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Abstract: The development and application of emerging technologies pose many social risks, which
raise public concerns. Various factors influence the public risk perception of emerging technologies,
and a systematic and accurate understanding of these factors plays a vital role in promoting the
sustainable development of emerging technologies. Considerable inconsistency and ambiguity exist
in the influence of relevant factors on the public risk perception of emerging technologies in existing
studies, which need to be explored systematically and comprehensively through meta-analysis.
This study constructs an analytical framework of “technology–psychology–society” and conducts a
meta-analysis of 272 papers, including 449 correlations and 191,195 samples. The results show that
perceived benefit, knowledge, innovativeness, trust, and social influence have significant negative
effects on risk perception. Perceived cost has a significant positive effect on risk perception. Gender
and cultural dimensions of power distance, uncertainty avoidance, individualism–collectivism,
and masculinity–femininity have moderating effects on the relationship between relevant factors
and risk perception; the type of emerging technology, age, and the cultural dimension of long-
term/short-term orientation do not have moderating effects. Based on the above findings, this study
proposes corresponding suggestions from the perspectives of R&D, application, and management of
emerging technologies.
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1. Introduction

The rapid development and widespread application of emerging technologies have
brought tremendous economic benefits, life convenience, and social well-being. According
to the research of PricewaterhouseCoopers (PwC), an international accounting and auditing
institution, artificial intelligence is expected to drive global economic growth of 14% by
2030, equivalent to USD 15.7 trillion [1], exceeding China’s GDP in 2020. In addition,
research by Strategy Analytics, a global market research and advisory firm, found that as
of June 2021, about four billion people worldwide had smartphones, accounting for half
of the total population [2]. Since the outbreak of COVID-19, mobile Internet technologies
such as online offices, cloud-based learning, and health codes have provided intelligent
solutions to the epidemic. Furthermore, with the advantages of low cost and high yield and
disease and pest resistance, genetically modified technology can improve the ecological
environment and help solve the food crisis.

However, emerging technologies have become a source of risk because of their rad-
ical novelty, uncertainty, and ambiguity [3]. These risks include the security threat to
autonomous vehicles, the invasion of personal privacy by Internet apps, the health contro-
versy over genetically modified technology, etc. Compared with traditional risk, emerging
technology risk exhibits a higher degree of gradualness, concealment, coupling, and uncer-
tainty [4], which are more likely to trigger public anxiety and group panic and even lead to
mass incidents.

Because of the “double-edged sword” nature, the government must consider the risk
governance of emerging technologies while vigorously developing and promoting them. At
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the same time, it is crucial to note that factors affecting public risk perception have become
essential for decision making in emerging technology risk governance strategies [5–7].
Unlike the objective risk assessment based on precise scientific analysis, risk perception
is somewhat subjectively constructed. It comprises psychological processing based on
intuition, experience, and the overall judgment of specific behaviors or events [8]. Public
risk perception is often inconsistent with and differs from the results of objective risk
assessment. For example, although the damage caused by nuclear, biological, and chemical
technologies is much less than that caused by natural disasters, traffic accidents, and local
conflicts, people are more worried about it. Although scientific evidence has not proven that
genetically modified technology is harmful, people believe it may lead to disasters [9]. As
with responses to objectively real threats or potential harm, such biased perception can also
lead to public concern, panic, and unacceptable behavior. This will hinder the sustainable
development of emerging technologies and increase public distrust of professional groups
and government agencies, leading to social instability [10]. Therefore, conducting an
in-depth and systematic study of the factors influencing public risk perception is necessary.

The existing research on public risk perception of emerging technologies has been
relatively fruitful, but there are still deficiencies. First, established research has comprehen-
sively integrated the psychological, social, and cultural factors that shape technological risk
perception [7]. However, it mainly uses a systematic overview approach, and quantitative
studies based on large samples are scarce. Second, existing research has mainly considered
a particular technology as an example, with less discussion on different types of technolo-
gies. Third, there is still disagreement and ambiguity about the direction and intensity
of factors affecting risk perception in the existing studies. For example, previous studies
have found that the correlation coefficient between trust and risk perception is −0.801 to
0.176 [11,12], and the correlation coefficient between knowledge and risk perception is
−0.528 to 0.345 [13,14]. Fourth, the established studies are inadequate in explaining the
considerable differences in the factors affecting risk perception. Insufficient attention has
been paid to the role of moderators such as gender, age, technology type, and culture. In
conclusion, there are few holistic, systematic, and integrated empirical studies on the factors
influencing the public risk perception of emerging technologies and their mechanisms.

Therefore, this paper used the technology–organization–environment (TOE) frame-
work, a general classification framework that is more systematic, operable, and flexible
based on technology application scenarios [15–17]. This comprehensive framework can
analyze the impact of technological factors (advantages, costs, and benefits of the tech-
nology), organizational factors (size, structural characteristics, and human resources of
the organization), and environmental factors (the specific environment in which the orga-
nization is located, involving market structure, policies, society, culture, and values) on
the application of technology [16,18–22]. Based on the TOE framework, we constructed
a theoretical analysis framework of “technology–psychology–society”, an integrated the-
oretical model of influencing factors affecting risk perception from three levels, namely,
technological economy, psychological cognition, and social environment, and explored
the role of relevant typical factors on the public risk perception of emerging technologies.
At the same time, we selected four emerging technologies [23], namely, genetically modi-
fied technology, nanotechnology, artificial intelligence, and information communication
technology, to conduct a meta-analysis of 272 empirical studies worldwide and verify
the proposed theoretical model. This paper has three main focuses: first, to construct an
integrated theoretical model of factors influencing risk perception based on the review
of existing studies; second, to draw more accurate and more evident conclusions on the
direction and strength of influencing factors based on a large sample meta-analysis; and
third, to explore and validate the mechanisms of moderating variables.
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2. Theory and Hypothesis
2.1. Conceptual Background

The academic research on risk has been fruitful, but there is still no consensus on the
definition of risk. One study systematically analyzed dozens of conceptual representations
of risk [24]. Referring to this study, we found that risk consists of three core elements. Most
of the definitions of risk in previous studies have focused on a combination of the three
elements, as shown in Table 1 and Figure 1. Although there are different definitions, the
essence of risk is uncertainty. This uncertainty stems not only from the randomness of
risk events and behaviors but also from the uncertainty in understanding and perceiving
the impact of risk [25], that is, the perception of risk. Risk perception refers to people’s
subjective awareness, judgment, and feelings about dimensions such as damage extent,
duration, probability of occurrence, and acceptability based on information, knowledge,
and experience [10,26–28].

Table 1. Definitions of risk and the representative literature.

Elements/Combination of Elements Definition Representative Literature

Element 1:
Event/Action/Consequence/Outcome

Most studies characterize risk as negative,
i.e., “undesirable event”, “loss”,

“damage”, “disutility”, etc., while some
argue that risk contains not only negative
consequences but also positive outcomes,

such as “opportunity”, “utility”, etc.

Aven T [24]
Cabinet Office [29]

Element 2: Degree “severity”, “intensity”, “size”,
“extension”, “scope”, “magnitude”, etc.

Aven T [24]
Aven T and Renn O [30]

Element 3: Uncertainty

“possibility”, “probability”, “chance”,
“likelihood”, etc.; this element implies the
future direction of risk, that is, it has not

yet occurred

Aven T [24]

Combination of elements

“Risk is the expected loss”, ”Risk equals
the combination of probability of an
event and its consequences”, ”Risk is

uncertainty about events/consequences
of an activity, seen in relation to the

severity of the events/consequences”,
“Risk refers to uncertainty about and

severity of the consequences (or
outcomes) of an activity with respect to
something that humans value”, “Risk

refers to the combination of probability
and the extent of consequences”, etc.

Verma, M and Verter, V [31]
Willis, H.H [32]

ISO [33]
Aven T and Renn O [30]

Ale, B.J.M [34]
Aven T [24]

In recent years, emerging technology has gradually become a hot topic in research and
practice, but the academic community has also not reached a consensus on its definition.
Because of this, Rotolo et al. [3] systematically integrated relevant research and summarized
the definition of emerging technologies from the following five core attributes: (a) radical
novelty, that is, the revolutionary and evolutionary character of innovation in the process
of technology formation, as manifested by revolutionary breakthroughs in previously
limiting technologies, or the application of existing technologies from one field in another;
(b) relatively fast growth, that is, rapid growth compared to other technologies in the same
domain; (c) coherence, that is, the detachment and identity of emerging technologies are
always in the process of realization; (d) prominent impact, that is, a potentially considerable
impact on specific domains or the entire socioeconomic system (such as bringing significant
economic benefits) by changing the knowledge production processes and reshaping the
technological institution; (e) uncertainty and ambiguity, that is, emerging technologies are



Sustainability 2023, 15, 3939 4 of 37

still in the process of development and in an “unfinished” state; their prominent impact
lies somewhere in the future, and their applications are still malleable, fluid, and even
contradictory in some cases, with unpredictable consequences, especially unintended or
undesirable consequences.

Sustainability 2023, 15, x FOR PEER REVIEW 4 of 37 
 

 
Figure 1. Illustration of risk concept. 

In recent years, emerging technology has gradually become a hot topic in research 
and practice, but the academic community has also not reached a consensus on its defini-
tion. Because of this, Rotolo et al. [3] systematically integrated relevant research and sum-
marized the definition of emerging technologies from the following five core attributes: 
(a) radical novelty, that is, the revolutionary and evolutionary character of innovation in 
the process of technology formation, as manifested by revolutionary breakthroughs in 
previously limiting technologies, or the application of existing technologies from one field 
in another; (b) relatively fast growth, that is, rapid growth compared to other technologies 
in the same domain; (c) coherence, that is, the detachment and identity of emerging tech-
nologies are always in the process of realization; (d) prominent impact, that is, a poten-
tially considerable impact on specific domains or the entire socioeconomic system (such 
as bringing significant economic benefits) by changing the knowledge production pro-
cesses and reshaping the technological institution; (e) uncertainty and ambiguity, that is, 
emerging technologies are still in the process of development and in an “unfinished” state; 
their prominent impact lies somewhere in the future, and their applications are still mal-
leable, fluid, and even contradictory in some cases, with unpredictable consequences, es-
pecially unintended or undesirable consequences. 

With the five attributes mentioned above, emerging technologies promote economic 
development and the efficiency of social operation. However, they also create problems 
such as the limited social understanding of them, the insufficient capacity to govern them, 
and difficulty in detecting their potential negativity. These problems lead to potential 
physical, economic, and social losses from the accumulation and development of technol-
ogies during their life cycle [7]. The risk of emerging technologies has gradually become 
a major social risk category, raising public concern [35–37]. The risk perception of emerg-
ing technologies refers to people’s processing of the physical signals and information 
about potential hazards and risks associated with emerging technologies and their judg-
ment of the severity, possibility, and acceptability of emerging technologies based on their 
knowledge and experience [7]. The five core attributes of emerging technologies are 
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With the five attributes mentioned above, emerging technologies promote economic
development and the efficiency of social operation. However, they also create problems
such as the limited social understanding of them, the insufficient capacity to govern them,
and difficulty in detecting their potential negativity. These problems lead to potential
physical, economic, and social losses from the accumulation and development of technolo-
gies during their life cycle [7]. The risk of emerging technologies has gradually become a
major social risk category, raising public concern [35–37]. The risk perception of emerging
technologies refers to people’s processing of the physical signals and information about po-
tential hazards and risks associated with emerging technologies and their judgment of the
severity, possibility, and acceptability of emerging technologies based on their knowledge
and experience [7]. The five core attributes of emerging technologies are intertwined with
the complexity and uncertainty characteristics of risk, resulting in various factors affecting
public risk perception [38,39]. Thus, this study summarized six typical influencing factors
at three levels based on the analysis framework of “technology–psychology–society” by
combing the relevant literature. They are technical–economic factors, including perceived
benefit and perceived cost; psychological–cognitive factors, including knowledge and
innovativeness; and social–environmental factors, including trust and social influence. In
addition, we explored the moderating effects of relevant variables.
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2.2. Technical–Economic Factors
2.2.1. The Relationship between Perceived Benefit and Public Risk Perception of
Emerging Technologies

An innovation without additional benefits is almost a paradox [40]. In most cases,
emerging technologies offer benefits or advantages that exceed those existing in general
technologies because of their attributes, such as long-term economic benefits, functional
advantages, environmental protection, and nutritional health. However, emerging technolo-
gies often carry more significant risks and pose severe dilemmas for social development.
The rational decision analysis approach treats risks and benefits as isolated concepts and
conducts risk–benefit analysis to weigh the benefits and losses to solve this dilemma [41].
Thus, risk and benefit tend to have an objective positive correlation [42]. At the same time,
high risk–high benefit and low risk–low benefit are almost psychological common sense.
However, like risk perception, perceived benefit is somewhat subjective, and its meaning
refers to the public judgment and perception of the benefits or advantages that emerging
technologies can bring. Research has shown a negative correlation between perceived
benefit and perceived risk. For example, Gardner et al. [43] found that the perceived benefit
of nuclear power technology was negatively correlated with the perceived risk. The public
who believed that nuclear power technology was beneficial to society felt less risk than
those who did not hold this view.

In most cases, the public does not judge risk and benefit independently using a
scientific risk–benefit evaluation approach but rather closely correlates their perceptions of
both [44]. People perceive less risk because they perceive more benefit [41,44]. In addition,
the public does not have the knowledge and ability to assess risk to a large extent. Because
benefits are more tangible and more closely related to individuals, people have more
experience in this area. Hence, it is much easier for the public to perceive the benefit of
technology than the risk. From this perspective, it is more reasonable for a perceived benefit
to influence risk perception than the opposite [45–47]. In addition, the theory of cognitive
consistency holds that people must maintain consistent beliefs in their work and life [48,49].
Therefore, to avoid cognitive dissonance, people tend to agree that an activity or technology
is low-risk when they perceive it as beneficial [41]. Based on the above analysis, this study
proposes the following hypothesis:

Hypothesis 1 (H1). There is a negative relationship between perceived benefit and risk perception.

2.2.2. The Relationship between Perceived Cost and Public Risk Perception of
Emerging Technologies

Prospect theory suggests that individuals tend to be more sensitive to losses than
gains [50]. Additionally, Arrow and Pratt’s theory assumes that individuals are generally
risk averse [51–53]. Given the novelty, complexity, ambiguity, and other characteristics of
emerging technology, people will not only consume more time, money, and other explicit
costs but also incur implicit costs such as psychological hindrance, burden, or emotional
unpleasantness in the process of selecting, using, and converting from the previous tech-
nology or service to a new one [54,55]. Perceived cost refers to the public’s perception and
cognition of these costs. There is a lack of detailed discussion on the relationship between
the perceived cost and risk perception of emerging technology. Mustapa et al. [56] found
that the perceived cost of adopting genetically modified crops strongly affects farmers’
risk perception; the higher the perceived cost, the higher the perceived risk. The trans-
action cost theory explains this result. It suggests that the limited rationality of traders,
information asymmetry, uncertainty in the exchange environment, and other factors dur-
ing the transaction process lead to transaction costs, which are manifested in the time,
information, expenses, and psychological costs incurred in searching, consulting, and
defending rights [57,58]. The more complex the transaction, the higher the transaction
cost, and the more uncertainty the traders will feel or the more inclined they will be to
perceive the outcome as unfavorable. Therefore, they will perceive a higher risk [59,60].
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Studies have found that transaction cost or perceived transaction cost positively affects
risk perception [61,62]. Similarly, the public may bear more explicit or implicit costs in
selecting and using emerging technologies because of their lack of experience, information
asymmetry, and habituation to prior technologies. The higher the cost perceived by the
public, the worse their experience with the emerging technologies and the higher the risk
perception. Therefore, this study proposes the following hypothesis:

Hypothesis 2 (H2). There is a positive relationship between perceived cost and risk perception.

2.3. Psychological–Cognitive Factors
2.3.1. The Relationship between Knowledge and Public Risk Perception of
Emerging Technologies

Knowledge represents the public’s awareness, understanding, and familiarity with the
characteristics, functions, and usage of emerging technologies. When faced with something
new, everyone perceives, identifies, and evaluates its risk under a specific predetermined
knowledge structure. A person’s knowledge structure constitutes the premise and psycho-
logical foundation of risk perception. The public usually perceives and judges the risks of
emerging technologies based on specific knowledge. Generally speaking, the more knowl-
edge the public has about a specific thing’s characteristics, functions, and usage, the lower
the degree of risk perception. Emerging technologies form an insurmountable knowledge
barrier before the public because of their complexity, uncertainty, and ambiguity. There
is a large gap between the “knowledge demand” of the public to comprehensively and
thoroughly understand emerging technologies and their limited “knowledge reserve” [63].
This knowledge gap is an essential factor that leads to fear, uncertainty, and doubt among
the public. Some scholars believe that if a person’s knowledge structure is complete, there
is no uncertainty [64]. Related studies have found that knowledge can negatively predict
the public risk perception of emerging technologies [65,66]. A proper understanding of
emerging technologies can help the public to dispel doubts and confusion and reduce fear
and anxiety. However, some studies have come to the opposite conclusion [14,67]. This may
be because with the improvement of knowledge level, the public may pay more attention to
the principles, functions, quality, and potential hazards of emerging technologies, resulting
in more doubts and negative perceptions. Although the findings of existing studies are
divergent, in general, a complete body of knowledge and adequate understanding facilitate
a more positive public attitude toward emerging technologies. Accordingly, this study
proposes the following hypothesis:

Hypothesis 3 (H3). There is a negative relationship between knowledge and risk perception.

2.3.2. The Relationship between Innovativeness and Public Risk Perception of
Emerging Technologies

Innovativeness is derived from the diffusion of innovation theory, also known as
personal innovativeness. It reflects the individual’s distinctive attitude toward emerging
things and is an essential factor affecting their intention to accept innovative ideas and
things. Rogers et al. [68] defined innovativeness as the degree to which individuals adopt
new technologies, products, or services earlier than others from the perspective of time.
Midgley and Dowling [69] considered innovativeness from the perspective of individual
psychology as a higher-order potential personality trait in a broad sense—the degree to
which individuals tend to accept new ideas, products, or services. In practice, people
with innovative traits are more open and risk-taking, have an intense curiosity about new
things, and enjoy experiencing new technologies or services. Bommer and Jalajas [70]
suggested that innovativeness reflects an individual’s ability and willingness to take and
tolerate risks. Rogers et al. [68] pointed out that innovative individuals can cope with high
levels of uncertainty and form more positive attitudinal intentions. Some studies have
found a significant negative effect of innovativeness on the risk perceptions of emerging
technologies [71,72]. However, other studies found this effect to be insignificant [73],
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suggesting that the role of innovativeness needs further exploration. Nevertheless, a high
level of innovativeness is more likely to weaken the perception of uncertainty and risk on
the whole. Therefore, this study proposes the following hypothesis:

Hypothesis 4 (H4). There is a negative relationship between innovativeness and risk perception.

2.4. Social–Environmental Factors
2.4.1. The Relationship between Trust and Public Risk Perception of
Emerging Technologies

The extent to which society embraces emerging things is closely related to the level
of overall social trust. The famous “Tacitus trap” posits that once government power
loses trust, society will give a negative evaluation no matter how it communicates or
acts [74]. Theoretically, trust is a complex and multidimensional concept defined differently
by different disciplines. Mayer et al. [75] defined trust as the willingness of one party to be
vulnerable to the actions of another party because of its expectation that the other party will
take a particular action that is important to the trustor, regardless of the ability to monitor
or control that other party. In other words, trust is an interactive relationship between
the trustor and trustee that depends on the attributes or elements that trust possesses.
Established research suggests that trust contains three core elements: Ability, benevolence,
and integrity [75]. Ability refers to the trustor’s belief that the trustee has sufficient expertise,
skills, and competencies to meet reasonable expectations. Benevolence is the degree to
which a trustee is perceived to want to do good for the trustor, excluding consideration of
self-interest. Integrity means that the trustor perceives that the trustee adheres to a set of
principles that the trustor deems acceptable.

The relationship between trust and risk is close. There is considerable inconsistency in
the degree of the relationship between trust and risk perception in existing studies [11,12].
Mayer et al. [75] explained trust as the willingness to take risks, and it can also be said
that trust is essentially a response to risk, that is, the belief that the trustee cannot take
advantage of the trustor’s vulnerability to act in an opportunistic manner [76]. For exam-
ple, in using information technology, customers allow network operators to access their
personal information because they believe that the operators can do an excellent job in se-
curity protection and will not abuse this information by taking advantage of the customers’
weaknesses. Establishing this trust leads to the reduction of the customers’ risk perception
levels [77,78]. Some studies have identified trust as an effective mechanism for simplifying
complexity. When facing the complexity of society, individuals have difficulties obtaining
sufficient information about a specific cognitive object because of the limited rationality
of the cognitive world. Trust can effectively compensate for the lack of rationality, deal
with information omissions, simplify the cognitive process, and establish a sense of secu-
rity [79–81]. Because of the radical novelty and high uncertainty of emerging technologies,
public trust in technology and technology stakeholders (including government agencies,
industry organizations, and scientific communities) can serve as a means to bridge the
gap between their own “knowledge reserve” and the “knowledge demand” required for a
comprehensive understanding of emerging technologies”, thereby offsetting some of the
worries about emerging technologies caused by the lack of knowledge [82,83]. For example,
studies have shown that one way for people to cope with their lack of experience is to use
social trust mechanisms when judging technical risk [84]. Studies in gene technology have
also found that trust in institutions or persons involved in researching, developing, and
using technologies causes people to perceive a lower technical risk [82,85]. Furthermore,
some studies have found that trust can also be used as a heuristic to conserve individual’s
cognitive resources, enable them to process complex technical information and social con-
troversies quickly, overcome uncertainty and anxiety about behavior and its outcomes, and
reduce the level of risk perception [86,87]. Accordingly, this study proposes the following
hypothesis:
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Hypothesis 5 (H5). There is a negative relationship between trust and risk perception.

2.4.2. The Relationship between Social Influence and Public Risk Perception of
Emerging Technologies

The concept of social influence is derived from the unified theory of acceptance and
use of technology [88]. As the name implies, social influence mainly reflects the influence
of the social environment on individual behavior, which can be defined as the pressure
individuals perceive from the social network on their decisions to adopt a specific behavior
or accept a particular idea [88,89]. It consists of three constructs [88]: subjective norm, that
is, the degree to which individuals perceive that significant others or organizations think
they should adopt a specific behavior, reflecting an individual’s motivation to comply;
social factors, that is, the influence of cultural and social norms on an individual’s behavior,
reflecting their belief in social norms and group will; and image, that is, the extent to which
individuals perceive that the use of innovation contributes to improving their social image
and enhancing their social status. Existing in-depth exploration of the relationship between
social influence and risk perception is relatively lacking. Karahanna et al. [90] found
that information and support from significant others impact the formation of beliefs and
choices about new technologies among potential adopters. Specifically, on the one hand,
individuals internalize information from experts and others into their cognitive system; on
the other hand, they will conform to social norms and obtain social recognition through
image and identity confirmation. Social influences play an essential role in the cognition of
emerging technologies, and people usually adjust their attitudes, beliefs, and behaviors
toward technologies based on their social networks [89]. The novelty and ambiguity of
emerging technologies make people feel uncertain and anxious. Thus, the information,
opinions, and behaviors of their surrounding relatives and friends, professional groups,
public figures, and related institutions can play a vital reference role in their perceptions and
judgments. Studies have found that the use of new technologies in social circles will often
indicate to individuals the rationality and appropriateness of the technology. This support
and influence from significant others may reduce people’s feelings of uncertainty about new
technologies [91,92]. At the same time, compliance with social influences helps individuals
feel an enhanced self-identity and social image, thereby reducing the risk perception of
emerging technologies. Therefore, this study proposes the following hypothesis:

Hypothesis 6 (H6). There is a negative relationship between social influence and risk perception.

2.5. The Influence of Moderating Variables

The moderator analysis in meta-analysis helps explain the heterogeneity among stud-
ies. The analysis of the included literature may reveal that the relationship between relevant
factors and risk perceptions varies, indicating the possible existence of moderating variables.
This study summarized the following possible moderating variables.

2.5.1. The Moderating Effect of Type of Emerging Technology

This study selected genetically modified technology, nanotechnology, artificial intel-
ligence, and information and communication technology with reference to the relevant
literature [23]. These four technologies have characteristics typical of emerging technologies.
However, there are undeniable differences in the types of hazards that these technologies
may generate. For example, genetically modified technology and nanotechnology may
cause more health hazards. Artificial intelligence and information and communication
technology may cause information leakage and property loss. The public sensitivity to the
hazards of these technologies may be different, affecting their risk perception. Hence, this
study proposes the following hypothesis:

Hypothesis 7 (H7). The type of emerging technology has a moderating effect on the relationship
between relevant factors and risk perception.
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2.5.2. The Moderating Effect of Demographic Variables

Demographic variables include gender and age. Elder et al. [93] found that women
are more skeptical of genetically modified foods. Kalinić et al. [94] found that men are
less affected by potential risks than women when it comes to mobile payment use. Thus,
gender may moderate the impact of relevant factors on risk perception. In terms of age,
it is generally believed that younger generations encounter fewer barriers and hold more
open attitudes in their acceptance and use of emerging technologies [95]. Therefore, age
may also be a moderating factor. Hence, this study proposes the following hypotheses:

Hypothesis 8a (H8a). Gender has a moderating effect on the relationship between relevant factors
and risk perception.

Hypothesis 8b (H8b). Age has a moderating effect on the relationship between relevant factors
and risk perception.

2.5.3. The Moderating Effect of Culture

Culture is the collective programming of the mind that distinguishes members of one
group or society from another [96]; it includes a set of artifacts, symbols, values, norms,
and assumptions that people share and shapes people’s beliefs, attitudes, and behaviors at
different levels of society [97,98]. Hofstede identified five dimensions of cultural values:
power distance, uncertainty avoidance, individualism–collectivism, masculinity–femininity,
and long-term/short-term orientation [99]. Specifically, power distance refers to the extent
to which the members of organizations and institutions accept that power is distributed
unequally. Uncertainty avoidance refers to the degree to which a culture makes its members
feel uncomfortable in unstructured situations. Individualism–collectivism refers to the
extent to which individuals should care for themselves or remain integrated with the
groups. Masculinity–femininity is the distribution of emotional roles between the genders.
Long-term/short-term orientation is the extent to which a culture enables its members to
accept delays in meeting their material, social, and emotional needs.

First, in a high power distance cultural context, pressure from the government and su-
periors plays an important role in how people view and adopt emerging technologies [99],
which may influence people’s risk perception. Second, people usually accept conventional
risks but fear ambiguous situations and uncommon risks in strong uncertainty avoidance
societies. In contrast, people generally accept ambiguous situations and unusual risks in
weak uncertainty avoidance societies [100]. The risk of emerging technologies is highly un-
certain and ambiguous. There may be differences in people’s risk perceptions of emerging
technologies in different degrees of uncertainty avoidance cultural contexts. Third, people
in collectivistic cultures are more influenced by group membership and decisions [97].
However, people in individualistic cultures are more focused on their own needs, have
more freedom, and prefer challenging work [100]. Fourth, masculinity implies that men
are dominant in society or the power structure and that women are less self-assured and
competitive than men [101]. Moreover, in a society dominated by masculinity, people
enjoy challenges more [100]. Thus, masculinity–femininity may influence people’s attitudes
toward emerging technologies and their risks. Fifth, a long-term-oriented culture may be
more focused on resource conservation, environmental protection, and the sustainable de-
velopment of the economy and society. The development and use of emerging technologies
can help achieve this goal. Thus, long-term/short-term orientation may also affect people’s
recognition of emerging technologies and their risks. In summary, culture dimensions
are considered potential moderating variables. Hence, this study proposes the following
hypotheses:

Hypothesis 9a (H9a). Power distance has a moderating effect on the relationship between relevant
factors and risk perception.
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Hypothesis 9b (H9b). Uncertainty avoidance has a moderating effect on the relationship between
relevant factors and risk perception.

Hypothesis 9c (H9c). Individualism–collectivism has a moderating effect on the relationship
between relevant factors and risk perception.

Hypothesis 9d (H9d). Masculinity–femininity has a moderating effect on the relationship between
relevant factors and risk perception.

Hypothesis 9e (H9e). Long-term/short-term orientation has a moderating effect on the relationship
between relevant factors and risk perception.

Based on the above analysis of relevant theories and existing studies, a “technology–
psychology–society” integrated theoretical model of the factors influencing the public risk
perception of emerging technologies was constructed, as shown in Figure 2.
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3. Methods and Data
3.1. Meta-Analysis Method

Meta-analysis is an empirical method for the comprehensive quantitative analysis and
evaluation of existing research results [102]. This method has the following advantages.
First, it can combine and analyze the results of several existing quantitative studies on
a specific topic, thus effectively reducing the sampling error and measurement error in
a single study and improving the validity of research results [103]. Second, it can sys-
tematically evaluate and explain the inconsistencies among research results and obtain
a more comprehensive and accurate understanding of a specific problem [104]. Third, it
can conduct a more precise analysis and comparison of differences in the relationships
between research variables and explore the potential factors causing differences by setting
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moderating variables [102,105]. In conclusion, meta-analysis helps reduce the research bias
caused by the sample limitations, research situations, and subjective bias of researchers in
a single study to obtain more objective and valid research results [106]. A meta-analysis
combines quantitative and qualitative research techniques, and its main steps include
identifying research topics, searching and screening the literature, data coding, literature
quality evaluation, and statistical processing. For this paper, we conducted the research
and reported the results strictly following the process.

3.2. Literature Search and Inclusion Criteria

From May to October 2021, we accessed a total of 15 databases, including 10 English
databases and 5 Chinese databases. Specifically, the English databases included the core
collection of Web of Science, Scopus, EBSCOhost (APA PsycInfo), EBSCOhost (Academic
Source Complete), EBSCOhost (Business Source Complete), ScienceDirect, the Wiley Online
Library, PubMed, ProQuest, and Springer Link; the Chinese databases included CNKI
(China National Knowledge Infrastructure), Wanfang Data (a Chinese database), VIP (VIP
Chinese database), Airiti Academic Literature Database, and the Digital Library of Theses
and Dissertations in Taiwan. In order to ensure the quality of the included literature,
the Chinese journal databases were limited to retrieving the literature included in the
CSSCI (Chinese Social Science Citation Index), CSCD (Chinese Science Citation Database),
Peking University Chinese core journals list, TSSCI (Taiwan Social Science Citation Index),
THCI (Taiwan Humanities Citation Index), and ACI (Taiwan Academic Citation Literature
Database). The literature collected in these five Chinese journal databases was recognized to
be of high quality. The retrieval words included “risk perception, perceived risk, perception
of risk, biotech*, genetically modif*, transge*, synthetic biology, nanotech*, artificial intelli-
gence, AI, face recognition, robot*, big data, drone, information and communication tech*,
ICT, mobile payment, emerging tech*”. We used both English and Chinese for retrieval.
Specifically, we matched the retrieval words of emerging technologies with the retrieval
words of risk perception to search the titles, keywords, and abstracts in the database. In the
later research process, we supplemented the eligible literature that was missed at any time
in the literature search stage. Considering the meta-analysis requirement of complete and
comprehensive literature categories, the literature retrieved in this study included journal
papers, dissertations, and conference papers.

After retrieval, we screened the literature according to the following inclusion criteria:
(a) it must be empirical research, excluding purely theoretical research, qualitative research,
and reviews; (b) it contains the impact of relevant factors on the public risk perception
of emerging technologies or the relationship between the two; (c) it explicitly reports
the Pearson correlation coefficient (r), excluding the regression coefficient in regression
analysis and the path coefficient in the structural equation model; (d) it explicitly reports
the sample size. Moreover, we retained only the journal paper if it and a dissertation were
the same studies.

3.3. Data Coding and Literature Quality Assessment

Data coding is the process of extracting data from the screened literature. In this
study, coding was performed according to the procedure recommended by Lipsey and
Wilson [107]. We developed a coding manual and instructions. Then, we extracted study
characteristics and effect values, including authors, year of publication, type of literature,
sample size, gender characteristics of the sample (proportion of males), age characteristics
of the sample (average number of years), types of emerging technologies, country of the
sample, cultural dimension score, and the correlation coefficient (r). Two researchers coded
independently according to the coding manual and instructions. After coding, the two
researchers cross-checked, and the inconsistent information was reviewed and discussed
until an agreement was reached. Finally, a random literature sample was selected for
verification to check the consistency of the coding results and ensure the coding accuracy.
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The quality of the literature is a critical factor affecting the accuracy of the meta-analysis
results. We developed the following evaluation criteria with reference to the quality eval-
uation methods of observational research [108,109]: (a) Selection of subjects. Random
sampling was scored 2 points, non-random sampling was scored 1, and unreported was
scored 0. (b) Data validity. A data validity rate of 0.8 and above was scored 2 points, be-
tween 0.7–0.8 was scored 1, and below 0.7 or not reported was scored 0. (c) Completeness
of sample information and outcome indicator reporting. We scored 2 points for complete re-
porting, 1 for incomplete reporting, and 0 for non-reporting. (d) Reliability of measurement
instruments. A reliability coefficient of 0.8 and above was scored 2 points, between 0.7–0.8
was scored 1, and below 0.7 or not reported was scored 0. The total score of the literature
quality was calculated based on this criterion, and higher scores indicated a higher quality
of literature.

3.4. Data Analysis
3.4.1. Heterogeneity Test

The heterogeneity test aims to analyze the degree of differences in the included studies.
The Q test is widely used for heterogeneity tests, and a Q value at the significance level
p < 0.05 indicates that the heterogeneity is statistically significant [110]. At the same time,
the size of heterogeneity is evaluated using I2, with a larger I2 indicating greater hetero-
geneity (I2 < 25% and I2 ≥ 75% indicating low and high heterogeneity, respectively) [110].
A random effects model is used for analysis when heterogeneity is significant; otherwise,
a fixed effects model is used [111]. Tau2 is used in the random effects model to assign
the study weights to explain the degree of heterogeneity caused by differences between
subgroups [112].

3.4.2. Main Effect Test

In this study, the Pearson correlation coefficient (r) was selected as an effect size
indicator of the corresponding variable on risk perception. The mean value of r was
used when only the r of the sub-dimension of the variable was reported in the literature.
Furthermore, Fisher Z-Transformation was adopted to calculate the combined effect size.
First, the original correlation coefficient was converted to Fisher Z; then, the Z value was
weighted to convert back to the correlation coefficient; finally, the overall effect size was
derived [112]. Comprehensive Meta-Analysis (CMA) version 3.0 software was used to
calculate the effect size and 95% CI (95% confidence intervals).

3.4.3. Moderating Effect Test

When the heterogeneity test was significant, a moderating effect test was performed
to determine the source of heterogeneity. Subgroup analysis was used when the moderator
was a categorical variable, and a significant between-group heterogeneity test statistic, QB,
indicated that the moderator had a moderating effect. Meta-regression analysis based on
the Knapp and Hartung method was used when the moderator was a continuous variable,
and a significant model test statistic, F, indicated that the moderator had a moderating
effect [113]. In this study, the moderators of emerging technology type and cultural di-
mensions were categorical variables. Data on the five cultural dimensions were obtained
through the “Hofstede Insights” website [114]. Specifically, the culture dimension scores
were between 0 and 100, with more than or equal to 50 indicating a high score, and less
than 50 indicating a low score. For example, in the case of individualism–collectivism, a
score of 50 or above indicated individualism, while a score below 50 indicated collectivism.
In addition, the moderators of gender and age were continuous variables in this study.
Specifically, gender was represented by the percentage of males, and age was represented
by the average number of years. It is necessary to note that this study also analyzed the
interaction effect of gender and age to test robustness, which was performed using R
software (version 4.2.2).
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3.4.4. Publication Bias Test

Publication bias is the deviation of the meta-analysis results caused by the researchers’
inability to fully obtain research data on relevant issues and fields, also known as the “file
drawer problem” [115]. Generally, research with significant results is easier to publish;
therefore, the published literature did not fully represent the overall state of research in a
certain field [116]. In order to avoid publication bias, this study included various types of
literature, such as dissertations and conference papers, in the process of collecting literature.
In addition, the following methods are commonly used in statistics to test publication bias:
(a) Fail-safe numbers (Nfs), which indicate that Nfs studies with insignificant results need
to be added to the meta-analysis in order to make the overall effect size insignificant; if
Nfs > 5k + 10 (k is the number of studies), there is no publication bias [115–117]. (b) Begg
and Mazumdar’s rank correlation test, where a non-significant test result indicates the non-
existence of publication bias [118]. (c) Egger’s regression test, where there is no publication
bias if the linear regression result is not statistically significant [119]. (d) The trim-and-fill
method, which is based on the assumption of asymmetry in the funnel plot caused by
publication bias. After trimming and filling some studies using an iterative method, the
corrected effect size is recalculated. If the effect size does not change significantly after
trimming and filling, publication bias is less likely to exist [120,121]. (e) Funnel plot, in
which scattered points that are evenly and symmetrically distributed on both sides of the
reference line and concentrated at the middle and upper ends indicate a low probability of
publication bias [112].

4. Results
4.1. Description of Data

A total of 272 eligible papers was collected in this study, including 209 journal papers,
18 conference papers, and 45 dissertations; 199 were in English and 73 were in Chinese,
published from 2002 to 2022 (see Figure 3). The average score of the literature quality
assessment was 5.614, higher than the median value of 4.50. Most studies (224 papers)
had a quality assessment score of 5 or higher. This indicated that the overall quality of the
included literature was excellent. Since some articles contained several independent effect
sizes, this study included 449 effect sizes. The total sample size was 191,195, with samples
from more than 40 countries. It should be noted that there was duplication in the total
sample size because some of the literature included in the meta-analysis contained more
than one influencing factor.

4.2. Heterogeneity

The results of the heterogeneity test are shown in Table 2. Qw was 67.995 to 3445.787,
and I2 was 73.527% to 97.031%, with all p-values less than 0.001. This indicated significant
and high levels of heterogeneity, with 73.527% to 97.031% of the variation in effect on
risk perception of emerging technologies caused by the real variance of effect size. The
variance between studies was affected not only by sampling error but also by between-
group differences. Therefore, the main effect test should use a random effects model, and
the moderator analysis must be conducted.
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Table 2. Results of heterogeneity.

Factors m
Heterogeneity Tau-Squared

Qw df I2 (%) p Tau2 SE Variance Tau

Perceived
benefit 38 1246.233 37 97.031 <0.001 0.066 0.018 0.000 0.256

Perceived cost 19 67.995 18 73.527 <0.001 0.009 0.004 0.000 0.097
Knowledge 27 349.447 26 92.560 <0.001 0.025 0.009 0.000 0.158

Innovativeness 78 1138.669 77 93.238 <0.001 0.035 0.007 0.000 0.186
Trust 154 3445.787 153 95.560 <0.001 0.048 0.007 0.000 0.219
Social

influence 133 3169.092 132 95.835 <0.001 0.060 0.010 0.000 0.246

Note: m, the number of effect sizes; Qw, within-group heterogeneity test statistic; df, degree of freedom; I2 reflects
the proportion of the heterogeneity in the total variation of the effect sizes; p, significance level; Tau2 reflects the
proportion of variation between studies that can be used to calculate weights; SE, standard error.
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4.3. Main Effects

A random effects model was used to analyze the correlations between the various
influencing factors and the risk perception of emerging technologies. Details are presented
in Table 3. The results indicated that the relationships between the six factors and risk
perception were statistically significant. There was a positive correlation between per-
ceived cost and risk perception (ES = 0.399; p < 0.001; 95% CI excluding 0). There were
negative correlations between perceived benefit, knowledge, innovativeness, trust, social
influence, and risk perception (ES = −0.291, −0.128, −0.163, −0.302, −0.123, respectively;
all p-values < 0.001; 95% CI all excluding 0). Hypotheses H1–H6 were verified. Cohen [122]
suggested that the absolute value of correlation coefficient (r) = 0.1 is a low correlation,
r = 0.3 is a moderate correlation, and r = 0.5 is a high correlation. However, this criterion
is based on qualitative analysis and is subjective. Therefore, Gignac and Szodorai [123]
suggested r = 0.1 as a low correlation, r = 0.2 as a moderate correlation, and r = 0.3 as a
high correlation after quantitative analysis of 708 meta-analytically derived correlations.
According to this criterion, correlations between perceived cost, trust, and risk perception
were high; the correlation between perceived benefit and risk perception was moderate;
and correlations between knowledge, innovativeness, social influence, and risk perception
were relatively low.

Table 3. Results of the main effects.

Factors m n
Effect Size and 95% CI Test of Null (2-Tail)

ES LL UL Z p

Perceived benefit 38 19,235 −0.291 −0.365 −0.213 −7.052 <0.001
Perceived cost 19 5750 0.399 0.354 0.442 15.894 <0.001

Knowledge 27 13,840 −0.128 −0.189 −0.065 −3.986 <0.001
Innovativeness 78 31,550 −0.163 −0.205 −0.121 −7.487 <0.001

Trust 154 69,620 −0.302 −0.334 −0.269 −17.091 <0.001
Social influence 133 51,200 −0.123 −0.165 −0.080 −5.624 <0.001

Note: m, the number of effect sizes; n, the sample size; ES, the combined effect size; 95% CI, 95% confidence
interval; LL, lower limit; UL, upper limit; Z, the standard score; p, significance level.

4.4. Moderating Effects

The results of the moderating effects test are shown in Table 4. The type of emerging
technology, age, and long-term/short-term orientation had no significant moderating effects
on the relationships between the various factors and risk perception (all p-values > 0.05),
so hypotheses H7, H8b, and H9e were not valid. Gender had a significant moderating
effect on the relationship between perceived benefit and risk perception (F = 5.105, p < 0.05).
Power distance had a significant moderating effect on the relationships between perceived
benefit, trust, and risk perception (QB = 5.737, p < 0.05; QB = 6.183, p < 0.05). Uncertainty
avoidance had a significant moderating effect on the relationship between knowledge
and risk perception (QB = 5.283, p < 0.05). Individualism–collectivism had a significant
moderating effect on the relationships between perceived benefit, trust, and risk perception
(QB = 7.521, p < 0.01; QB = 4.322, p < 0.05). Masculinity–femininity had a significant
moderating effect on the relationship between knowledge and risk perception (QB = 5.677,
p < 0.05). In conclusion, hypotheses H8a, H9a, H9b, H9c, and H9d were valid.

The specific results of the moderating effects test of gender are shown in Table 5 and
Figure 4. With increases in the male proportion, the negative correlation between perceived
benefit and risk perception gradually weakened (β1 = 0.892, t = 2.259, p < 0.05).
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Table 4. Results of the moderating effects.

Moderators Factors Perceived
Benefit

Perceived
Cost Knowledge Innovativeness Trust Social

Influence

TYPE
QB 3.816 / 2.038 0.114 1.673 0.920
p 0.282 / 0.361 0.736 0.643 0.337

Gender F 5.105 0.316 1.381 0.006 0.012 0.035
p 0.031 0.582 0.252 0.936 0.911 0.852

Age F 0.476 / / 0.605 2.107 1.521
p 0.561 / / 0.472 0.169 0.246

POW DIS
QB 5.737 / 0.001 3.200 6.183 0.435
p 0.017 / 0.974 0.074 0.013 0.509

UNC AVO
QB 0.902 0.461 5.283 0.029 1.115 0.115
p 0.342 0.497 0.022 0.865 0.291 0.735

IND-COL
QB 7.521 / 0.482 3.765 4.322 0.648
p 0.006 / 0.488 0.052 0.038 0.421

MAS-FEM
QB 0.277 0.128 5.677 0.436 0.958 1.478
p 0.599 0.720 0.017 0.509 0.328 0.224

LON/SHO
QB 0.121 2.537 2.220 0.101 1.446 2.304
p 0.728 0.111 0.136 0.751 0.229 0.129

Note: TYPE, the type of emerging technology; POW DIS, power distance; UNC AVO, uncertainty avoidance;
IND-COL, individualism–collectivism; MAS-FEM, masculinity–femininity; LON/SHO, long-term/short-term
orientation; QB, the between-group heterogeneity test statistic; F, test statistic for the model; p, significance
level; “/” indicates that the number of effect size for the subgroup or the number of data corresponding to the
moderating variable is less than three, and estimates are not provided.

Table 5. Meta-regression analysis of gender.

Factor
Test of the Model

Moderator Covariate Coefficient SE
95% CI

t p
F p LL UL

Perceived
benefit

5.105 0.031 gender
β0 (intercept) −0.722 0.194 −1.118 −0.327 −3.728 <0.001

β1 (male
proportion) 0.892 0.395 0.086 1.699 2.259 0.031

Note: F, test statistic for the model; p, significance level; SE, standard error; 95% CI, 95% confidence interval; LL,
lower limit; UL, upper limit; t, statistic for t-test.
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The results of the interaction tests for gender and age are shown in Table 6. The
age indicators corresponding to perceived benefit, perceived cost, and knowledge lacked
sufficient data for interaction analysis. Therefore, we only tested for innovativeness, trust,
and social impact. Specifically, the model test results were all non-significant (F = 1.170,
2.261, 0.783; all p-values > 0.05). In addition, the results of regression coefficient tests for
gender, age, and interaction terms were all insignificant (all p-values > 0.05). This indicated
that the change in gender ratio did not have a significant effect on the relationships between
three factors and risk perception at a specific age. Additionally, the increase in age did
not have a significant effect on the relationships at a specific gender ratio. In addition,
with the increase in age, the change in gender ratio did not have a significant effect on the
relationships. Furthermore, with the change in gender ratio, the increase in age did not
have a significant effect on the relationships. Overall, this proves to some extent that the
above tests for the moderating effect of gender and age are robust.

Table 6. The interaction of gender and age.

Factors
Test of the Model

Covariate Estimate SE
95% CI

t p
F p LL UL

Innovativeness 1.170 0.450

β0 (intercept) −0.054 0.061 −0.248 0.140 −0.885 0.442
β1 (gender) −0.959 0.582 −2.812 0.893 −1.648 0.198
β2 (age) 0.001 0.006 −0.018 0.019 0.138 0.899

β3 (gender ×
age) −0.011 0.048 −0.165 0.143 −0.228 0.835

Trust 2.261 0.134

β0 (intercept) −0.221 0.028 −0.282 −0.160 −7.869 <0.001
β1 (gender) 0.022 0.193 −0.399 0.444 0.114 0.911
β2 (age) −0.004 0.003 −0.009 0.002 −1.497 0.160

β3 (gender ×
age) 0.029 0.015 −0.004 0.062 1.936 0.077

Social
influence

0.783 0.536

β0 (intercept) −0.149 0.074 −0.320 0.023 −2.002 0.080
β1 (gender) 0.259 1.097 −2.270 2.789 0.236 0.819
β2 (age) −0.010 0.008 −0.028 0.008 −1.304 0.229

β3 (gender ×
age) −0.069 0.128 −0.365 0.227 −0.537 0.606

Note: F, test statistic for the model; p, significance level; SE, standard error; 95% CI, 95% confidence interval; LL,
lower limit; UL, upper limit; t, statistic for t-test.

The specific results of the moderating effect test of culture dimensions are shown in
Table 7. The intensity of the relationship between perceived benefit, trust, and risk percep-
tion was greater in cultures with low power distance (ES = −0.480/−0.233; −0.390/−0.287;
all p-values < 0.001). The negative relationship between knowledge and risk perception was
non-significant in high uncertainty avoidance cultures but significant in low uncertainty
avoidance cultures (ES = −0.047, p > 0.05; ES = −0.196, p < 0.001). The intensity of the rela-
tionship between perceived benefit, trust, and risk perception was stronger in cultures with
individualism (ES = −0.457/−0.222; −0.365/−0.289; all p-values < 0.001). The relationship
between knowledge and risk perception was non-significant in cultures with femininity
but significant in cultures with masculinity (ES = 0.032, p > 0.05; ES = −0.187, p < 0.001).
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Table 7. Subgroup analysis of moderators.

Factors
Heterogeneity

Moderators m
Effect Size and 95% CI Test of Null (2-Tail)

QB p ES LL UL Z p

Perceived
benefit

5.737 0.017
High POW

DIS 31 −0.233 −0.310 −0.153 −5.620 <0.001

Low POW
DIS 6 −0.480 −0.630 −0.296 −4.694 <0.001

Perceived
benefit

4.426 0.035
IND 8 −0.457 −0.583 −0.309 −5.578 <0.001
COL 29 −0.222 −0.297 −0.143 −5.441 <0.001

Knowledge 5.283 0.022
High UNC

AVO 12 −0.047 −0.156 0.064 −0.823 0.411

Low UNC
AVO 14 −0.196 −0.260 −0.131 −5.799 <0.001

Knowledge 5.677 0.017
MAS 19 −0.187 −0.242 −0.130 −6.318 <0.001
FEM 7 0.032 −0.139 0.202 0.368 0.713

Trust 6.183 0.013
High POW

DIS 116 −0.287 −0.324 −0.250 −14.227 <0.001

Low POW
DIS 29 −0.390 −0.457 −0.318 −9.841 <0.001

Trust 4.322 0.038
IND 37 −0.365 −0.422 −0.305 −11.099 <0.001
COL 108 −0.289 −0.328 −0.248 −13.284 <0.001

Note: QB, the between-group heterogeneity test statistic; p, significance level; POW DIS, power distance; IND-
COL, individualism–collectivism; UNC AVO, uncertainty avoidance; MAS-FEM, masculinity–femininity; m, the
number of effect sizes; ES, the combined effect size; 95% CI, 95% confidence interval; LL, lower limit; UL, upper
limit; Z, the standard score.

4.5. Publication Bias

We used five methods to comprehensively evaluate publication bias: fail-safe number
(Nfs), Begg and Mazumdar’s rank correlation test, Egger’s regression test, the trim-and-fill
method, and the funnel plot. The results are shown in Table 8 and Figure 5. Specifically,
Egger’s regression test for the factor of social influence was significant (p-value < 0.05), but
the remaining four tests indicated that publication bias was less likely to exist. Except for
the factor of social influence, the results obtained from all five tests for the other factors
indicated that publication bias was unlikely to exist. As shown in Figure 5, the funnel plot
illustrated that the scatter points of all factors were evenly and symmetrically concentrated
in the upper middle of the reference line. In summary, there was no significant publication
bias, and the results of this study were stable and reliable.

Table 8. Publication bias test.

Factors m
Nfs and Criterion Begg and

Mazumdar’s Test Egger’s Regression Test Confidence Interval after
Trimming and Filling

Nfs Criterion Z p Intercept p LL UL

Perceived
benefit 38 14,941 200 0.440 0.660 −1.732 0.601 −0.435 −0.281

Perceived cost 19 4645 105 0.350 0.726 2.124 0.254 0.354 0.442
Knowledge 27 1677 145 0.667 0.505 3.050 0.148 −0.189 −0.065

Innovativeness 78 15,818 400 0.617 0.537 0.688 0.662 −0.237 −0.154
Trust 154 36,642 780 1.754 0.079 −0.297 0.805 −0.386 −0.321
Social

influence 133 29,931 675 0.096 0.100 4.294 0.002 −0.244 −0.161

Note: m, the number of effect sizes; Nfs, fail-safe numbers; Z, the standard score; p, significance level; LL, lower
limit; UL, upper limit.



Sustainability 2023, 15, 3939 19 of 37Sustainability 2023, 15, x FOR PEER REVIEW 19 of 37 
 

 
Figure 5. Funnel plot. 

5. Discussion 
5.1. Key Findings 

This study constructed a “technology–psychology–society” analysis framework with 
reference to TOE theory. A meta-analysis of 272 papers, including 449 effect sizes and 
191,195 samples, was conducted to systematically and comprehensively explore the es-
sential factors and specific mechanisms affecting the public risk perception of emerging 
technologies. The following key findings were derived from this study. 

5.1.1. The Influence of Technical–Economic Factors 
This study found that perceived benefit negatively influenced public risk perception 

of emerging technologies, which was generally consistent with the findings of the meta-
analysis of innovative food technology and nuclear energy technology [44,124], as well as 
further confirming the reliability and robustness of the findings by examining a large sam-
ple. Specifically, unlike the general common perception that high benefits bring high risks, 
the public perceived benefit will offset the perceived negative consequences of emerging 
technologies to a certain extent and cause a more positive judgment and evaluation of 
risk. Additionally, perceived cost had a positive effect on risk perception. This study fur-
ther explored the relationship between the two when related research studies were rela-
tively lacking and not in-depth. Specifically, because of characteristics such as radical nov-
elty and the uncertainty of emerging technologies, the public perceived more adverse ex-
periences and higher risk if they perceived higher costs in the process of selection and 
switching. 

5.1.2. The Influence of Psychological–Cognitive Factors 
This study found that knowledge and innovativeness had a negative influence on the 

public risk perception of emerging technologies. Specifically, a meta-analysis of nuclear 
energy technology yielded a minimal negative correlation coefficient between knowledge 

Figure 5. Funnel plot.

5. Discussion
5.1. Key Findings

This study constructed a “technology–psychology–society” analysis framework with
reference to TOE theory. A meta-analysis of 272 papers, including 449 effect sizes and
191,195 samples, was conducted to systematically and comprehensively explore the es-
sential factors and specific mechanisms affecting the public risk perception of emerging
technologies. The following key findings were derived from this study.

5.1.1. The Influence of Technical–Economic Factors

This study found that perceived benefit negatively influenced public risk perception
of emerging technologies, which was generally consistent with the findings of the meta-
analysis of innovative food technology and nuclear energy technology [44,124], as well as
further confirming the reliability and robustness of the findings by examining a large sample.
Specifically, unlike the general common perception that high benefits bring high risks, the
public perceived benefit will offset the perceived negative consequences of emerging
technologies to a certain extent and cause a more positive judgment and evaluation of risk.
Additionally, perceived cost had a positive effect on risk perception. This study further
explored the relationship between the two when related research studies were relatively
lacking and not in-depth. Specifically, because of characteristics such as radical novelty and
the uncertainty of emerging technologies, the public perceived more adverse experiences
and higher risk if they perceived higher costs in the process of selection and switching.
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5.1.2. The Influence of Psychological–Cognitive Factors

This study found that knowledge and innovativeness had a negative influence on the
public risk perception of emerging technologies. Specifically, a meta-analysis of nuclear en-
ergy technology yielded a minimal negative correlation coefficient between knowledge and
risk perception (effect size = −0.04), and this correlation was not significant [124]. However,
this study demonstrated a significant negative correlation between the two by analyzing a
large sample of typical emerging technologies. A comprehensive understanding of relevant
knowledge helps the public to objectively view the possibility and severity of emerging
technology hazards, enhances their sense of control, reduces concerns about uncertainty,
and weakens the perception of risk. Furthermore, meta-analysis explicitly addressing the
relationship between innovativeness and risk perception was rare. Our study yielded a
negative correlation between the two. Generally, people with high innovativeness hold a
more open attitude, are willing to accept emerging technologies, and are more capable of
dealing with high uncertainty and issues that arise during the use of technologies, which
helps reduce their risk perception.

5.1.3. The Influence of Social–Environmental Factors

This study found that trust and social influence had negative effects on public risk per-
ception of emerging technologies. Specifically, the negative relationship between trust and
risk perception was consistent with the results of the existing meta-analyses on e-services
and nuclear energy technology [124,125]. Trust in the technology stakeholders is essential
to simplify complexity, dissolve uncertainty, build security, and avoid excessive worry.
Additionally, a meta-analysis of e-shopping reported a negative correlation coefficient
between social influence and risk perception (effect size = −0.20), and this correlation
was not significant [126]. However, this study revealed a significant negative correlation
between the two. The public tends to interact with social networks, follow social norms,
and adjust their beliefs and attitudes based on the information and opinions of influential
people and organizations when choosing and using emerging technologies. This social
influence mechanism reduces their risk perception to a certain extent.

5.1.4. The Comparison of the Degree of Impact

This study found differences in the intensity of the effects of various factors on the
public risk perception of emerging technologies. Specifically, perceived cost and trust
had a strong impact on risk perception; perceived benefit had a moderate impact on
risk perception; and knowledge, innovativeness, and social influence had relatively weak
impacts on risk perception. This suggests that the public may be more sensitive to technical–
economic factors, such as costs consumed and benefits derived from emerging technologies.
Furthermore, social–environmental factors such as trust are essential in reducing public
risk perception. Technology-related R&D and management bodies should make this a
concern when formulating relevant strategies, policies, and initiatives.

5.1.5. The Effect of Moderators

Regarding technology-related moderating variables, this study found no moderating
effect of emerging technology type on the relationship between related factors and risk
perception. This may be because the common characteristics of emerging technologies have
a masking effect on the differences in effects.

In terms of demographic moderating variables, this study indicated that gender had
a significant moderating effect on the relationship between perceived benefit and risk
perception. The negative effect of perceived benefit on risk perception diminished as the
proportion of males increased. In other words, the negative effect of perceived benefit
on risk perception was more pronounced in the female group. The reason may be that
women’s perceptions of emerging technologies have more emotional components, and
their perceptions of specific benefits or advantages play a stronger role in reducing risk
perception. In contrast, men often consider factors other than benefits, resulting in the
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weaker influence of perceived benefit than women. It should be noted that there are fewer
studies on the moderating effect of gender on the relationship between perceived benefit
and risk perception. The social cognitive theory holds that men and women differ in their
decision-making processes. Men are often more outcome-oriented and concerned more
with usefulness, while women are more process-oriented and concerned more with security
and privacy when participating in new activities [127]. Moreover, it has been shown that
the positive effect of perceived benefit on online repurchase intention is higher for male
consumers than female ones [128]. These findings are somewhat different from the results
of this study. Therefore, the moderating effect of gender must be further explored.

Moreover, there was no moderating effect of age, indicating that the effect of relevant
factors on risk perception is not influenced by the age of the public. This may be due to
the limited data collected, as many studies do not report the mean age of the sample. In
addition, the majority of the sample was under the age of 40, and young people were more
consistent in their perception of emerging technologies, mostly holding a more tolerant
and accepting attitude [95].

This study found that culture played an important moderating role. Specifically, the
negative effect of perceived benefit and trust on risk perception was stronger in societies
with low power distance cultures. It may be that in societies with low power distance
cultures, the public risk perception of emerging technologies is less disturbed by pressure
factors such as the government and superiors [99,129], allowing the role of perceived benefit
and trust to be exploited to a greater extent. Moreover, the reduction effect of knowledge
on risk perception is more evident in societies with low uncertainty avoidance cultures,
especially in societies with high uncertainty avoidance cultures, where the reduction effect
of knowledge on risk perception becomes insignificant. Specifically, people in low uncer-
tainty avoidance contexts have more positive and tolerant attitudes toward the uncertainty
and ambiguity of emerging technologies [100]. Their technology-related knowledge plays
a more pronounced role in reducing risk perception. However, by and large, people in
high uncertainty avoidance cultures are reluctant to take risks and more cautious about
innovation. In other words, they are more cautious about emerging technologies and more
fearful of possible risks. This resulted in a less significant effect of knowledge. Moreover,
the mitigating effect of perceived benefit and trust on the risk perception of emerging
technologies was stronger in societies with individualistic cultures. The possible reason is
that in a more individualistic society, users are less concerned with group norms that refuse
to abide by emerging technologies; therefore, they generally ignore the spillover effects
of their use on other members of the group. In addition, in societies with individualistic
cultures, people prefer challenges and may be more willing to take and tolerate the risks
associated with emerging technologies [97,100]. This leads to a more pronounced reduction
effect of perceived benefit and trust on risk perception. Finally, the role of knowledge in
reducing the risk perception of emerging technologies was more robust in societies with
strong masculinity. However, the effect of knowledge on risk perception becomes insignifi-
cant in societies with femininity cultures. This may be because in male-dominated cultures,
men are considered audacious and assertive, and women are considered modest and tender,
with more pronounced gender differences [101]. However, in female-dominated cultures,
both males and females are considered to be modest and tender. Thus, audacity and
assertiveness in masculine societies help alleviate public worries about the risk of emerging
technologies, leading to a more pronounced role of knowledge.

In addition, long-term/short-term orientation did not have a moderating effect on the
relationship between relevant factors and risk perception. Specifically, long-term/short-
term orientation is closely related to the country’s economic growth, policy making, sustain-
able development, etc. Long-term orientation usually means persistence, thrift, resource-
saving, environmental protection, etc., and short-term orientation implies a propensity
to consume, respect for traditions, fulfillment of social responsibilities and obligations,
etc. [100,130]. Similarly, this study found that the moderating effect of long-term/short-
term orientation was insignificant. It may be that the development and utilization of
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emerging technologies can stimulate short-term consumption while also bringing about
long-term economic and social benefits, which may lead to a less prominent moderating
role of long-term and short-term orientation. Last but not least, the moderating effects
of uncertainty avoidance and short-term orientation must be explored more deeply in
the future.

5.2. Theoretical Contributions

To the best of our knowledge, this is the first meta-analysis to provide a comprehensive,
systematic, and integrated discussion of the factors influencing the public risk perception
of emerging technologies. First, this study constructed a “technology–psychology–society”
analytical framework with reference to TOE theory. Moreover, we used a combination of
theoretical analysis and quantitative tests to more comprehensively summarize the factors
affecting risk perception, which to some extent compensated for the lack of empirical
studies. Second, this study selected four typical emerging technologies and included
272 papers, 449 effect sizes, and 191,195 samples to ensure the objectivity and accuracy of
the study results. Third, this study drew more consistent and robust conclusions about the
direction and intensity of the influence of relevant factors on the risk perception of emerging
technologies, addressing the inconsistencies and ambiguities of established studies. Fourth,
this study tested for the moderating effects of moderators such as the type of emerging
technology, gender, age, and culture, which helped explain the differences in the effects of
influencing factors on risk perception.

5.3. Managerial Implications

This study provides management implications to facilitate the public’s scientific knowl-
edge, rational understanding, and proper treatment of the technical risks and to promote
the sustainable research, development, diffusion, and use of emerging technologies and
their products. First, the cost of application must be reduced while appropriately publi-
cizing the benefits of emerging technology products. It is crucial to find ways to reduce
the costs of investment, information searches, and time consumption for the public dur-
ing the development and diffusion of emerging technologies. In addition, management
should emphasize the economic, social, health, and environmental benefits of emerging
technologies and express the direct and tangible benefits for the public through financial
incentives such as rebates, coupons, and discount activities. Second, full play must be given
to the influence of social networks on improving the public’s level of scientific knowledge.
Expert groups should strengthen the popularization of science, enhance the interaction
with the public, and address the public’s technical knowledge deficiency. At the same time,
full play should be given to the driving effect of innovative groups, and appropriate use
should be made of celebrity influence in publicity. This will cultivate the public’s scientific
knowledge and rational literacy while alleviating their doubts and worries about emerging
technologies. Third, the credibility of technology stakeholders should be improved and risk
governance enhanced. The government should adhere to the idea of pluralistic governance,
establish a sound technology open decision-making system, risk-monitoring mechanism,
and unobstructed risk communication channels, and guarantee the public’s right to know
and participate. The scientific community should enhance the transparency of technology
risk assessment and promote dialogue with the public. R&D and promotion organizations
should continuously improve the safety and reliability of technologies, enhance warranty
measures, and establish good reputations.

5.4. Limitations and Future Research

The main limitations of this study are as follows. First, although we collected the
relevant literature as comprehensively as possible, we could not ensure that all relevant
literature was included because of a lack of database access, unavailability of full text arti-
cles, and language barriers. Second, although we summarized the typical techno-economic,
psycho-cognitive, and social environment aspects that influence the public risk perception
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of emerging technologies based on the theoretical framework, the factors influencing risk
perception in practice are complex and diverse, and other essential factors, such as infor-
mation media and the individual’s emotions, were not examined. In addition, possible
mediating factors between influencing factors and risk perception were not explored. Third,
we examined the effects of the following moderating variables: The type of emerging
technology, gender, age, and culture. However, other moderators, such as measurement
instruments of the variables, were not examined. Furthermore, there were fewer data for
certain moderating variables. Fourth, this meta-analysis mainly included cross-sectional
studies, which could not reveal the causal relationship between influencing factors and risk
perception. These deficiencies may have some impact on the precision of the study results.

Future research can be conducted in the following directions. The first is to explore
other factors influencing the risk perception of emerging technologies and the moderating
effects of other variables. Second, a meta-analysis of intervention studies related to the
risk perception of emerging technologies can be performed. Third, further research on the
causal relationships and specific mechanisms of action between relevant factors and risk
perception can be carried out using longitudinal studies, meta-analytic structural equation
modeling, and qualitative comparative analysis.

6. Conclusions

As far as we know, this study is the first to use meta-analysis to systematically and com-
prehensively explore the factors influencing the public risk perception of emerging technolo-
gies. First, we constructed a theoretical analysis framework of “technology–psychology–
society” with reference to TOE theory. A theoretical analysis and literature review were
conducted according to the analytical framework, and various influencing factors were
summarized. Furthermore, this meta-analysis selected four typical emerging technolo-
gies and included 272 pieces of literature, with a total sample size of 191,195, to test the
proposed hypotheses. The results showed a high positive relationship between perceived
cost and risk perception; a high negative relationship between trust and risk perception;
a moderate negative relationship between perceived benefit and risk perception; and a
relatively low negative relationship between knowledge, innovativeness, social influence,
and risk perception. In addition, gender and cultural dimensions such as power distance,
uncertainty avoidance, individualism–collectivism, and masculinity–femininity moderated
the relationship between the relevant factors and risk perception. In summary, this study
addressed the inconsistency and lack of clarity and depth in the relationships between the
related factors and public risk perception of emerging technologies that exist in established
studies through large-sample empirical analysis.

According to the study results, first, the public is sensitive to economic factors, which
should prompt the relevant R&D and sales departments to reduce the application costs
as much as possible and convince the public of the benefits of emerging technologies and
their products. Second, trust in the technology stakeholders also plays a vital role in the
public risk perception of emerging technologies. This suggests that technology stakeholders
should strive to improve their credibility, and technology management departments should
improve their ability to deal with the risks of emerging technologies. Specifically, these
include a full range of warranty measures and enhanced hazard identification, monitoring,
and regulation to help hedge risk wherever possible. In addition, there are differences
in the influence of relevant factors on risk perception among different gender groups or
cultural backgrounds, suggesting that differences in gender and cultural contexts should
be considered in the design and promotion of emerging technologies and their products. It
should be clarified that these recommendations aim to raise proper public understanding
and promote the sustainable development and use of emerging technologies rather than
ignoring and avoiding the technical risks. The joint efforts of various stakeholders to reduce
risks are equally crucial for the sustainable development of emerging technologies. Finally,
some limitations of this study must be acknowledged, such as the insufficient exploration
of other moderators such as the measurement instruments of variables and the inability to
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reveal the causal relationships between variables, which also should direct further research
in the future.
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