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Abstract: Machine learning (ML) methods have shown noteworthy skill in recognizing environmental
patterns. However, presence of weather noise associated with the chaotic characteristics of water
cycle components restricts the capability of standalone ML models in the modeling of extreme
climate events such as droughts. To tackle the problem, this article suggests two novel hybrid ML
models based on combination of extreme learning machine (ELM) with water cycle algorithm (WCA)
and bacterial foraging optimization (BFO). The new models, respectively called ELM-WCA and
ELM-BFO, were applied to forecast standardized precipitation evapotranspiration index (SPEI) at
Beypazari and Nallihan meteorological stations in Ankara province (Turkey). The performance of the
proposed models was compared with those the standalone ELM considering root mean square error
(RMSE), Nash-Sutcliffe efficiency (NSE), and graphical plots. The forecasting results for three- and
six-month accumulation periods showed that the ELM-WCA is superior to its counterparts. The NSE
results of the SPEI-3 forecasting in the testing period proved that the ELM-WCA improved drought
modeling accuracy of the standalone ELM up to 72% and 85% at Beypazari and Nallihan stations,
respectively. Regarding the SPEI-6 forecasting results, the ELM-WCA achieved the highest RMSE
reduction percentage about 63% and 56% at Beypazari and Nallihan stations, respectively.

Keywords: drought; SPEI; extreme learning machine; water cycle; bacterial forging; optimization

1. Introduction

Attributable to climate change, the extent and frequency of extreme weather events are
changing at both local and global scales so that an increase in the severity and intensity of
drought in arid and semi-arid regions has been projected [1]. Considering the duration of
rainfall deficit, drought is often categorized into four classes: meteorological, agricultural,
hydrologic, and socioeconomic [2]. When a natural ecosystem is injured by water deficit,
this extreme condition is called ecological drought [3]. Each class has own detecting
variables such as precipitation and temperature for meteorological drought [4], evaporation
stress and soil moisture for agricultural drought [5], surface and subsurface water shortage
for hydrological one [6], resilience of inflow-demand and water storage for socioeconomic
drought [7], and difference between ecological water requirement and consumption for
ecological drought [8]. As these parameters, particularly water cycle components, are
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highly nonlinear and non-stationary in nature, the associated drought indices have chaotic
characteristics, and hence are challenging to model and forecast [9,10].

One of the most frequently asked questions in sustainable water resources manage-
ment and operation is: “How often does a drought occur?” The answer to these questions
is important since it determines the amount of time that we need to bridge with current
water resources. Surprisingly, several approaches exist to model and predict a drought
occurrence. The relevant literature shows that drought prediction models are broadly cate-
gorized into three groups: (a) physically-based (dynamical) models [11,12]; (b) statistical
models including data-driven and machine learning (ML) models [13–16]; and (c) hybrid
statistical–dynamical techniques [17]. Status and prospects of each type were elaborately
discussed in [18] highlighting a growing tendency to use multiple models and combine
their forecasts.

Fundamentals of several ML methods and their potential applications in drought fore-
casting have been reviewed in a recent study [10] demonstrating that an efficient drought
mitigation plan and adaptation strategy needs an efficient drought forecasting model.
Among stochastic, probabilistic, and ML approaches, the study has concluded that the ML
approaches provide more accurate and efficient models. Given that ML methods are, by def-
inition, data-driven, they simply capture short-term evolution of the underlying manifold.
Such models, however, do not capture and explain extreme phenomena including both
wet and dry extremes [19]. Regarding meteorological drought prediction in Iran, a study
showed that artificial neural networks (ANNs) could be used for Standardized Precipitation
Index (SPI) and Effective Drought Index prediction in Iran [20]. Satisfactory implementa-
tion of the group method of data handling, adaptive neuro-fuzzy inference system (ANFIS),
generalized regression neural network, least square-support vector machine models, and
ANFIS coupled with three nature-inspired optimization algorithm models for multivariate
standardized precipitation index prediction in Iran were also reported by [13]. Another
article demonstrated that extreme learning machine (ELM) can be used for Standardized
Precipitation Evapotranspiration Index (SPEI) prediction in eastern Australia [16]. The
study revealed that ELM outperforms ANN in their study area. The ANN and XGBoost
methods were used for SPEI prediction using hydroclimatological predictors and showed
that XGBoost outperforms ANN [21]. More recently, [22] compared the efficiency of ELM,
random forest, and support vector machine models for SPEI prediction in different basins
and showed that a precise forecasting model can be developed via the use of sea surface
temperature as an SPEI predictor.

The purpose of any supervised ML algorithm is to get low bias and low variance.
Linear ML algorithms, which assume a linear relationship between the inputs and the
output variable, generally have a high bias but a low variance. In contrast, nonlinear ML
algorithms, such as ANNSs and ELMs, usually have a low bias but a high variance. Thus,
the parameterization of nonlinear ML algorithms often needs a trade-off to balance out
bias and variance. Recent studies have indicated that different factors such as bias-variance
tradeoff and number of training data may alter the performance of nonlinear supervised ML
methods [10]. In addition, they might get trapped in local optimum when classic gradient-
based algorithms are used to train them [23,24]. To cope with these problems, recent
studies have attempted to develop hybrid ML models in which either an optimization
algorithm is utilized for structural improvement of the desired model [25,26] or an effective
data pre-processing approach is used to denoise or transform raw predictor variables
(inputs) to more effective ones [27,28]. In the present study, the former approach is taken to
develop two novel hybrid ML models based on a combination of ELM with two emerging
optimization algorithms, namely bacterial foraging optimization (BFO [29]) and water cycle
algorithm (WCA [30]) to investigate how much these bio-inspired techniques can improve
the forecasting accuracy of ELM-based SPEI prediction model. To this end, we used 46
years (1971–2016) near surface air temperature and precipitation datasets from two synoptic
stations in Ankara province, Turkey. Then, the SPEI time series in two accumulation times
(3-month and 6-month) were calculated and modeled using the attained SPEI time series.
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Finally, a comparative analysis among these hybrid models (i.e., ELM-BFO and ELM-WCA)
and the standalone ELM was performed. It is worth mentioning that the evolved hybrid
algorithms are, in fact, nonlinear approximations of the short-term evolution of the system;
however, we call them models throughout this study.

Although WCA and BFO algorithms have been effectively used to optimize a variety
of ML models in different problems [31–33], current literature has indicated that SPEI
forecasting using hybrid ELM-BFO and ELM-WCA models have not been explored yet.
Therefore, the main contributions of this study are twofold. First, for the first time, the
study demonstrates predictive capabilities of these hybrid models for SPEI forecasting
in two accumulation times. Second, a comprehensive comparison among these hybrid
models and the standalone ELM is presented for the case study area. The rest of this paper
is organized as below: Section 2 provides the information required for SPEI calculation at
each region. Section 3 the details of the proposed hybrid methods. In Sections 4 and 5, the
forecasting results/comparisons and the conclusions are presented, respectively.

2. Materials and Methods
2.1. SPEI Calculation Using the Ground Truth Data

The SPEI is a meteorological drought indicator that takes both precipitation and tem-
perature data into account to characterize spatial and temporal drought condition [34]. The
index is suitable for monitoring and predicting drought under different type of climates [35].
To calculate SPEI, climatic water balance, also known as deficit, is first calculated via sub-
tracting potential evapotranspiration from precipitation at each month and then, a desired
distribution model is fitted to monthly moisture deficit. The months with negative SPEI
values are considered as dry months. When log-logistic function is selected as the desired
distribution model, SPEI values in the range [−1.1 to −1.42], [−1.43 to −1.23], and less
than −1.83 respectively represent the moderate, severe, and extreme drought events [36].

To attain SPEI series, long-term precipitation, and temperature data (from 1971 to 2016)
at Beypazari and Nallihan synoptic stations (Figure 1) were used. As shown in Figure 2,
we considered three- and six-months accumulation periods so that all the training and
verification tasks will be done for SPEI-3 and SPEI-6, separately.

Figure 1. Location of meteorological stations in Ankara Province, Turkey.

2.2. The Benchmark ELM Model

Despite various effective implementations of regular neural networks [37] such as
feedforwards, they are criticized because parameter adjustment requires so much time [38].
In case of complicated systems, use of parameter optimization and data pre-processing
techniques to obtain the best ANN structure/inputs could be necessary. Huang et al. [38]
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recommended a novel neural training method, called ELM, to solve such drawbacks. It ap-
plies an innovative feed-forward ANN algorithm having greater generalization capabilities
and more speed than ordinary feed-forward neural networks. In fact, ELM has a single
hidden layer in which the weights W and bias b of its input layer (see Figure 3) are set
randomly and remain unchanged during its training process. As the input weights remain
constant, the output weights (denoted by β in the figure) are independent of them and are
directly determined without iteration. This is the reason responsible for ELM’s accelerated
learning process [39]. As illustrated in Figure 3, the relation between the inputs (Xii) and
outputs (ti) is expressed by Equation (1) in which f is the activation function (sigmoid
function in the present study).

Figure 2. Long-term SPEI time series at Beypazari (upper panel) and Nallihan (lower panel) stations.

ti + εi= ∑L
j=1 β j f

(
WjXi + bj

)
(1)

where f is a user-defined activation function (the sigmoid function was used in the present
study), L is the number of hidden neurons and i indicates an individual input in the
training set.

Figure 3. Computing structure of an ELM algorithm.

In this study, ELM was simply coded in MATLB and was trained using the training
data set of each meteorology station. As the SPEI signals vary in the limited range [–3, 3],
the hidden weights and bias were selected using the empirical randomization function
in the range [−1, 1], and the number of hidden neurons was determined via a trial-error
procedure. Such ELMs are sub-optimal and might produce a high variance error as we
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previously mentioned. Thus, optimizing the matrix of weights and biases of the ELM
trough WCA and BFO algorithms was investigated in this study.

2.3. Water Cycle Algorithm

The WCA is a relatively new algorithm that uses the conceptual formulation of the
hydrological water cycle to determine the optimal solution for parameter optimization
problems [30]. The algorithm is based on the interconnectedness of streams, rivers, and a
sea [40,41]. The initial assumption is that a population of raindrops is generated at random
by a rainfall process, and the best raindrop is the one that produces the best fitness (i.e.,
minimum cost function) [41,42]. Streams, rivers, and the sea are labeled as “good or the best
raindrops” based on their performance compared to the other raindrops. The best raindrop
is selected as a sea and a river is considered as a good raindrop, and the rest of drops are
called streams [41]. Like nature, streams flow towards the river and rivers flow to the sea.
The algorithm can be used to solve any Nvar-dimensional optimization problem [30].

To begin the optimization, the initial population of randomly distributed raindrops (i.e.,
candidate solution matrix X) is made with the dimensions Npop × Nvar.

Population of Raindrops =


Raindrop1
Raindrop2
Raindrop3

...
RaindropNpop

 =


x1

1 x1
2 x1

3 · · · x1
Nvar

x2
1 x2

2 x2
3 · · · x2

Nvar
...

...
...

...
...

x
Npop
1 x

Npop
2 x

Npop
3 · · · x

Npop
Nvar

 (2)

where Nvar is the number of design variables that must be optimized, and Npop is the
population of raindrops (potential solutions).

As illustrated in Equation (2), each raindrop—a row in the matrix—is designated by a
vector of position also known as raindrop layer. Then, the fitness value of each raindrop
layer is calculated by any given cost function (here root mean square error (RMSE)) was
chosen). The raindrop layer with the smallest cost function is considered the “sea”, and
the raindrop layers with cost function values close to the sea are considered “rivers.” The
remaining raindrop layers are considered “streams”.

The position of the streams and rivers is changed at each iteration, and then, their cost
value is updated. If the cost function of a stream is less than the cost function of a river, the
positions of the stream and river are swapped. Similarly, if the cost function of a river is
less than the cost function of the sea, the positions of the river and sea are swapped. This
process continues until the maximum number of iterations is reached or the minimum error
is achieved. The final position of the sea is the optimal weight for the ELM.

To start changing the positions, the summation of the number of rivers and a single
sea is calculated.

Nsr = Number of rivers + 1 (3)

where Nsr denotes number of rivers plus a sea. Therefore, the rest of the population of
initial raindrops form streams, denoted by NRaindrops, that flow into rivers or directly into
the sea.

NRaindrops = Npop − Nsr (4)

After that, the following formula are be used to calculate the number of streams that
flows to rivers and the sea, where NSn represents the total number of streams:

NSn = round

{∣∣∣∣∣ Costn

∑Nsr
i=1 Costi

∣∣∣∣∣× NRaindrops

}
, i = 1, 2, 3, · · · , Nsr (5)

The following equations determine the movement of streams and rivers:

→
XStream(t + 1) =

→
XStream(t) + rand× C×

(→
XSea(t)−

→
XStream(t)

)
(6)
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→
XStream(t + 1) =

→
XStream(t) + rand× C×

(→
XRiver(t)−

→
XStream(t)

)
, (7)

→
XRiver(t + 1) =

→
XRiver(t) + rand× C×

(→
XSea(t)−

→
XRiver(t)

)
, (8)

X ∈ (0, C× d), C > 1 (9)

where the constants rand and C are very important. The rand is a random number between
0 and 1 that is expanded out the same way everywhere. The C is a constant value that
can be between 1 and 2. (near to 2). The d is how far away the stream is from the river
right now.

The evaporation process causes seawater to be lost as freshwater rivers and streams
make their way to the ocean. This assumption is made so that one does not become trapped
in a situation where a local optimum exists. There must be a progressive reduction in the
dmax during the optimization process. The following requirement is utilized to determine
whether the river empties into the sea:

i f ‖
→
X

t

Sea −
→
X

t

Riverj
‖ < dmax or rand < 0.1 j = 1, 2, 3, · · · , Nsr − 1 (10)

dmax(t + 1) = dmax(t)−
dmax(t)

Itmax
, t = 1, 2, 3, · · · , Itmax (11)

where dmax is a very small value used for controlling the “intensification level” near the
sea. Itmax is the maximum number of iterations. A new position of the streams is created
as follows:

→
X

New

Stream(t + 1) =
→
LB + rand×

( →
UB−

→
LB
)

(12)

where
→
LB and

→
UB are the lower and upper bounds of the problem, respectively.

In the training phase, weight and bias values of the ELM were optimized to hybridize.
The RMSE was designated as the fitness function for minimizing the difference between
measured and predicted values in the WCA algorithm.

In WCA, NRaindrops and Nsr are the parameters that may control the number of rain-
drops and the number of rivers that the simulated rain system is run, respectively. The
significance of these parameters is that they can affect the accuracy and efficiency of the
optimization algorithm. For example, a larger value of NRaindrops may lead to a more
accurate simulation of the water cycle, but it may also increase the computational cost
of the algorithm. Similarly, a larger value of Nsr may improve the convergence of the
optimization, but it may also increase the run time of the algorithm. The optimal values for
these parameters will depend on the specific application and the desired trade-off between
accuracy and computational efficiency. The variable dmax is a small number close to zero. If
the distance between a river and the sea is less than dmax, it means the river has reached
the sea. In this case, the evaporation process is applied, and after sufficient evaporation,
rainfall will begin. A large value for dmax reduces the search, while a small value increases
search intensity near the sea. Therefore, dmax controls the search intensity near the sea to
find the optimal solution. The value of dmax adaptively decreases as the search progresses.
Table 1 listed the parameters used for WCA setting in this study. The detailed pseudo-code
of the complete WCA algorithm is given in Appendix A (Algorithm A1).
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Table 1. The initial parameters of the WCA evolutionary algorithm.

Parameter Value

Sum of rivers and sea (NSr) 4
Evaporation condition constant (dmax) 1 × 10−5

Maximum iteration (Itmax) 100
Population (Npop) 5
Number of design variables (Nvar) 2
Search range [−1, 1]

2.4. BFO Algorithm

BFO is another powerful metaheuristic algorithm inspired by the social foraging and
chemotactic behaviors of the Escherichia coli (E. coli) bacteria [29]. Like WCA algorithm,
several improvements were introduced for BFO [28]. In this study, we implemented the
original version of BFO algorithm [29] that considers lifetime movements (i.e., chemotaxis
step j, reproduction step k, and elimination-dispersal step l), and group behavior (i.e.,
swarming) of the E. coli bacteria to optimize the matrix of weights and biases of the ELM.

Mimicking the chemotactic behavior of E. coli, the virtual bacteria search for nutrients
in a manner to maximize energy. The searching process simulates the movement of bacteria
through swimming or tumbling. In swimming, they can move for a long period in a
same direction, and in tumbling, a unit wake is done in a random direction. Equation (13)
expresses the mathematical equation for the movement of the bacteria.

xj+1
i (k, l) = xj

i(k, l) + Ci
∆(i)√

∆T(i)∆(i)
(13)

where xj+1
i (k, l) represents the new position of i-th bacterium at k-th reproductive and l-th

elimination-dispersal step. The Ci represents the constant step size taken in the random
direction vector ∆ indicates as specified by tumble. Like WCA, for the randomness, we
used normally distributed random values within the domain −1 and 1.

Mimicking the group behavior of E. coli, a group of virtual E. coli cells arrange them-
selves in a traveling ring and each bacterium communicates in the group by sending signals.
The cell-to-cell signals of the bacteria is the objective function value. The detailed pseudo-
code of the complete BFO algorithm is given in Appendix A (Algorithm A2). Accordingly,
the main steps of the algorithm include:

1. Initializing parameters of elimination probability (P), swarm (population) size (S),
number of chemotaxis steps (Ns; includes swimming and tumbling movements),
number of reproduction step (Nre), number of elimination-dispersal step (Ned). The
Ned denotes maximum number of iterations.

2. Performing elimination-dispersal step.
3. Performing reproduction step.
4. Performing chemotaxis step.
5. Computing health status (Jh) for each bacterium i and sort bacteria.

Jh =
Ns

∑
j=1

J(i, j, k, l) (14)

6. Selecting the healthiest E. coli group, splitting, and repeating steps II to V until k = Nre
and l = Ns

In this study, we sort the bacteria in reverse order according to theire health status.
The more the bacteria are healthier, the lower the fitness value. Then, the first half of the
population was survived to net iteration, and the least healthy bacteria will eventually die.
Table 2 listed the other parameters used for BFO setting in this study.
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Table 2. The initial parameters of the BFO algorithm.

Parameter Value

Population size (S) 20
Step size (Ci) 0.01
Number of chemotaxis steps (Ns) 2
Number of reproduction step (Nre) 2
Number of elimination-dispersal step (Ned) 1000
Elimination Probability (Ped) 0.9

2.5. Hybrid ELM-BFO and ELM-WCA Models

As illustrated in Figure 4, two new hybrid models, called ELM-WCA and ELM-
BFO, are developed for modeling and predicting SPEI-3 and SPEI-6 with the lead time
of one month. To this end, the most effective SPEI lags are selected regarding mutual
information criterion (MI). The input vectors and associated target SPEI at each station are
then separated into training (the first 70%) and testing (the last 30%) subsets. The classic
ELM is run to generate the benchmark model. In this phase, the weight and bias values
of the model are stored in a matrix. Finally, BFO and WCA algorithms are performed
to improve the predictive accuracy standalone ELM’s through optimizing the matrix of
weights and biases of the ELM (See Equation (1)). To run BFO (WCA) optimization, the
population size of 20 E. coli (four streams) and maximum number of 1000 generations
(100 iteration) were used.
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To differentiate and discuss the model results, several performance metrics could be
used. Among potential metrices [43], RMSE and Nash-Sutcliffe efficiency (NSE) goodness
of fit measures were used in the study.

RMSE =

√
∑n

i=1 (SPEIo − SPEIp)
2

n
(15)
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NSE = 1−
[

∑n
i=1
(
SPEIo − SPEIp

)2

∑n
i=1
(
SPEIo − SPEIo

)2

]
(16)

where n denotes the number of months applied to the train or test the models. SPEIo,
SPEIp, and SPEIo indicate the observed, predicted, and average SPEIo.

2.6. Identification of Optimum Predictors (Lagged SPEI Vectors)

To identify the most effective predictors, both linear and nonlinear correlation met-
rices such as autocorrelation function MI were suggested in the literature. For the same
SPEI data sets, [15] showed superiority of MI over the autocorrelation function as the
former may detect high-order relations between the given time series and its preceding
values. Thus, in the present study, the MI graphs developed by [15] were used to select
the optimum predictors. While [15] confined the number of predictors to the optional
MI threshold 0.2, we let the models use all the local maxima back to 13 lags. There-
fore, the proposed models can be trained via longer history of observed drought events.
Equations (17) and (18) express the functional forms of prediction models at Beypazari sta-
tion. Similarly, Equations (19) and (20) express the functional forms of prediction models
at Nallihan station.

SPEI − 3t = f (SPEI − 3t−1, SPEI − 3t−2, SPEI − 3t−4, SPEI − 3t−7, SPEI − 3t−10) (17)

SPEI − 6t = f (SPEI − 6t−1, SPEI − 6t−2, SPEI − 6t−3, SPEI − 6t−4, SPEI − 6t−8, SPEI − 6t−12) (18)

SPEI − 3t = f (SPEI − 3t−1, SPEI − 3t−2, SPEI − 3t−4, SPEI − 3t−7, SPEI − 3t−10) (19)

SPEI − 6t = f (SPEI − 6t−1, SPEI − 6t−2, SPEI − 6t−4, SPEI − 6t−7, SPEI − 6t−13) (20)

where SPEIt and SPEIt−i are the predictand and predictors, respectively. The letter i
denotes lag time.

3. Results

Using the most effective lags, an ELM model as developed for each station. As
previously mentioned, the best structure for ELM was determined through a trade-off
analysis so that the number of hidden neurons was increased from 1 to 10 (one-by-one) to
figure out the model having the highest accuracy in the testing stage. The ELM models
were trained up to 200 epochs with a learning rate of 0.01 at each trial. Then, BFO and WCA
were implemented to improve ELM accuracy via optimizing the matrix of weights and
biases of the best ELM. Table 3 listed the most successful models’ accuracy in both training
(from January 1972 to June 2003) and testing (from July 2003 to December 2016) periods.
The results proved that the integrated models are significantly superior to their standalone
structure. Since a hybrid method serves two or more models within a unique framework, it
can benefit the advantages of the sole models while ignoring the disadvantages.

Considering the results attained for SPEI-3, the ELM-WCA is superior to ELM-BFO at
both Beypazari and Nallihan stations. The Table 3 also indicates that the algorithms modeled
SPEI-6 with higher accuracy than SPEI-3. This may be owing to the greater time accumulation
in SPEI-6, which results in smoother time series with a smaller standard deviation.

It is necessary to investigate the significance of performance improvement achieved by
the proposed hybrid models. To this end, we compared the percentage of RMSE reduction
and NSE increase attained by each model in the testing phase in Table 4. Considering
the SPEI-3 forecasting at Beypazari (Nallihan) station, the ELM-WCA reported a boosted
drought forecasting by accuracy of 47% (42%), and 72% (85.4%), over the ELM model in
terms of RMSE and NSE, respectively. Likewise, the ELM-BFO showed an augmentation of
accuracy by 25% (17%), and 35% (40%) over the ELM. Regarding the SPEI-6 forecasting
results, the ELM-WCA achieved the highest RMSE reduction percentage about 63% and
56% at Beypazari and Nallihan stations, respectively. The ELM-BFO also showed 46% and
21% decrease RMSE at Beypazari and Nallihan stations, respectively. The Table 4 indicates
a noticeable difference in the hybrid models’ performance, particularly in terms of NSE
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percentage improvement. Inasmuch as the SPEI series at higher accumulation time has
lower frequency, it can be concluded that standalone ELM had a considerable predictive
performance for the low frequency SPEI series. Hence, one might not need a hybrid model
for SPEI series modeling in higher accumulations such as SPEI-9 or SPEI-12.

Table 3. The new models’ performance for drought prediction at two study sites.

Model
(Structure)

Beypazari Nallihan

RMSE NSE RMSE NSE

Training stage of SPEI-3

ELM 0.650 0.540 0.597 0.590
ELM-WCA 0.405 0.821 0.363 0.848
ELM-BFO 0.503 0.695 0.526 0.681

Testing stage of SPEI-3

ELM 0.825 0.481 0.801 0.438
ELM-WCA 0.436 0.829 0.463 0.812
ELM-BFO 0.618 0.652 0.663 0.615

Training stage of SPEI-6

ELM 0.494 0.736 0.434 0.780
ELM-WCA 0.219 0.948 0.205 0.951
ELM-BFO 0.0.38 0.854 0.306 0.891

Testing stage of SPEI-6

ELM 0.641 0.605 0.564 0.712
ELM-WCA 0.235 0.947 0.249 0.944
ELM-BFO 0.343 0.887 0.446 0.820

Table 4. Percentage of improvement in forecasting accuracy in the testing period attained at each station.

Station Models
SPEI-3 SPEI-6

RMSE (%) NSE (%) RMSE (%) NSE (%)

Beypazari

ELM-WCA
vs. ELM 47.1 72.0 63.3 56.2

ELM-BFO vs.
ELM 25.0 35.0 46.5 46.6

Nallihan

ELM-WCA
vs. ELM 42.2 85.0 55.8 32.6

ELM-BFO vs.
ELM 17.2 40.0 21.0 15.2

Figures 5 and 6 respectively show the time series and scatter plots of the SPEI predic-
tions at two meteorological stations over the testing period. Figure 5 implies that all the ML
models can detect the behavior of both SPEI-3 and SPEI-6 time series according to the actual
occurrence of drought. However, for the case of SPEI-3, the models failed to detect extreme
droughts events (SPEI-3 < −2.0), albeit the hybrid models are more successful than ELM.
Higher density of black circles above the 1:1 line in Figure 6 implies that ELM overestimates
SPEI values. Thus, the models tend to represent the study region more wet. Therefore, the
use of standalone ELM for droughts forecasting, in which accurate prediction of troughs
are more important than peaks is not recommended. Higher density of green triangles
along 1:1 line proves the superiority of ELM-WCA over the other models implemented in
this study. While the observed SPEI > 1.0, the hybrid models slightly tend to underrate the
wet events.
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Figure 5. The time series plots of forecasted and observed drought for the testing phase of SPEI-3
and SPEI-6.

Figure 6. The scatter plots of forecasted and observed SPEI for testing datasets (a) SPEI-3 at Beypazari
station; (b) SPEI-3 at Nallihan station; (c) SPEI-6 at Beypazari station; (d) SPEI-6 at Nallihan station.
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To assess the ML models’ efficiency regarding potential phase error, which is seen in
the reported forecasts in Figure 5, the RMSE values of the ML methods were compared to
those of a naïve forecast—namely the forecast whereby the future SPEI value is made equal
to the last observed value—model at each station (not given in this article). Considering
SPEI-3, while the ELM error at Beypazari (Nallihan) is 0.825 (0.801), the corresponding
naïve forecasting model error was 0.925 (0.882). Similarly regarding SPEI-6, the ELM error
at Beypazari (Nallihan) is 0.641 (0.564), the corresponding naïve forecasting model error
was 0.669 (0.607). It is clear that the ML models are superior to naïve forecasting model.

The Taylor diagram was used for analyzing the result of drought forecasting at both
stations (Figure 7). The diagram provides a concise statistical summary of how well
models’ prediction and the observed data match each other in terms of their correlation,
their RMSE and the ratio of their variances. Generally, all the models provided better
capability in SPEI-6 forecasting at Nallihan station, as their statistical metrics indicated
between the correlation of 0.85 to 0.95 by minimum RMSE (red curves). Figure 7 shows
that the results of the ELM and ELM-BFO techniques are far away from calculated SPEI
values (red point). Result of SPEI-3 at Beypazari station showed that the weakest drought
forecasting model has the correlation about 0.65. Also, all applied ML models showed
dependable capability in drought forecasting, but the ELM-WCA (green point) reported
an excellent simulated result in comparison with the counterparts at both stations. In the
Taylor diagram, the distance between points of the hybrid models and the ELM indicates
the ability of WCA and BFO algorithms as an enhancing mechanism for boosting the ability
of ELM for drought forecasting.

Figure 7. The Taylor diagram of forecasted and observed SPEI for testing datasets (a) SPEI-3 at
Beypazari station; (b) SPEI-3 at Nallihan station; (c) SPEI-6 at Beypazari station; (d) SPEI-6 at
Nallihan station.
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4. Discussion

Over the past few years, ELM and hybrid ELM models have been successfully utilized
for drought modeling and forecasting [9,15,41]. Despite the greater efficiency of ELM over
ANN [9], there is a growing consensus that the standalone ELM has failed to precisely
model and forecast SPEI series [15,44]. Like the present study, [44] implemented two
optimized ELM techniques: namely online sequential ELM and self-adaptive evolutionary
ELM for SPEI prediction in Vietnam. The authors demonstrated that the hybrid models
may improve forecasting accuracy; however, the augmentation of the accuracy of the new
methods are in the range of 10% to 20% in different locations. Likewise, [15] showed
that optimizing ELM via Bat algorithm can improve the forecasting accuracy by 20%.
Comparing to these studies, it is concluded that WCA showed the best performance to
optimize ELM. From a model accuracy perspective, wise selection of predictors is also an
important factor. Although the main mechanism for the outperformance of the hybrid
models is optimizing the matrix of weights and biases of the ELM, the higher performance
of ELM-WCA over that of previous studies, might partly be due to the way of selected
input parameters. Thus, identifying the most effective inputs needs to be considered in
developing hybrid models.

5. Conclusions

Precise prediction of droughts is known as a challenging issue in hydrology and
sustainable watershed management. To address the problem, the coupled ML approaches
with optimization algorithms were recommended in the relevant literature as the potential
boosted tools for drought forecasting. However, efficiency of these techniques is highly
depending on climate of study areas (i.e., observed datasets). In this paper, two new
coupled ML approaches (namely ELM-WCA and ELM-BFO) were suggested for forecasting
meteorological drought events. The proposed models were implemented for one month
ahead forecast of SPEI-3 and SPEI-6 at two meteorological stations in Turkey. They were
trained and tested using inputs selected via MI approach. Our findings showed that the
proposed hybrid models are more accurate than the benchmark. Regarding the SPEI-3
forecasting, the proposed ELM-WCA and ELM-BFO models showed approximately 25%
and 17% RMSE reduction over the ELM at Beypazari and Nallihan stations, respectively.
Correspondingly for the SPEI-6, the hybrid models showed approximately 46% and 21%
RMSE reduction over the ELM at Beypazari and Nallihan stations, respectively. However,
the accuracy of drought forecasting indicated that there were some limitations in the cases
of SPEI-3, then the current study recommends that application of pre-processing approaches
on the dataset before modeling process maybe increase accuracy of forecasts.

As previously discussed, to improve ELM accuracy, one needs to identify optimum
values of ELM parameters including total number of hidden neurons and maximum
number of iterations. In this study, the WCA and BFO algorithms merely used to optimize
the matrix of weights and biases of hidden-to-output-layer of the ELM. Future studies
may apply similar algorithms for fine tuning of the other ELM parameters. Regarding the
possible applications of the suggested models, it is worth mentioning that the provided
technique may be used for comparable forecasting problems involving various stochastic
hydrological phenomena. Future research may be necessary to explore the suggested
model’s capabilities to forecast agricultural and hydrological drought, since the present
work was limited to meteorological drought forecasting. Before ELM training process, one
may use other optimization approaches or a decomposition strategy to improve drought
prediction accuracy. All the models implemented in this study are from shallow learning
neural networks family. For longer lead time forecasting, use of deep learning models
could be recommended as a topic for future studies. Investigation on the effect of modified
versions of WCA [45] or BFO algorithms on ELM optimizing could also be informative.
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Appendix A

Pseudo-code of the WCO and BFO algorithms implemented in this study.

Algorithm A1. Pseudo-code of the WCO algorithm.

Initialization Stage

• Set parameter of the WCA (Maximum iteration, dmax, Npop and Nsr).
• Determine number of streams. The approach is flow to river and sea.
• Create randomly initial population.
• Define intensity of flow.

Procedure

• While (t < Maximum iteration) or (Stopping Condition)

for i = l:Npop
Stream flows to its corresponding rivers and sea.
Calculate the fitness function of the generated stream
Evaluate stream results

if F_new_stream < F_river
River = New_stream

if F_new_stream < F_sea
Sea = New_stream

end if
end if

River flows to its corresponding sea
Calculate the fitness function of the generated river

if F_new_river < F_sea
Sea = New_river

end if
end for
for i = l: Nsr

if (distance (Sea and river) < Dmax) or (rand < 0.1)
New streams are created.

end if
end for

Reduce Dmax
end while
Outputs

• Best population
• Best function result
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Algorithm A2. Pseudo-code of the BFO algorithm.

(1) Initialization:
(a) Set parameters: S, Ns, Ci, Nre, Ned, Ped
(b) Let j = k = l = 0 (three counters)
(c) Initialize the bacterial population: randomly distribute each bacterium xi(0,0,0) across the domain of the
optimization problem, and set xbest = x0(0,0,0).
(2) Elimination and dispersal loop: l = l + 1
(3) Reproduction loop: k = k + 1
(4) Chemotaxis loop: j = j + 1
(5) For bacterium i = 1,2, ..., S, perform a chemotaxis operator.

(a) Compute J (xi(j, k, l), let J(xi(j, k, 1)) = J(xi(j, k, 1))+ Jcc(xi(j, k, 1), P(j, k, l))

(b) Let Jlast = J (xi(j, k, 1)) to save this value since it is possible to find a better objective value via a run.

(c) Tumble: randomly generate a n-dimensional vector Φ(i).

(d) Move: Make a move according to Equation (14):

J (xi(j + 1, k, l)) = J(xi (j + 1,k,l)) + Jcc(xi( j + 1, k, l), P( j + 1, k, l))

(e) Swim as follows:

(i) Let m = 0 (The swimming counter).

(ii) While m < Ns

Let m = m +1.

If J (xi(j + 1, k, l)) < Jlast, let Jlast = J(xi(j + 1, k, l)),

keep on the move according to Equation (14), then use the new xi(j + 1, k, l) to compute the new
J(xi)

Else, let m = Ns

(f) If J (xi(j + 1, k, l)) < J(xbest), then xbest = xi(j + 1, k, l).

(g) Go to the next bacterium (i + 1) if i < S.
(6) If j < Ci, go to step 4.
(7) Reproduction

(a) Compute the health value for each bacterium according to Equation (15).

(b) Sort bacteria based on the health values in descending order.

(c) Abandon Sr bacteria with higher health values and split each of another Sr bacteria into exactly
same two ones.
(8) If k < Nre, go to step 3.
(9) Elimination and dispersal

For each bacterium i = 1, 2, . . . , S may be dispersed into a new location
(10) If l < Ned, go to step 2.
Else return the optimal solution xbest
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