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Abstract: China’s rapid industrialization and urbanization in recent decades have deteriorated its
water resource quality. This study focused on water pollution in terms of the chemical oxygen
demand (COD) and the levels of ammonia nitrogen in the industrial and household discharges of
different Chinese provinces. Although the heterogeneity of environmental Kuznets curves (EKCs)
from Chinese provinces has been studied, the positions of provincial EKCs (which reflect the province-
specific pollution effects not affected by the provincial income levels) have not been investigated
to date. Therefore, through a factor analysis of the heterogeneity of provincial pollution under the
EKC framework, we investigated how the capacity shortage for pollution control contributes to the
provincial pollution levels. We also evaluated the heterogeneity of the EKCs from the provinces in
terms of their positions (not their shapes), using a fixed-effect model to extract the province-specific
pollution effects. The capacity shortage for pollution control, as one of the pollution factors, accounted
for (a) 30% of industrial COD and industrial ammonia nitrogen; (b) 60% of household COD; and
(c) 80% of household ammonia nitrogen. Our results indicate that China still has a large capacity to
mitigate water pollution via policies and by building the capacity for pollution control through the
development and training of human resources.

Keywords: environmental Kuznets curves; chemical oxygen demand; ammonia nitrogen; Chinese
water issues

1. Introduction

China’s growth has significantly improved the country’s living standards since the
implementation of the Open-door policy and the Reform Policy in 1978. The economic
status of China was promoted from the low-income category to the lower-middle-income
category in 1997, and to upper-middle-income category in 2010, based on the World Bank
income classification. However, this rapid economic development resulted in serious
damages to its environment through industrialization and urbanization. Water pollution is
one of the vital issues that influences the survival of human beings and the development
of socio-economic systems. According to the Environmental Performance Index, China
remains in 80th place among 180 countries in terms of water resources. To address the
issue of water pollution, the Chinese government has set numerical targets to reduce the
two main water pollutants: chemical oxygen demand (COD) discharge, after the 11th
Five-Year Plan (2006–2010), and ammonia nitrogen discharge, after the 12th Five-Year Plan
(2011–2015). The current 14th Five-Year Plan (2021–2025) contains binding targets to reduce
COD and ammonia nitrogen discharges by 8% during the planned period. These targets
have been almost achieved through policy efforts; however, the pollution discharges still
remain massive, keeping the water quality at a low level. The groundwater supplies in
more than half of the Chinese cities were categorized as “bad to very bad,” while more than
a quarter of China’s major rivers were considered “unfit for human contact” in 2014 [1,2].
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In addition to the nation-wide issue of water pollution, another vital concern in China is
the regional heterogeneity of the pollution levels and the factors influencing them. The
water pollution levels largely differ by provinces, and the industrialization, urbanization
and pollution-control capacities that affect pollution levels vary by provinces. There are
also policy priority areas for water pollution control that have been set by the Chinese
government [3]. (COD and ammonia nitrogen originate from the same sources, and the
major industries that emit these pollutants are papermaking, textile and chemical ones (Cai
et al. [1], Liu et al. [4]). China’s sewage treatment mainly adopts six major sewage treatment
processes: the oxidation ditch process, the A2/O process, the traditional active sewage
treatment method, the SBR process, the A/O process, and the biofilm process (Ministry of
Ecology and Environment of China [5]).

This study focused on the water pollution measures that target COD and ammonia
nitrogen from industrial and household discharges in Chinese provinces, and aimed to
investigate the contribution of capacity shortage to the pollution control of provincial
pollution levels, through a factor analysis that evaluated the heterogeneity of provincial
pollution under the analytical framework of the environmental Kuznets curve (EKC).
We performed the following steps: (1) the EKC was estimated econometrically from the
provincial panel data using a fixed-effect model; (2) the province-specific pollution effect
was extracted from the fixed effect, which is not affected by the provincial income level, on
the EKC; (3) the alternative EKC was re-estimated by replacing the fixed-effect model with
the possible contributors to the province-specific pollution, such as the capacity for pollution
control, the industrialization degree (for industrial discharges), and the urbanization degree
(for household discharges); and (4) the contribution of the capacity shortage to the pollution
control of the province-specific pollution level was quantified through a factor analysis.

The main finding of this study is that the capacity shortage for pollution control, as
one of the pollution factors, accounts for (a) about 30% of industrial COD and industrial
ammonia nitrogen; (b) about 60% of household COD; and (c) about 80% of household
ammonia nitrogen. Therefore, China still has much capacity to mitigate COD-related
species and ammonia nitrogen via policy change.

The remainder of the paper is structured as follows. Section 2 reviews the literature
related to the EKC issues, including water pollution in China, and clarifies this study’s
contributions. Section 3 shows the materials and methods for the empirical study. Section 4
presents the estimation results and the discussion. Section 5 summarizes and concludes
this paper.

2. Literature Review and Contributions

The EKC provides an analytical framework to examine how economies deal with
environmental issues. It postulates an inverted-U-shaped relationship between pollution
and economic development. Kuznets’s name was apparently attached to the curve by
Grossman and Krueger [6], who noted its resemblance to Kuznets’ inverted-U relationship
between income inequality and development. The EKC dynamic process is defined as
follows. In the first stage of industrialization, pollution worsens rapidly because people
are more interested in jobs and income than in clean air and water, and environmental
regulation is correspondingly weak. Along the curve, pollution reduces in wealthy societies,
because leading industrial sectors become cleaner, people value the environment, and
regulatory institutions become more effective [7].

Since the report of the World Bank [8] initially discussed EKC issues, empirical tests
and theoretical debates have intensified, supporting the applicability of EKC for some
regions and environment problems [9–12]. At the initial stage until the 1990s, most of the
empirical studies focused on validating the EKC hypothesis and its requirements using
cross-sectional data. Since the late 1990s, however, the EKC studies have shifted from
cross-sectional analyses to time-series analyses, and more importantly, have examined the
heterogeneity of EKCs from individual economies, in terms of the curve’s shapes and posi-
tions. In this context, Dasgupta et al. [7] presented three different EKC scenarios from the



Sustainability 2023, 15, 3979 3 of 21

conventional inverted-U EKC: Race to the Bottom (pessimistic, with a continuation of the
highest level of pollution), New Toxics (pessimistic with a higher curve, owing to the newly
emerging pollutants), and Revised EKC (optimistic with a lower and flatter curve, owing
to a better management of pollution). These scenarios have been subjected to empirical
tests [13–16]. Sarkodie and Strezov [17] comprehensively reviewed the heterogeneity of the
EKC modalities in terms of the curve’s shapes and positions.

There is a large body of literature on EKC studies for several countries and for several
levels of environmental quality; however, studies on the EKC of China have increased
since the 2000s. Therefore, there is a relatively limited number of EKC studies, particularly
on water pollution in China, that cover total provinces or specific areas (Table 1). Their
estimations show ambiguous and mixed outcomes; some studies identify the validity of the
inverted-U-shaped EKC [2,18–21], whereas the others demonstrate that the EKC modality
is dependent on regions and pollutants [1,4,22–24].

Table 1. Literature review of environmental Kuznets curve studies on water pollution in China.

Sample Areas Pollutants Summary

Cai et al. (2020) [1] 31 provinces WW, COD, NH4-N Modality of EKC
depends on regions

Liu et al. (2019) [22] Shandong WW, COD, NH3-N Modality of EKC
depends on pollutants

Zhang et al. (2017) [2] 27 provinces COD, NH3-N Inverted-U shaped EKC
is identified

Zhao et al. (2017) [18] 31 provinces water use Inverted-U shaped EKC
is identified

Wang et al. (2017) [23] Urumqi WW, COD, NH3-N Modality of EKC
depends on pollutants

Li et al. (2016) [19] 28 provinces WW Inverted-U shaped EKC
is identified

Liu et al. (2016) [4] Zaozhuang WW, COD, NH3-N Modality of EKC
depends on pollutants

Jayanthakumaran &
Liu (2012) [20] 31 provinces COD Inverted-U shaped EKC

is identified

Liu et al. (2007) [24] Shenzhen TPH, etc. Modality of EKC
depends on pollutants

Shen (2006) [21] 31 provinces COD, Arsenic,
Cadmium

Inverted-U shaped EKC
is identified

Notes: WW: waste water discharge; COD: chemical oxygen demand; NH3-N and NH4-N: ammonia nitrogen;
TPH: total petroleum hydrocarbon; Sources: Authors’ description.

With respect to the heterogeneity of EKCs from Chinese provinces, Cai et al. [1] demon-
strated the varying types of EKCs depending on the province: “good EKCs” (negative
monotonic shape, inverted N-shape, inverted U-shape, and M-shape), “bad EKCs” (posi-
tive monotonic shape, N-shape, and U-shape), and “transition EKCs” (positive monotonic
and flat-tailed shape). To the best of our knowledge, there are no studies investigating
the “positions” of provincial EKCs and that reflect the province-specific pollution effects
that are not affected by the provincial income levels. Therefore, this study focused on
analyzing the heterogeneity of EKCs from different Chinese provinces in terms of their
positions using a fixed-effect model in the EKC panel estimation, in order to extract the
province-specific pollution effects, and to elucidate the factors influencing the province-
specific pollution levels. This study focused particularly on the provincial capacity for
controlling the pollution levels.

3. Materials and Methods
3.1. Methodology and Data

This section first overviews the heterogeneity of Chinese provinces in terms of their
water pollution levels and the factors influencing them (Table 2, as for the location see
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Appendix A). According to the China Statistical Yearbook, in 2020, the industrial discharge
of COD per million persons varied from 65 tons in Beijing to 700 tons in Jiangsu; the
household discharge of COD was from 1848 tons in Beijing to 11,488 tons in Guangxi;
the industrial discharge of ammonia nitrogen was from 2 tons in Beijing to 36 tons in
Jiangxi; and the household discharge of ammonia nitrogen was from 94 tons in Tianjin to
1149 tons in Guangxi. The economic factors influencing pollution should be considered;
the gross regional product (GRP) per capita in 2010 differed from 127,816 yuan in Beijing
to 28,171 yuan in Gansu; the secondary industry’s value added as a percentage of GRP
(affecting industrial discharges) differed from 46.2% in Fujian to 16.0% in Beijing; and the
urban population as a percentage of the total population (affecting household discharges)
differed from 89.3% in Shanghai to 35.8% in Tibet. In addition, there are policy priority areas
that are designated as key regions for water pollution control by the Chinese government
and that are imposed with several regulations to improve water quality. This includes three
river (Huai, Hai, and Liao) and three lake (Tai, Chao, and Dianchi) basins (hereafter, 3Rs3Ls)
that are spread across 11 provinces (last column of Table 1 [3]). The authors identified the
11 provinces based on Wang et al. [3].

Table 2. Water pollution and factors influencing it in Chinese provinces (2020).

codi codh anti anth ypc ind urb 3Rs3Ls

Beijing 65 1848 2 119 127,816 16.0 87.5 *
Tianjin 203 2423 7 94 79,377 35.1 84.7 *
Hebei 351 4823 11 228 37,909 38.2 60.1 *
Shanxi 138 5386 5 326 40,851 43.2 62.5 *
Inner
Mongolia 365 4290 19 224 56,765 40.0 67.5 *

Liaoning 310 3893 13 209 46,399 37.4 72.1 *
Jilin 392 5894 15 215 39,585 35.2 62.6
Heilongjiang 671 5672 32 313 33,595 25.3 65.6
Shanghai 346 2255 8 100 121,299 26.3 89.3
Jiangsu 700 5336 30 407 93,882 43.4 73.4 *
Zhejiang 686 6299 14 491 78,860 40.8 72.2 *
Anhui 268 8085 16 477 49,455 40.0 58.3 *
Fujian 471 10,412 18 811 83,630 46.2 68.7
Jiangxi 459 8124 36 672 44,234 43.1 60.4
Shandong 457 5140 19 368 56,397 39.1 63.1 *
Henan 161 5821 8 347 42,522 41.0 55.4 *
Hubei 389 7674 20 611 56,788 37.1 62.9
Hunan 219 7542 10 728 49,459 38.4 58.8
Guangdong 324 7162 12 632 68,259 39.5 74.2
Guangxi 312 11,488 11 1149 33,915 31.9 54.2
Hainan 437 8250 11 631 41,565 19.3 60.3
Chongqing 290 4126 11 511 62,176 39.8 69.5
Sichuan 307 9413 15 848 45,290 36.1 56.7
Guizhou 122 6329 17 558 36,729 35.1 53.2
Yunnan 224 5746 9 435 40,611 34.2 50.0
Tibet 49 9214 3 786 39,917 37.6 35.8
Shaanxi 239 6951 8 563 51,742 43.1 62.7
Gansu 179 3998 8 134 28,171 31.5 52.2
Qinghai 274 10,516 19 821 38,082 38.0 60.1
Ningxia 436 5576 17 325 43,180 40.7 65.0
Xinjiang 424 8215 23 721 41,769 34.7 56.5

Notes: codi: Industrial chemical oxygen demand (COD), tons per million persons; codh: Household COD, tons per
million persons; anti: Industrial ammonia nitrogen, tons per million persons; anth: Household ammonia nitrogen,
tons per million persons; ypc: Gross regional product (GRP) per capita, 2010 prices, yuan; ind: Secondary industry,
percent of GRP; urb: Urban population, percent of total population; 3Rs3Ls: Three river (i.e., Huai, Hai, and Liao)
and three lake (i.e., Tai, Chao, and Dianchi) basins; Source: China Statistical Yearbook. * means that the province
belongs to 3Rs3Ls.
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This study follows the original form of the EKC: the standard nonlinear model in
which water pollution per capita is regressed by income per capita and its square. The
original EKC postulates an inverted-U-shaped nexus between pollution per capita and
income per capita. Figure 1 depicts the relationships between the water pollution indicators
(vertical axis) and the GRP per capita (horizontal axis) in the total 31 sampled Chinese
provinces and periods for 2003−2019; they roughly appear to be inverted-U-shaped. The
patterns should be further examined by the subsequent econometric tests by controlling
the other factors affecting pollution.
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Figure 1. Water pollution and GRP per capita. Note: codi: Industrial chemical oxygen demand (COD),
tons per million persons; codh: Household COD, tons per million persons; anti: Industrial ammonia
nitrogen, tons per million persons; anth: Household ammonia nitrogen, tons per million persons; ypc:
Gross regional product (GRP) per capita, 2010 prices, yuan; Sources: Authors’ estimation.

We now turn to econometric approaches. The first specification in Equation (1)
applies a fixed-effect model for provincial panel-data estimation in order to explicitly
demonstrate the province-specific pollution effects and also run the alternative models in
Equations (2) and (3) by replacing the fixed effects with the possible pollution contributors
(pollution-control capacity, industrialization, and urbanization) to the province-specific
pollution effects. The equations for the estimation are as follows:

ln (codiit, codhit, antiit, anthit) = α0 + α1 ln ypcit + α2 (ln ypcit)
2 + fi + ft + εt (1)

ln (codiit, antiit) = β0 + β1 ln ypcit + β2 (ln ypcit)
2 + β3 eduit + β4 indit + ft + εt (2)

ln (codhit, anthit) = γ0 + γ1 ln ypcit + γ2 (ln ypcit)
2 + γ3 eduit + γ4 urbit + ft + εt (3)
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where the subscript it denotes the 31 sampled Chinese provinces for the years 2003−2019,
respectively; codi, codh, anti, and anth represent the water pollutants: industrial COD, house-
hold COD, industrial ammonia nitrogen, and household ammonia nitrogen, respectively,
expressed as tons per million persons; ypc shows the gross regional product (GRP) per
capita in yuan at constant prices in 2010; edu denotes the number of higher education grad-
uates per million persons; ind shows the secondary industry value added as a percentage
of GRP; urb represents the urban population as a percentage of the total population; fi
and ft show a time-invariant country-specific fixed effect and a country-invariant time-
specific fixed effect, respectively; ε denotes a residual error term; α0 . . . 2, β0 . . . 4, and γ0 . . . 4
represent estimated coefficients; and ln shows a logarithm form, which is set to avoid
scaling issues for the water pollutants and GRP per capita. The data source of all the
variables is the China Statistical Yearbook. The study constructs a set of panel data for the
31 sample provinces for the period 2003−2019. (This study excluded the year 2020 when
the COVID-19 pandemic seriously affected economic activities). The list and descriptive
statistics for the variable data are displayed in Tables 3 and 4, respectively.

Table 3. List of variables.

Variables Description

Dependent Variable
codi Industrial Chemical Oxygen Demand (COD), ton per million persons, log term
codh Household Chemical Oxygen Demand (COD), ton per million persons, log term
anti Industrial Ammonia Nitrogen, ton per million persons, log term
anth household Ammonia Nitrogen, ton per million persons, log term

Explanatory Variables
ypc Gross Domestic Product (GDP) per capita, 2010 prices, RMB, log-term, one-year lagged

edu Number of graduate of higher education (regular undergraduate and specialized) per
million persons, log-term, ten-year lagged

ind Secondary industry, percent of GDP, one-year lagged
urb Urban population, percent of total population, one-year lagged

Sources: Authors’ description.

Table 4. Descriptive statistics.

Variables Obs. Median Std. Dev. Min. Max

Dependent Variable
codi 527 7.700 1.046 4.159 9.800
codh 527 8.672 0.458 6.984 9.724
anti 527 7.648 1.295 0.000 7.648
anth 527 6.583 0.584 3.689 7.532

Explanatory Variables
ypc 527 10.298 0.620 8.435 11.761
edu 527 8.351 0.536 6.463 9.214
ind 527 42.340 8.895 15.989 63.254
urb 519 50.970 14.626 22.198 89.600

Sources: Authors’ calculation.

The notes on the specifications of the estimation models in (1), (2), and (3) are required
for an additional description as follows. Equation (1) applies a fixed-effect model, repre-
sented by fi and ft, for provincial panel-data estimation. The Hausman test is generally used
for choosing between a fixed-effect model and a random effect model [25]. This study, how-
ever, focused on demonstrating province-specific pollution effects explicitly; time-specific
factors such as economic fluctuations due to external shocks, such as the Asian financial
crises in 1997–1998 and the global financial crises in 2008–2009, were considered. In addi-
tion, adopting the fixed-effect model contributes to alleviating the endogeneity problem
by absorbing the unobserved time-invariant heterogeneity among the sample provinces.
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The estimation sets Beijing as the benchmark province for extracting the province-specific
pollution effects, because Beijing shows the best performance in water pollution control
(Table 1). The significantly positive coefficient of the province-specific fixed effect suggests
that the water pollution in the particular province is more serious than that in Beijing. The
ordinary hypothesis of the EKC postulating the inverted-U-shaped path between water
pollution and GRP per capita would be verified if α1, β1, γ1 > 0 and α2, β2, γ2 < 0 are
significant with reasonable levels of turning points.

Equations (2) and (3) represent the alternative models for industrial discharges and
household discharges, respectively. Equation (2) replaces the province-specific fixed effects
with the possible pollution contributors of the fixed effects: pollution-control capacity (edu)
and industrialization (ind). Equation (3) replaces them with pollution-control capacity (edu)
and urbanization (urb). This study uses the number of graduates of higher education (edu)
to represent the capacity to control pollution because the pollution controllability depends
highly on human resources and capital in order to address the pollution level in each
province. We attempted to apply the variable of treatment plant capacity as the capacity
to control pollution. Appendix B showed that the daily treatment capacity of sewage
(tcs) was positively correlated with water pollution. It suggests that the treatment plant
capacities have only chased after the pollution and thus are equipped with no significant
power for pollution control. The importance of human capital in controlling environmental
pollution has been studied widely [26–28]. The adoption of industrialization (ind) and
urbanization (urb) is based on Liu et al.’s study [22]; secondary industry output can be
a main indicator for industrial water use, and urban population can be an indicator for
household water use. We considered the adoption of the indicators directly measuring
industrial and household waste water discharge rates. However, these data are available
only for 2003–2015 (the Government has stopped publishing these data since 2016). Another
problem is that the level of waste water discharge itself can be affected by pollution control
variables, which leads to a multicollinearity problem. Thus, this study alternatively used the
indirect indicators, including industrialization and urbanization. Appendix C attempted
the estimation using the direct indicators and still found negative coefficients for the
pollution control variable (edu), despite some instabilities in the coefficients due to the
problems above. No multicollinearity problem exists in the regressors’ combinations in
Equations (2) and (3), namely, (ypc, edu, ind) and (ypc, edu, urb). This is because the variance
inflation factors (VIFs), reflecting the level of collinearity between the regressors, indicate
lower values than the criteria of collinearity (10 points) in each equation. The VIF values of
ypc, edu, and ind in Equation (2) are 2.793, 2.765, and 1.017, respectively, and those of ypc,
edu, and urb in Equation (3) are 5.417, 2.737, and 4.111, respectively, according to the authors’
estimation. The pollution-control capacity (edu) is expected to impart a negative coefficient
for water pollution because the higher capacity enables the mitigation of pollution. The
coefficients of industrialization (ind) and urbanization (urb), which deteriorate water quality,
are supposed to be positive in the respective equations.

The explanatory variables in Equations (1)–(3), ypc, ind, and urb were lagged by one
year. This helps avoid reverse causality in the model specifications, including the endoge-
nous interaction between the dependent and independent variables. For the pollution-
control capacity (edu), a 10-year lag was applied because it takes a long time for graduates
of higher education to be trained for capacity building for pollution control. Figure 2
displays the magnitudes of negative coefficients for the pollution-control capacity (edu)
using time series lag patterns from Equations (2) and (3), estimated for each water pollu-
tant; the impacts of the capacity on pollution levels are negatively maximized around the
10-year lag, though the impact sizes differ according to the difference in the effects by their
treatment processes.

This study applies the ordinary least squares (OLS) estimator and the Poisson pseudo-
maximum likelihood (PPML) estimator for the estimations. The PPML estimator was
selected because the sample data with heterogeneity in the provincial properties would be
plagued by heteroskedasticity and autocorrelation; in such cases, the OLS estimator leads
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to bias and inconsistency in the estimates. The PPML estimator corrects for heteroscedastic
error structure across panels and autocorrelation with panels, as Silva and Tenreyro [29]
and Kareem et al. [30] suggest. Therefore, these two estimators are applied to ensure the
robustness of the estimations. We used EViews (version 12) (IHS Global Inc., CA, USA) for
processing the data and estimations.
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3.2. Panel Unit Root and Cointegration Tests

For the subsequent estimation, we investigated the stationary property of the panel
data by utilizing panel unit root tests, and if necessary, a panel cointegration test for a set
of variables’ data. The panel unit root tests were first conducted on the null hypothesis
such that a level and/or the first difference of the individual data have a unit root. In cases
where the unit root tests reveal that each variable’s data are not stationary in the level,
but stationary in the first difference, a set of variables’ data correspond to the case of I(1);
this can be further examined using a co-integration test for the “level” data. If a set of
variables’ data are identified to have a co-integration, the use of the “level” data is justified
for model estimation.

For the panel unit root tests, this study applied the Levin, Lin, and Chu test [31] as
a common unit root test, and the Fisher-ADF and Fisher-PP tests [32,33] as individual
unit root tests. The common unit root test assumes a common unit root process across
cross-sections, and the individual unit root test allows for individual unit root processes
that vary across cross sections. For a panel co-integration test, the study used the Pedroni
residual co-integration test (developed by Pedroni [34]). All of the test equations contained
an individual intercept and trend, with the lag length being an automatic selection.

Table 5 presents the test results: the common unit root test rejects the null hypothesis of
a unit root at the conventional significance levels for all of the variables. However, the indi-
vidual tests do not reject a unit root in their levels, except edu, while rejecting it in their first
differences; therefore, the variables almost follow the case of I(1). The panel co-integration
test was conducted further on the combinations of variables in Equations (2) and (3). The
panel PP and ADF tests suggested that the level series of a set of variables’ data are co-
integrated in the respective combinations. Thus, this study utilizes the level data for
the estimation.
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Table 5. Panel unit root tests.

Unit Root Test Panel Cointegration Test

Level 1st Difference

-

Levin, Lin and Chu
codi −3.959 *** -
codh −3.445 *** -
anti −3.277 *** -
anth −3.089 *** -
ypc −2.223 ** -
ypc2 −1.365 * -
edu −2.895 *** -
ind −3.290 *** -

Fisher-ADF Panal ADF Panel PP

codi 30.454 178.523 *** Group of codi
codh 33.619 219.161 ***

−3.661 *** −0.863 ***anti 37.407 200.169 ***
anth 9.257 181.955 ***

ypc 21.936 145.492 *** Group of codh
ypc2 17.626 149.354 ***

−4.102 *** −4.037 ***edu 79.095 * 113.663 ***
ind 70.484 201.233 ***

Fisher-PP Panal ADF Panel PP

codi 26.552 265.096 *** Group of anti
codh 36.131 290.202 ***

−3.248 *** −2.121 **anti 33.946 277.300 ***
anth 4.284 204.084 ***

ypc 29.065 150.792 *** Group of anth
ypc2 20.094 141.915 ***

−3.223 *** −2.116 **edu 425.975 *** 131.504 ***
ind 60.512 264.166 ***

Note: ***, **, and * denote statistical significance at 99, 95, and 90% level, respectively. Sources: Authors’ estimation.

4. Results and Discussion

Tables 6–9 present the results of the OLS and PPML estimations in the form of a log-
link function for industrial and household COD, and industrial and household ammonia
nitrogen, respectively. Columns (i) and (ii) display the outcomes of the fixed-effect models,
and columns (iii) and (iv) present the results of the alternative models containing pollution-
control capacity (edu) and industrialization (ind) for industrial discharges, and pollution-
control capacity (edu) and urbanization (urb) for household discharges, instead of the
fixed effects. Both the OLS and PPML estimations show similar results in the sign and
significance of each coefficient; therefore, the subsequent description focuses on the result
of the PPML estimations that adjust heteroskedasticity and autocorrelation. The findings
from the estimation results are summarized as follows.



Sustainability 2023, 15, 3979 10 of 21

Table 6. Estimation results: industrial COD (codi).

Estimation (i) (ii) (iii) (iv)
Methodology OLS PPML OLS PPML

ypc 2.603 ** 2.796 ** 12.333 ** 13.404 **
(2.336) (2.229) (2.692) (2.216)

ypc2 −0.104 * −0.112 * −0.567 ** −0.618 **
(−1.747) (−1.663) (−2.653) (−2.207)

ind
0.019 *** 0.020 ***
(5.994) (3.262)

edu
−0.940 *** −0.943 ***
(−17.758) (−6.774)

Dummy for fixed effect
Tianjin 1.856 *** 1.825 ***
Hebei 2.484 *** 2.468 ***
Shanxi 2.549 *** 2.543 ***
Inner Mongolia 2.947 *** 2.970 ***
Liaoning 2.654 *** 2.676 ***
Jilin 2.903 *** 2.924 ***
Heilongjiang 2.646 *** 2.680 ***
Shanghai 1.363 *** 1.381 ***
Jiangsu 2.562 *** 2.603 ***
Zhejiang 2.618 *** 2.630 ***
Anhui 2.239 *** 2.276 ***
Fujian 2.262 *** 2.298 ***
Jiangxi 2.705 *** 2.775 ***
Shandong 2.207 *** 2.227 ***
Henan 2.273 *** 2.262 ***
Hubei 2.313 *** 2.316 ***
Hunan 2.691 *** 2.721 ***
Guangdong 2.155 *** 2.178 ***
Guangxi 3.427 *** 3.419 ***
Hainan 2.001 *** 2.067 ***
Chongqing 2.443 *** 2.458 ***
Sichuan 2.466 *** 2.493 ***
Guizhou 1.662 *** 1.701 ***
Yunnan 2.603 *** 2.632 ***
Tibet 0.918 ** 1.044 **
Shaanxi 2.547 *** 2.548 ***
Gansu 2.773 *** 2.840 ***
Qinghai 3.089 *** 3.089 ***
Ningxia 4.140 *** 4.157 ***
Xinjiang 3.429 *** 3.441 ***

Turning Point (ypc) 12.456 12.457 10.872 10.842
Cross-sections 31 31 31 31
Periods 2004–2019 2004–2019 2013–2019 2013–2019
Total observations 496 496 217 217

Note: ***, **, and * denote statistical significance at 99, 95, and 90% level, respectively. T-statistics are in the
parentheses. Sources: Authors’ estimation.
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Table 7. Estimation results: household COD (codh).

Estimation (i) (ii) (iii) (iv)
Methodology OLS PPML OLS PPML

ypc 3.461 *** 3.518 *** 5.497 *** 5.615 *
(5.815) (5.254) (8.746) (1.949)

ypc2 −0.151 *** −0.155 *** −0.259 *** −0.262 **
(−4.731) (−4.222) (−8.681) (−1.969)

urb
0.012 * 0.009 **
(2.357) (2.123)

edu
−0.615 *** −0.605 ***
(−21.443) (−8.886)

dummy for fixed effect
Tianjin 0.396 *** 0.380 ***
Hebei 0.203 0.186
Shanxi 0.524 *** 0.500 **
Inner Mongolia 0.391 *** 0.363 **
Liaoning 0.597 *** 0.573 ***
Jilin 0.734 *** 0.702 ***
Heilongjiang 0.969 *** 0.945 ***
Shanghai 0.512 *** 0.503 ***
Jiangsu 0.571 *** 0.570 ***
Zhejiang 0.295 *** 0.289 ***
Anhui 0.721 *** 0.702 ***
Fujian 0.789 *** 0.783 ***
Jiangxi 1.018 *** 0.995 ***
Shandong 0.107 0.095
Henan 0.218 0.198
Hubei 0.812 *** 0.794 ***
Hunan 0.940 *** 0.915 ***
Guangdong 0.648 *** 0.645 ***
Guangxi 1.115 *** 1.090 ***
Hainan 1.017 *** 0.992 ***
Chongqing 0.276 * 0.241
Sichuan 0.731 *** 0.705 ***
Guizhou 0.817 *** 0.785 ***
Yunnan 0.438 ** 0.405 *
Tibet 0.795 *** 0.774 ***
Shaanxi 0.414 ** 0.389 **
Gansu 0.530 ** 0.493 **
Qinghai 0.746 *** 0.720 ***
Ningxia 0.312 * 0.298
Xinjiang 0.639 *** 0.628 ***

Turning Point (ypc) 11.452 11.356 10.612 10.713
Cross-sections 31 31 31 31
Periods 2004–2019 2004–2019 2013–2019 2013–2019
Total observations 496 496 217 217

Note: ***, **, and * denote statistical significance at 99, 95, and 90% level, respectively. T-statistics are in the
parentheses. Sources: Authors’ estimation.
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Table 8. Estimation results: industrial ammonia nitrogen (anti).

Estimation (i) (ii) (iii) (iv)
Methodology OLS PPML OLS PPML

ypc 4.038 *** 6.935 *** 17.671 ** 21.456 **
(2.647) (3.318) (2.109) (2.383)

ypc2 −0.178 ** −0.317 *** −0.811 ** −0.989 **
(−2.177) (−2.804) (−2.091) (−2.375)

ind
0.023 ** 0.024 ***
(2.549) (2.972)

edu
−1.098 *** −1.114 ***
(−6.128) (−6.737)

Dummy for fixed effect
Tianjin 2.283 *** 2.172 ***
Hebei 2.556 *** 2.484 ***
Shanxi 2.645 *** 2.570 ***
Inner Mongolia 2.891 *** 2.906 ***
Liaoning 2.473 *** 2.446 ***
Jilin 2.366 *** 2.425 ***
Heilongjiang 2.455 *** 2.459 ***
Shanghai 1.631 *** 1.809 ***
Jiangsu 2.546 *** 2.688 ***
Zhejiang 2.515 *** 2.469 ***
Anhui 2.432 *** 2.418 ***
Fujian 2.241 *** 2.270 ***
Jiangxi 2.707 *** 2.803 ***
Shandong 2.148 *** 2.155 ***
Henan 2.357 *** 2.260 ***
Hubei 2.638 *** 2.584 ***
Hunan 3.151 *** 3.142 ***
Guangdong 1.726 *** 1.778 ***
Guangxi 2.945 *** 2.929 ***
Hainan 1.709 *** 1.811 ***
Chongqing 2.374 *** 2.351 ***
Sichuan 2.169 *** 2.198 ***
Guizhou 1.664 *** 1.791 ***
Yunnan 1.862 *** 1.926 ***
Tibet −0.336 0.108
Shaanxi 2.168 *** 2.151 ***
Gansu 3.257 *** 3.223 ***
Qinghai 2.716 *** 2.757 ***
Ningxia 4.052 *** 4.037 ***
Xinjiang 2.999 *** 3.039 ***

Turning Point (ypc) 11.327 10.922 10.891 10.844
Cross-sections 31 31 31 31
Periods 2004–2019 2004–2019 2013–2019 2013–2019
Total observations 496 496 217 217

Note: *** and ** denote statistical significance at 99 and 95% level, respectively. T-statistics are in the parentheses.
Sources: Authors’ estimation.
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Table 9. Estimation results: household ammonia nitrogen (anth).

Estimation (i) (ii) (iii) (iv)
Methodology OLS PPML OLS PPML

ypc 5.780 *** 6.078 *** 8.284 ** 8.609 **
(8.026) (7.475) (3.111) (1.998)

ypc2 −0.256 *** −0.270 *** −0.398 ** −0.413 **
(−6.621) (−6.343) (−3.088) (−2.058)

ind
0.026 ** 0.026 ***
(2.954) (3.713)

edu
−1.054 *** −1.056 ***
(−19.299) (−12.278)

Dummy for fixed effect
Tianjin 0.381 *** 0.361 **
Hebei 0.486 ** 0.521 **
Shanxi 0.874 *** 0.900 ***
Inner Mongolia 0.716 *** 0.702 ***
Liaoning 0.951 *** 0.957 ***
Jilin 0.964 *** 0.973 ***
Heilongjiang 1.191 *** 1.219 ***
Shanghai 0.896 *** 0.922 ***
Jiangsu 0.562 *** 0.596 ***
Zhejiang 0.334 *** 0.354 **
Anhui 0.765 *** 0.794 ***
Fujian 0.764 *** 0.790 ***
Jiangxi 1.014 *** 1.052 ***
Shandong 0.378 ** 0.400 **
Henan 0.530 ** 0.557 **
Hubei 0.939 *** 0.968 ***
Hunan 1.047 *** 1.078 ***
Guangdong 0.784 *** 0.811 ***
Guangxi 1.100 *** 1.140 ***
Hainan 1.127 *** 1.159 ***
Chongqing 0.534 *** 0.533 **
Sichuan 0.828 *** 0.864 ***
Guizhou 1.022 *** 1.073 ***
Yunnan 0.613 ** 0.641 **
Tibet 0.992 *** 1.043 ***
Shaanxi 0.654 *** 0.675 ***
Gansu 0.836 *** 0.862 ***
Qinghai 1.219 *** 1.253 ***
Ningxia 0.881 *** 0.920 ***
Xinjiang 1.098 *** 1.152 ***

Turning Point (ypc) 11.294 11.256 10.412 10.435
Cross-sections 31 31 31 31
Periods 2004–2019 2004–2019 2013–2019 2013–2019
Total observations 496 496 217 217

Note: *** and ** denote statistical significance at 99 and 95% level, respectively. T-statistics are in the parentheses.
Sources: Authors’ estimation.

4.1. EKC Identification by Fixed-Effect Model

First, the EKC hypothesis, which assumes the inverted-U-shaped relationship between
water pollution level and GRP per capita, was confirmed in all the water pollutants from
Tables 6–9 and in all the estimations from columns (i)–(iv). They were confirmed using the
estimation results; the coefficients of the GRP per capita were significantly positive, and
those of its square were significantly negative. The turning points fell within the reasonable
ranges of GRP per capita between its minimum and maximum levels in the samples shown
in Table 4, except for the estimations in columns (i) and (ii) in Table 6 (the turning point was
computed using –α1/2α2, –β1/2β2, or –γ1/2γ2 in the Equations (1)–(3)). The finding of
the inverted-U-shaped EKC in Chinese provinces in this study is consistent with previous
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studies: Zhang et al. [2], Zhao et al. [18], Li et al. [19], Jayanthakumaran and Liu [20], and
Shen [21] in Table 2. The main research focus in this study was, however, the provincial
EKC positions rather than their shapes, as in the subsequent description.

4.2. Extraction of Provincial-Specific Pollution Effect

Second, the fixed-effect models in columns (i) and (ii) identified the positive coefficients
as the province-specific fixed effects at conventional significant levels, in all the provinces
for industrial COD in Table 6 and for household ammonia nitrogen in Table 9, and in the
majority of provinces for household COD (except Hebei, Shandong, Henan, Chongqing,
and Ningxia) in Table 7 and for industrial ammonia nitrogen (except Tibet) in Table 8. The
positive provincial fixed effects mean that the provincial EKCs are located above Beijing,
which is the benchmark, suggesting that the province-specific pollution effects (not affected
by the provincial income level on the EKC) are larger than those in Beijing. These results
are in line with the simple observations on water pollution per capita in all the provinces in
Table 1. The degree of water pollution was indicated by the magnitude of the coefficients
of provincial fixed effects: the industrial COD in Tianjin via the PPML estimation (column
(ii) in Table 6), for instance, was exp. (1.825) = 6.203 times larger than that in Beijing. The
provincial fixed effects also revealed that the pollution levels in the policy propriety areas
(3Rs3Ls), shown in Table 1, were not necessarily higher than the average levels among the
31 provinces for all water pollutants, thereby implying that the government policies have
controlled the water pollution in the priority areas.

4.3. Re-Estimation Results of Alternative EKC Model

Third, in the alternative model containing pollution-control capacity (edu) and indus-
trialization (ind)/urbanization (urb) in columns (iii) and (iv), respectively, the coefficients of
edu were significantly negative in all the pollutants and estimations in Tables 6–9; those of
ind for industrial discharges in Tables 6 and 8 and those of urb for household discharges
in Tables 7 and 9 were significantly positive in all estimations. These results are in line
with the hypothesis of Liu et al. [22], stating that the secondary industry output and urban
population can be the main indicators of industrial and household water use, respec-
tively. More importantly, the negative coefficients of edu for all pollutants suggest that the
pollution-control capacity had, indeed, affected the provincial pollution levels and that the
heterogeneity of provincial pollution could be explained by the differences in the provincial
pollution-control capacity. The joint estimation outcomes of the province-specific pollu-
tion effects and the workability of pollution-control capacity lead to a question regarding
the quantitative contributions of provincial capacity shortage to pollution control at the
provincial pollution level.

4.4. Factor Analysis on Pollution-Control Capacity

We quantified the contributions of the provincial pollution-control capacity to the
province-specific pollution effects (also based on the PPML estimation). Tables 10 and 11
present the analytical outcomes for COD and ammonia nitrogen discharges, respectively.
Columns (a) and (b) repeat the provincial fixed effects (only significant coefficients) in
Tables 6–9, representing the province-specific pollution from industrial and household
discharges, respectively; column (c) presents the period average of provincial pollution-
control capacity indicators (edu); column (d) computes the edu deviations from that of
Beijing (the benchmark); columns (e) and (f) indicate the edu contributions to provincial
industrial and household discharges, respectively, by multiplying the edu deviations with
the estimated edu coefficients in Tables 6–9; and columns (g) and (h) demonstrate the edu
contribution ratios to provincial industrial and household pollution by dividing columns
(e) and (f) by columns (a) and (b), respectively.
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Table 10. Provincial pollution and pollution-control capacity (COD).

cod
Fixed Effect

edu (c) − Benchmark
(d) × −0.943 (d) × −0.605 (e)/(a) (f)/(b)

codi codh codi codh codi codh
(a) (b) (c) (d) (e) (f) (g) (h)

Tianjin 1.825 0.380 8.982 0.080 −0.075 −0.048 −0.041 −0.127
Hebei 2.468 - 8.225 −0.677 0.639 - 0.259 -
Shanxi 2.543 - 8.295 −0.607 0.573 - 0.225 -
Inner Mongolia 2.970 - 8.077 −0.825 0.778 - 0.262 -
Liaoning 2.676 0.573 8.459 −0.444 0.418 0.268 0.156 0.468
Jilin 2.924 0.702 8.447 −0.455 0.429 0.275 0.147 0.392
Heilongjiang 2.680 0.945 8.373 −0.529 0.499 0.320 0.186 0.339
Shanghai 1.381 0.503 8.594 −0.309 0.291 0.187 0.211 0.371
Jiangsu 2.603 0.570 8.447 −0.455 0.429 0.275 0.165 0.482
Zhejiang 2.630 0.289 8.213 −0.690 0.651 0.417 0.247 1.443
Anhui 2.276 0.702 8.147 −0.755 0.712 0.457 0.313 0.650
Fujian 2.298 0.783 8.184 −0.719 0.678 0.435 0.295 0.555
Jiangxi 2.775 0.995 8.370 −0.532 0.502 0.322 0.181 0.323
Shandong 2.227 - 8.285 −0.618 0.583 - 0.262 -
Henan 2.262 - 8.149 −0.753 0.710 - 0.314 -
Hubei 2.316 0.794 8.559 −0.343 0.324 0.207 0.140 0.261
Hunan 2.721 0.915 8.212 −0.691 0.651 0.418 0.239 0.456
Guangdong 2.178 0.645 7.980 −0.922 0.870 0.558 0.399 0.865
Guangxi 3.419 1.090 7.878 −1.025 0.967 0.620 0.283 0.568
Hainan 2.067 0.992 8.053 −0.849 0.801 0.513 0.388 0.518
Chongqing 2.458 - 8.286 −0.616 0.581 - 0.236 -
Sichuan 2.493 0.705 8.019 −0.884 0.834 0.534 0.334 0.757
Guizhou 1.701 0.785 7.638 −1.265 1.193 0.765 0.701 0.975
Yunnan 2.632 - 7.651 −1.251 1.180 - 0.448 -
Tibet - 0.774 7.609 −1.294 - 0.782 - 1.011
Shaanxi 2.548 - 8.658 −0.244 0.230 - 0.090 -
Gansu 2.840 - 8.097 −0.805 0.759 - 0.267 -
Qinghai 3.089 0.720 7.569 −1.334 1.258 0.806 0.407 1.120
Ningxia 4.157 - 7.911 −0.992 0.936 - 0.225 -
Xinjiang 3.441 0.628 7.839 −1.064 1.003 0.643 0.292 1.024

Sources: Authors’ estimation.

Table 11. Provincial pollution and pollution-control capacity (ammonia nitrogen).

ant
Fixed Effect

edu (c) − Benchmark
(d) × −1.114 (d) × −1.056 (e)/(a) (f)/(b)

anti anth anti anth anti anth
(a) (b) (c) (d) (e) (f) (g) (h)

Tianjin 2.172 - 8.982 0.080 −0.089 - −0.041 -
Hebei 2.484 - 8.225 −0.677 0.755 - 0.304 -
Shanxi 2.570 0.900 8.295 −0.607 0.677 0.641 0.263 0.713
Inner Mongolia 2.906 0.702 8.077 −0.825 0.919 0.872 0.316 1.242
Liaoning 2.446 0.957 8.459 −0.444 0.494 0.469 0.202 0.490
Jilin 2.425 0.973 8.447 −0.455 0.507 0.481 0.209 0.494
Heilongjiang 2.459 1.219 8.373 −0.529 0.590 0.559 0.240 0.459
Shanghai 1.809 0.922 8.594 −0.309 0.344 0.326 0.190 0.354
Jiangsu 2.688 0.596 8.447 −0.455 0.507 0.481 0.189 0.806
Zhejiang 2.469 - 8.213 −0.690 0.769 - 0.311 -
Anhui 2.418 0.794 8.147 −0.755 0.841 0.798 0.348 1.005
Fujian 2.270 0.790 8.184 −0.719 0.801 0.759 0.353 0.961
Jiangxi 2.803 1.052 8.370 −0.532 0.593 0.562 0.212 0.534
Shandong 2.155 - 8.285 −0.618 0.688 - 0.319 -
Henan 2.260 - 8.149 −0.753 0.839 - 0.371 -
Hubei 2.584 0.968 8.559 −0.343 0.382 0.362 0.148 0.374
Hunan 3.142 1.078 8.212 −0.691 0.769 0.730 0.245 0.677
Guangdong 1.778 0.811 7.980 −0.922 1.028 0.974 0.578 1.201
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Table 11. Cont.

ant
Fixed Effect

edu (c) − Benchmark
(d) × −1.114 (d) × −1.056 (e)/(a) (f)/(b)

anti anth anti anth anti anth
(a) (b) (c) (d) (e) (f) (g) (h)

Guangxi 2.929 1.140 7.878 −1.025 1.142 1.083 0.390 0.949
Hainan 1.811 1.159 8.053 −0.849 0.946 0.897 0.522 0.774
Chongqing 2.351 - 8.286 −0.616 0.686 - 0.292 -
Sichuan 2.198 0.864 8.019 −0.884 0.985 0.934 0.448 1.080
Guizhou 1.791 1.073 7.638 −1.265 1.409 1.336 0.787 1.245
Yunnan 1.926 - 7.651 −1.251 1.394 - 0.724 -
Tibet - 1.043 7.609 −1.294 - 1.367 - 1.310
Shaanxi 2.151 0.675 8.658 −0.244 0.272 0.258 0.127 0.382
Gansu 3.223 0.862 8.097 −0.805 0.897 0.851 0.278 0.987
Qinghai 2.757 1.253 7.569 −1.334 1.486 1.409 0.539 1.125
Ningxia 4.037 0.920 7.911 −0.992 1.105 1.048 0.274 1.138
Xinjiang 3.039 1.152 7.839 −1.064 1.185 1.124 0.390 0.975

Sources: Authors’ estimation.

Figure 3 demonstrates that the average edu contribution ratios among the total provinces
except those with insignificant fixed effects were 0.263 for industrial COD, 0.623 for house-
hold COD, 0.329 for industrial ammonia nitrogen, and 0.838 for household ammonia
nitrogen. Therefore, the capacity shortage for pollution control as one of the pollution
factors accounts for (a) about 30% of industrial COD and industrial ammonia nitrogen;
(b) about 60% of household COD; and (c) about 80% of household ammonia nitrogen. This
highlights the significance of building the capacity for water pollution control by develop-
ing human resources and training them. Capacity building contributes to the mitigation
of water pollution through various channels by enhancing environmental awareness (e.g.,
Niu et al. [35]), developing environmental technologies (e.g., Zhao et al. [18], Aboelmaged
and Hashem [36]), and improving the regulatory powers and governance of environmental
policies (e.g., Cai et al. [1], Liu et al. [22]).
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highlights the significance of building the capacity for water pollution control by devel-

oping human resources and training them. Capacity building contributes to the mitigation 

of water pollution through various channels by enhancing environmental awareness (e.g., 

Niu et al. [35]), developing environmental technologies (e.g., Zhao et al. [18], Aboelmaged 
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Figure 3. Contribution ratios of capacity shortage to water pollution. Note: codi: Industrial chemical
oxygen demand (COD), tons per million persons; codh: Household COD, tons per million persons;
anti: Industrial ammonia nitrogen, tons per million persons; anth: Household ammonia nitrogen, tons
per million persons; Sources: Authors’ estimation.

5. Conclusions

The main findings from the empirical estimations are summarized as follows. First,
all EKC estimations with provincial panel data identified the existence of the inverted-U-
shaped relationship between water pollution and income with reasonable turning points.
Second, the fixed-effect models confirmed that the majority of provinces had more serious
water pollution than Beijing as province-specific effects. Third, the alternative models
revealed that industrial and household pollution were associated with the industrialization
and urbanization degrees, respectively, and, more importantly, both pollutions were signifi-
cantly affected by the pollution-control capacity. Fourth, the factor analysis demonstrated
that the capacity shortage for pollution control is one of the pollution factors that accounted
for (a) about 30% of industrial COD and industrial ammonia nitrogen; (b) about 60% of
household COD; and (c) about 80% of household ammonia nitrogen.

China still has much policy space and room to mitigate water pollution in terms of
COD and ammonia nitrogen, by building the capacity for pollution control through the
development and training of human resources. Capacity building contributes to water
pollution mitigation through various channels, such as enhancing environmental awareness,
developing environmental technologies, and raising regulatory the powers and governance
of environmental policies.

The limitations of this study include the shortage of detailed research on individual
provinces and regions. China has regional heterogeneity in terms of pollution levels and
in the factors affecting them; in addition, there are differences in its policy priority areas,
such as in the 3Rs3Ls. Examining the complexity of pollution mechanisms and the policy
performances of specific regions through detailed case studies would make it possible to
develop firm region-specific recommendations and prescriptions for the management of
water pollution in China.
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Appendix B

Table A1. Estimation on daily treatment capacity of sewage.

Estimation codi anti
Methodology OLS PPML OLS PPML

ypc 5.600 ** 5.631 *** 3.376 * 4.311 **
(2.161) (3.665) (1.877) (2.091)

ypc2 −0.350 ** −0.351 *** −0.250 *** −0.297 ***
(−2.852) (−4.735) (−2.842) (−2.974)

ind
0.035 *** 0.036 *** 0.048 *** 0.048 ***
(5.163) (8.879) (10.051) (9.408)

tcs
0.825 *** 0.824 *** 0.983*** 1.000 ***
(11.123) (0.099) (10.119) (9.043)

Cross-sections 31 31 31 31
Periods 2004–2019 2004–2019 2004–2019 2004–2019
Total observations 487 487 487 487
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Table A1. Cont.

Estimation codh anth
Methodology OLS PPML OLS PPML

ypc 3.646 *** 3.446 *** 8.131 *** 8.168 ***
(8.617) (3.985) (8.951) (6.737)

ypc2 −0.208 *** −0.201 *** −0.431 *** −0.433 ***
(−9.118) (−4.645) (−9.916) (−7.124)

urb
0.017 *** 0.013 *** 0.018 *** 0.018 ***
(6.425) (4.355) (4.575) (4.632)

tcs
0.134 *** 0.173 *** 0.114 * 0.116 **
(4.154) (3.621) (1.975) (2.062)

Cross-sections 31 31 31 31
Periods 2004–2019 2004–2019 2004–2019 2004–2019
Total observations 479 479 479 479

Note: tcs denotes the daily treatment capacity of sewage” (cubic meter per million persons, log-term, one-year
lagged). ***, **, and * denote statistical significance at 99, 95, and 90% level, respectively. T-statistics are in the
parentheses. Sources: Authors’ estimation.

Appendix C

Table A2. Estimation on waste water discharge.

Estimation codi anti
Methodology OLS PPML OLS PPML

ypc −0.656 −0.032 1.437 0.894
(−0.342) (−0.005) (0.145) (0.086)

ypc2 0.005 −0.024 −0.095 −0.069
(0.056) (−0.080) (−0.204) (−0.143)

wwdi
1.002 *** 0.993 *** 1.157 *** 1.181 ***
(21.573) (12.244) (7.968) (11.729)

edu
−0.522 −0.513 *** −0.453 ** −0.445 **

(−1.581) (−3.668) (−2.374) (−2.237)

Cross-sections 31 31 31 31
Periods 2013–2016 2013–2016 2013–2016 2013–2016
Total observations 124 124 124 124

Estimation codh anth
Methodology OLS PPML OLS PPML

ypc 3.249 * 2.733 3.634 3.709
(2.701) (0.710) (1.324) (0.625)

ypc2 −0.156 * −0.127 −0.154 −0.157
(−2.528) (−0.707) (−1.134) (−0.564)

wwdh
0.330 *** 0.334 * 0.297 *** 0.299
(8.950) (1.857) (10.197) (1.280)

edu
−0.291 −0.442 *** −0.648 −0.656 ***

(−1.895) (−5.005) (−2.032) (−5.252)

Cross-sections 31 31 31 31
Periods 2013–2016 2013–2016 2013–2016 2013–2016
Total observations 124 124 124 124

Note: wwdi denotes the industrial discharge of waste water and wwdh indicates its household discharge (tons per
million persons, log-term, one-year lagged). ***, **, and * denote statistical significance at 99, 95, and 90% level,
respectively. T-statistics are in the parentheses. Sources: Authors’ estimation.
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