be
stuck in local optima. Another nature-inspired optimization technique is the salp swarm
optimization (SSO) algorithm which is discussed in [26]. Despite being metaheuristic,
it requires excessive computational time for processing. Anti-windup PID controllers
are being used commonly in industries, due to their simplicity and fewer computational
requirements [27]. However, PID is sensitive to excessive variations and can lead a system
to instability. Moreover, it cannot be used for non-linear systems [28].

Higher-order sliding mode controllers tuned with a twisting algorithm (HOSM-TA)
are implemented in [29]. They show high robustness against disturbances and uncertainties.
The drawback of this technique is that it is very complex and there is no guarantee that
the solution is accurate. Furthermore, it cannot be used for 1st order systems. Chattering
is a phenomenon that decreases the efficiency of SMC and also causes heat loss in the
system. To overcome this, a Quasi-continuous (QC) algorithm is proposed in [30]. This
proposed technique shows considerable improvement against chattering and is also ro-
bust. Nonetheless, one of the major drawbacks is that it is complex in design with no
guarantee of accuracy, and cannot be used for 1st order systems. Higher-order prescribed
convergence law technique (PCL) is used to track MPP using a DC-DC boost converter,
which is a robust technique and has a finite convergence time, but it is also complex with
low accuracy [31]. Another MPP tracking technique is model predictive control (MPC),
which offers multiple variable control and predicts upcoming disturbances and upcoming
control actions. It is better than many other techniques in terms of energy savings and has
enhanced transient response, but it requires specific background knowledge of the method
to be implemented [32,33]. Tuning of PID with SSO technique shows good results with
reasonable execution time and good accelerated convergence, and requires few parameters
to be tuned [34]. However, it can suffer from premature convergence.

The integral fast terminal sliding mode control (IFTSMC) technique has advantages,
e.g., robustness against uncertainties and disturbances, ability to reduce chattering, and
high speed of convergence [35]. The golden section search technique is another technique
for MPP. Although this technique is faster than many heuristic methods, the implemen-
tation of the same can be costly; furthermore, it requires knowledge of fuel cell plant
specifications [36]. The forensic-based investigation algorithm (FBI) has been used for pro-
portional integral derivative, which requires multiple sensors and, hence, can be costly [37].
The equilibrium optimizer algorithm is adopted to optimize FLC for MPPT. The algorithm
itself is complex and also FLC lacks in accuracy [38,39].

Table 1 lists the key characteristics and provides a comparison of the various ap-
proaches previously employed.

Table 1. Summary of Fuel Cell-based MPPT Techniques.

Sr. # Reference # Algorithm/
Approach Converter Type Nature/Remarks/Notes

1 [5] IC Boost Multi-sensors are required

2 [6] PSO Boost Easily trapped in
local optimum

3 [7,8] ANFIS Boost ANN requires
excessive data

4 [9] P&O High step ratio
Oscillations/fluctuations

near MPP with large
tracking time

5 [10] MPC Boost Requires plant model and
specific knowledge

6 [11,12] P&O/InC Buck
Oscillations/fluctuations
near MPP multi-sensors

needed
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Table 1. Cont.

Sr. # Reference # Algorithm/
Approach Converter Type Nature/Remarks/Notes

7 [13] SMC Boost The design of the filter
circuit is cumbersome

8 [14] WCA Boost It may become stuck in
local optima

9 [15] INR Boost Multiple sensors
are needed

10 [16] Smart drive
algorithm Boost Low accuracy

11 [17] PSO Boost Easily stuck in
local optima

12 [18] Extremum
seeking control - Slow convergence rate

13 [19] Firefly algorithm Cuke Easily trapped in
local optimum

14 [20] Backstepping Boost Complex/Excessive effort
in implementation

15 [21] Fuzzy logic Boost Lacks precision

16 [22,23] ANN Boost ANN requires
excessive data

17 [24] Jaya Cuke Requires Excessive
computational time

18 [25] GWO Boost Sluggish convergence and
stuck in local optimum

19 [26] SSA Boost Excessive computational
time required

20 [27] AW-PID Buck-Boost

Inefficient and sensitive
toward large load
changings and not

suitable for Nonlinear
systems

21 [28] FPID Four switch
Buck-Boost Complex to implement

22 [29] TA Boost Complex and accurate
results not guaranteed

23 [30] PCL Boost High complexity and
low accuracy

24 [31] QC Boost
Cannot be used for 1st
order systems, complex

and less accurate

25 [32] MPC Two-level
inverter

Requires plant model and
specific knowledge

26 [33] MPC Boost Requires plant model and
specific knowledge

27 [34] SSA-PID Boost Can become stuck in the
local maximum
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Table 1. Cont.

Sr. # Reference # Algorithm/
Approach Converter Type Nature/Remarks/Notes

28 [35] IFTSMC Boost

Knowledge of system
boundary uncertainty is

required, also
convergence issues when

states are not near
equilibrium.

29 [36] GSS Boost

Implementation cost high
and knowledge of plant
specification of the fuel

cell required

30 [37] FBI-PID Boost Multiple sensors required,
hence costly

31 [38] EO-FLC Boost Fuzzy logic may lack
in accuracy

Novelty and Contribution

The literature review reveals specific areas that need further improvement; thus, the
proposed technique has focused its utility on these areas. This main contribution of the
proposed work is as follows:

1. This work presented an optimum salp swarm algorithm tuned fractional order PID
controller for MPPT to modify input and output during transient operating conditions
to attain an ideal duty ratio.

2. Compared to other traditional MPPT algorithms utilized in the literature, it offers high-
power tracking capability, quick convergence speed, fewer controlling parameters,
and ease of implementation.

3. The PV-based fuel cell grid connected technology offers a guarantee for steady and
practical operation under varying load situations.

The paper is organized as follows. Section 2 provides the design and modeling of
the PV and Fuel Cell. The proposed control strategy is described in Section 3. Section 4 is
designated for the attained results and discussions. Section 5 is dedicated to the conclusion.

2. System Modeling

The system under study is designed to comprise a grid-connected proton exchange
membrane fuel cell (PEM) together with PV system, a DC-DC boost converter along with
resistive load, and a robust power point tracking controller. The output from the controller
is further tuned and PWM is generated, which is fed to the switch of the converter. Figure 1
presents an overview of the model under study.
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Figure 1. Fuel cell and PV to Grid stages.

2.1. Fuel Cell System Modelling

Fuel cells, first conceived by Sir William Grove in 1839, are now a viable source
of energy. Fuel cells may be thought of as generators in their most basic form. Unlike
traditional generators, which utilize internal combustion engines to turn an alternator, fuel
cells create electricity by directly creating electrons with no moving components. As a
result, they are quite effective and dependable. They are also almost silent, producing only
water vapor in addition to energy and heat. As a result, they are suitable for indoor usage.

The voltage-current characteristics of fuel cells are intricate and nonlinear. A polariza-
tion curve illustrates the non-linear connection between a fuel cell’s current density and
voltage. The fuel cell output voltage is controlled by current density, which is affected by
operational parameters. A PEMFC, a boost DC/DC converter, as well as a resistive load
make up the system. The controlling variable within that system is the duty cycle of the
boost converter; which is the driving variable for achieving MPPT, where C and L stand for
the capacitance and inductance of the boost converter, respectively.

The fuel cell output is given by Equation (1)

Vcell = ENernst −Vact −Vohm −Vconc (1)

where ENernst is reversible thermos-dynamic potential which is defined by Nernst Equation (2)

ENernst = 1.229− 8.5× 10−4(T − 298.15) + 4.308× 10−5T (ln
(

PH2 + 0.5 ln(Po2)
)

(2)

where T indicates the absolute temperature in kelvins, PH2 is hydrogen partial pressure
(atmospheric) and Po2 is the oxygen partial pressure. Activation voltage drop is given by
Tafel Equation (3)

Vact = ζ1 + ζ2T + ζ3T ln(Co2) + ζ4T ln(IFC) (3)

Here i = 1, . . . , 4 are parametric coefficients for every cell model, and Co2 denotes the
dissolved-oxygen concentration in the interface of the cathode catalyst, as mentioned in
Equation (4)

Co2 =
Po2

(5.08× 106)× exp
(
− 498

T

) (4)

The overall ohmic voltage drop is calculated as Equation (5)

Vohm = IFCRM (5)
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where RM is the resistance (ohmic) and is made up of the electrode resistances as well as the
resistances of the polymer membrane and electrodes. Here, RM is provided by Equation (6)

RM =
rm tm

A
(6)

where, tm is the membrane thickness, which is in centimeters, A is the activation area
in micro centimeters, and rm is the membrane resistivity Ωcm to proton conductivity.
Membrane humidity and temperature have a significant impact on membrane resistivity,
which can be computed as Equation (7)

rm =

181.6
[

1 + 0.03
(

IFC
A

)
+ 0.0062

(
T

303

)2( IFC
A

)2.5
]

[
λm − 0.634− 3

(
IFC
A

)]
× exp

(
4.18

(
T− 303

T
)) (7)

where, water content is represented by λm of the membrane and is an input of the PEMFC
model. In addition, it is a function of the average water activity am as represented in
Equation (8)

λm =

{
0.043 + 17.81am − 39.85a2

m + 36a3
m 0 < am < 1

14 + 1.4(am − 1) 1 < am ≤ 3

}
(8)

The relationship between the average water activity and the anode and cathode water
vapor partial pressures, (Pv,an , Pv,ca respectively) is given by Equation (9)

am =
1
2
(aan + aca) =

1
2

[
Pv,an + Pv,ca

Psat

]
(9)

The saturation pressure of water Psat can be calculated with the subsequent empirical
expression as mentioned in Equation (10)

lpg10Psat = −2.1794 + 0.02953T − 9.1813× 10−5T2 + 1.4454× 10−7T3 (10)

The values (real-time) of λm can vary from 0 to 14. The concentration voltage drop is
expressed as Equation (11)

Vconc = −
RT
nF

ln
(

1− iFC
iL A

)
(11)

where, iL is the limiting current and it is the maximum rate at which the reactant may be
given to an electrode.

Fuel cells are linked together in a series to produce the desired voltage. Thus, the NFC
series cells per string have nonlinear V − I characteristics, as mentioned in Equation (12)

VFC = NFCVcell (12)

2.2. PV System Modelling

The PV system is one of the most extensively used RES. The current source is parallel
to the diode and precisely converts solar energy into electrical energy by accelerating the
flow of holes and electrons inside the photovoltaic cell. It is required to create the PV source
to unavoidably operate on its MPPT in order to get maximum power, since it is a non-linear
current source [40].

A PV array needs to go through a number of processes to connect with a thermal
power supply. As demonstrated in Figure 2, the design of a PV system includes a number
of components, including a converter, an inverter, modeling, and a computation of the
average power that is actually sent to the grid.
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AC voltage of PV can be calculated, by using Equation (13).

q =
vdc
vac

(13)

Here q is the gain between AC-DC voltage. The boost converter transfer function (TF)
can be projected using Equations (14) and (15)

m1 =
v2

v1
=

i1
i2

(14)

g1(s) =
1

m1
(15)

where 1
m1

is the boost converter gain. The inverter TF is mentioned in Equation (16)

g2(s) =
Iac(s)
I2(s)

=
s2

s2 + ω2 (16)

Here, ω = 2π f = 2π(50) = 314.12rad/s. For instantaneous power, the TF is men-
tioned in Equation (17), where vm

im is the impedance.

P(s) =
vmim

2s
+

vmim

2
s

s2 + (2ω)2 (17)

The instantaneous power gain is given in Equation (18)

g3(s) =
p(s)

Iac(s)
= vm

(s2 + ω2)(s2 + (2ω)2
)

s2(s2 + (4ω)2)

 (18)

The average power is mentioned in Equation (19)

pavg(s) =
vmim

2s
(19)

The average power gain is shown in Equation (20)

g4(s) =
pavg(s)

p(s)
(20)

3. Proposed Robust Controller

The proposed robust controller is a combination of the Salp Swarm Algorithm tuned
Fractional order PID controller to achieve the MPPT of the hybrid PV based fuel cell system,
as shown in Figure 3.
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)
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Figure 3. Proposed Robust Controller.

3.1. Salp Swarm Algorithm

The method is inspired by transparent body salp vertebrates, which are famous for
generating spiral chains when they travel to find food [41]. The leader and followers are
the two basic divisions of the salp swarm. The leader’s role is to direct the group as they
look for food, and they update their position using Equation (21)

Ki
j =

{
Mi + C1

((
ubj − lbj

)
C2 + lbj

)
C3 ≥ 0

Mi − C1
((

ubj − lbj
)
C2 + lbj

)
C3 < 0

}
(21)

Here, lbj and ubj stands for the lower and upper limits of the jth dimension, while
M stands for the target food and K is the 2D salp position. The variables C2 and C3 are
uniform coefficients. The C1, which is shown in Equation (22), is utilized to balance the
exploitation of food in search space.

C1 = 2e−(
4t

tmax )
2

(22)

where t and tmax denotes the current and maximum iterations, respectively. Equation (23)
is used to update the position of the follower salp.

Ki
j =

1
2

at2 + v0t i ≥ 2 (23)

The flow chart of the complete Salp Swarm Algorithm is depicted in Figure 4.
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3.2. Fractional Order PID Controller

The use of fractional calculus was developed/increased when Podlubny proposed
the PIλDµ controller in 1999. This generality of the typical PID controller included a
fractional integration of order λ and a fractional derivation of order µ, and it has since
led numerous scholars to a new area of study called the modification of the fractional-
order controller PIλDµ. Fractional order controllers are described using fractional calculus,
where the calculus of proportional α—derivative is well-defined by the basic operator αDα

t ,
as mentioned in Equation (24).

αDα
t =


dα

dtα α > 0
1 α = 0

t∫
α
(dτ)−α α < 0

 (24)

Upper and lower bounds are determined by α and t, while α ∈ R and α operator
can be substituted in the frequency domain as F(s) = 1

Sα . The output equation of the
fractional-order controller in the time domain is given by Equation (25)

u = kpe(t) + kiD−λ
t e(t) + kdDµ

t e(t) (25)

where, kd is the differentiating constant, whereas ki is the integration constant, and kp is
the proportional constant, µ is the fractional order of the differentiating action and λ is the
fractional order of the integrating action.

In contrast to standard PID controllers, fractional-order controllers include two extra
parameters that represent the order of integrating and derivative values, respectively. Based
on the modification of these two factors, one can discover a wide range of fractional order
controller choices.

As can be seen in Figure 5, the fractional order PI D controller expands the traditional
PID controller from a point to a plane. The design of PID control may benefit greatly from
this expansion’s increased flexibility. Clearly, by selecting [λ,µ] = [1, 1], a traditional PID
corrector can be regained; and by selecting [λ,µ] = [1, 0] and [λ,µ] = [0, 1], one can get
traditional PI and PD controllers, respectively.
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The FOPID executes much better than the traditional PID, since it uses discretized
values. Moreover, as the stability region of the FOPID is wider than that of the PID
controller, it is evident from Figure 6 that it enables more flexibility to the controller.
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4. Results and Discussion

The hybrid system constituted of grid tied PEMFC and PV is simulated on MAT-
LAB/Simulink for dynamic operation. The proposed FOPID controller is tested under
different load conditions. Results are then compared with the conventional PI controller
which substantiates the efficiency of the proposed (FOPID) controller.

Figure 7 depicts the change in irradiance, applied as input to PV to test the response
of the controller, while Figure 8 shows the consumption of oxygen and hydrogen in the
fuel cell. After the initial disturbance, the fuel consumption attains a constant value.
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The purpose of this research was to propose and test a robust control system that is
effective under varying circumstances. The same was put to the test. Figure 11 shows the
output current of the hybrid system using the conventional PI controller. Nevertheless,
Figure 12 depicts the output current of the hybrid system using the proposed FOPID
controller and a comparison is displayed with the conventional PI controller in Figure 13.
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Figure 14 reveals the output power, for both controllers, and it is noticeable that the
proposed FOPID controller shows significantly fewer oscillations and less settling time as
compared to the conventional PI controller. DC output voltage (Vdc) is shown in Figure 15,
which clearly indicates the superior performance of the projected controller and is more
optimum against the uncertainties in the system.
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5. Conclusions

This research work has presented a robust control strategy using optimum salp swarm
algorithm tuned fractional order PID controller for the tracking of MPP of grid tied PEMFC
along with PV. The proposed controller tracks the MPP whenever uncertainty of fluctuation
occurs. Conventional P&O is used to control the duty cycle of the DC-DC converter,
while FOPID controls the output of the DC-AC inverter. The overall capability of the
suggested controller is significantly improved over the typical/conventional PI controller;
and it offers high-power tracking capability, quick convergence speed, fewer controlling
parameters, and ease of implementation. In the given test bench for abrupt irradiance
change, the settling time is observed just 0.058 s with minimum overshoot, as compared to
the conventional PI controller. Moreover, the overall suggested regulating technique adapts
to the unforeseen power system scenario fairly successfully, with minimal oscillation.
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