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Abstract: Water availability is a key factor in territorial sustainable development. Moreover, ground-
water constitutes the survival element of human life and ecosystems in arid oasis areas. Therefore,
groundwater potential (GWP) identification represents a crucial step for its management and sus-
tainable development. This study aimed to map the GWP using ten algorithms, i.e., shallow models
comprising: multilayer perceptron, k-nearest neighbor, decision tree, and support vector machine
algorithms; hybrid models comprising: voting, random forest, adaptive boosting, gradient boosting
(GraB), and extreme gradient boosting; and the deep learning neural network. The GWP inventory
map was prepared using 884 binary data, with “1” indicating a high GWP and “0” indicating an
extremely low GWP. Twenty-three GWP-influencing factors have been classified into numerical data
using the frequency ration method. Afterwards, they were selected based on their importance and
multi-collinearity tests. The predicted GWP maps show that, on average, only 11% of the total area
was predicted as a very high GWP zone and 17% and 51% were estimated as low and very low GWP
zones, respectively. The performance analyses demonstrate that the applied algorithms have satisfied
the validation standards for both training and validation tests with an average area under curve of
0.89 for the receiver operating characteristic. Furthermore, the models’ prioritization has selected
the GraB model as the outperforming algorithm for GWP mapping. This study provides decision
support tools for sustainable development in an oasis area.

Keywords: groundwater potential; spatial prediction; machine learning; performance; water sup-
ply; oasis
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1. Introduction

Oases in arid lands are home to thousand-year-old civilizations that have survived
due to the availability of water resources and their management. Nowadays, water stress
is often frequent and widespread; therefore, with the quasi-absence of surface water,
groundwater represents the principal water supply source in those areas [1–5]. Thus, its
availability is of paramount interest to territorial sustainable development [6]. According to
the United Nations Water Conference (UNW), despite the groundwater resource abundance
on Earth (90% of freshwater), data availability and specific knowledge about the resource
represent a primary challenge in many countries [7]. Therefore, regular quantitative and
qualitative monitoring of groundwater constitutes an essential step toward its management,
which passes through its identification [8].

Consequently, mapping groundwater potential (GWP) has been one of the most crucial
components of groundwater research [9]. This concept was introduced by [10] as a spatial
estimate of groundwater yield capacity based on a series of indicators, i.e., GWP-influencing
factors. Furthermore, it can refer to the likelihood of the availability of groundwater in a
given area [11]. Previous studies have shown that common indicators such as hydrological,
geological, topographical, and climatic indicators were integrated according to their influ-
ence on the GWP using several mathematical and statistical approaches. Among the latter,
the frequency ratio, weights-of-evidence, and logistic regression are the approaches usually
used by scholars [12–14].

In this context, the combination of remote sensing (RS) data, geographic information
systems (GIS), and multi-criteria decision-making (MCDM) analyses based on statistical
methods represent a popular, rapid, and cost-effective assessment method of water resource
management in general and groundwater identification [3,15]. In previous years, this com-
bination has allowed many researchers worldwide to provide large-scale spatio-temporal
analyses of several datasets within various geo-environmental issues in general terms and
for groundwater monitoring, particularly in [8] and the references therein. This was based
on the fact that the RS data provide rapid and replicated observations on environmental
characterization and monitoring; the GIS offers various data spatial analysis and visual-
ization tools, whereas the MCDM analysis combines several quantitative and qualitative
factors to solve complex spatial problems in order to develop decision support tools [16–18].
Nonetheless, in oasis areas, GWP identification using the cited methods is rarely applied.

Recently, numerous novel methods and algorithms related to artificial intelligence (AI)
based on machine learning (ML) and deep learning (DL) have been developed, assessed,
and approved in the field of GWP mapping determination; this has been conducted
with respect to inventories of water withdrawal points and geological, hydrogeological,
hydrological, topographic and climatic factors [11,17,19–21]. On this matter, the following
models were commonly used and applied in the sub-cited studies: random forest (RF),
support vector machine (SVM), linear regression (LR), decision tree (DT), naive Bayes (NB),
convolutional neural network (CNN), long short-term memory (LSTM) and artificial neural
network (ANN) [6,9,14,22–25]. Furthermore, a variety of methods have also been proposed
to improve the efficiency and precision of the prediction models, such as optimization
algorithms and ensemble models [23,26,27].

In the present research, ten groundwater potential prediction models were applied,
evaluated, and compared, including using different types of existing algorithms [28]:
shallow models, i.e., traditional ML models, hybrid models (bagging, boosting, ensemble),
and deep learning models. The used models were: multilayer perceptron (MLP), k-nearest
neighbor (KNN), DT, SVM, voting, RF, adaptive boosting (AdB), gradient boosting (GraB),
eXtreme gradient boosting (XGraB), and deep learning neural network (DLNN). These
algorithms were selected due to them being the most commonly used individual models;
this allowed us to compare our findings with previous results demonstrated in different
environments as investigated by [13,20,23,29], etc. Furthermore, they are the most powerful
boosting and deep learning models, and we used the models in order to overcome the
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research gap related to the comparison and validation of different types of GWP modeling
algorithms.

The Toudgha Oasis is commonly known for its environmental and socio-ecological
sites’ importance, and its economy is essentially based on rural and subsistence agriculture,
tourism, and mining activities, which are directly related to water availability. The area
belongs to the oases of southern Morocco, which have been declared by the United Nations
Educational, Scientific and Cultural Organization (UNESCO) as a ‘Biosphere Reserve’
(www.unesco.org accessed on 20 June 2022). Furthermore, it houses several territories of
life that can be defined as Indigenous peoples and local Communities Conserved Areas
and territories (ICCAs) [30], where several local communities survive because of the
groundwater resources, which have been exploited by ancient hydraulic systems such as
khettarats (i.e., Qantas). the latter are the essential techniques that have been developed to
guarantee the oasis’ sustainability, especially in the face of climate change [31]. Overall,
the identification of the GWP in the Toudgha Oasis is essential for the development of
sustainable strategies for groundwater exploitation, protection, and management, and thus
the preservation of this valuable ecosystem.

Due to the unavailability of previous research on GWP, the above-mentioned approach
is unprecedented in the chosen study area and has not been assessed before in a simi-
lar oasis region. Furthermore, in this work, the GWP mapping includes, in particular,
the application of ML and DL models using Google Colaboratory as a Web Integrated
Development Environment (WIDE) based on a total of 884 input data and twenty-three
GWP-influencing factors, which were mapped using RS data and the GIS environment.
The main purposes of this study were first to select the key influencing factors related to
the GWP, produce predicted GWP maps, and evaluate the prediction models’ performance
and prioritization. Overall, this research deals with the elaboration of advancing and
cost-effective groundwater resource planning and management tools in the Toudgha Oasis.

2. Materials and Methods
2.1. The Study Area

The study was conducted within the Toudgha watershed, which is in the southeast
of the Moroccan kingdom and covers an area of 2296 km2, ranging between 31◦51′35′′ N–
31◦9′14′′ N and 5◦10′45′′ W–5◦57′01′′ W (Figure 1). The area is characterized by an arid
climate [3],which is strongly influenced by the continental and desert context. The interan-
nual average rainfall is 154 mm, which shows high spatial and temporal variability marked
by a spatial difference in the average precipitation of 110 mm between the northwest
(i.e., the mountainous region) and the southeast (i.e., the lowland region) and a temporal
difference in the average precipitation of 295 mm between the wettest and driest years. The
daily thermal difference may reach 22 ◦C, with a monthly average temperature ranging
between 8 ◦C and 27.8 ◦C.

Geologically, the area is localized at a threefold junction between the Central High
Atlas Mountain (Jurassic) in the North, the Eastern Anti-Atlas Mountain (Paleozoic and
Precambrian) in the South, and the pre-African furrow (Cretaceous) in the middle, shaped
as a dissymmetric synclinorium where most of the Paleogene–Pliocene and Quaternary sed-
iments have been deposited (Figure 2a). The Precambrian presents the outcrops of intrusive
and metasediment formation; the Paleozoic is materialized by sandstone and shale bundled
in a sedimentary sequence dating from the lower Cambrian to the Carboniferous [32]. The
Jurassic rocks are composed of limestone and dolostone (Liassic–Dogger) [33], whereas the
Cretaceous is mostly represented by sandstone, conglomerates (Infra-Cenomanian), and
limestone (Cenomanian–Turonian and Senonian) [34,35]. Finally, the Paleogene–Pliocene
succession is constituted by polygenic conglomerates. The quaternary is formed by allu-
vial, silt, sand, and conglomerates. The geological structure of the area (Figure 2b,c) is
dominantly affected by a fractured system belonging to the South Atlasic Fault showing an
overall NE direction between the High Atlas Mountain and the pre-African furrow [36,37].
The cross-section (Figure 2c) shows that the deformation in the study area is characterized
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by the presence of folds and thrusts, which are more developed close to the South Atlas
Fault Zone; it decreases in the southeast part, resulting in more spaced open syncline and
anticline folds [36].
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The groundwater resources are distributed in four different hydrogeological systems
of variable importance [38–42], which are arranged in juxtaposition from north to south.
According to the technical data sheet analyses of the inventoried water withdrawal points,
we distinguish: (1) The High Atlas deep aquifer, which is fractured and often karstic,
contains both a Liassic level and Dogger level, corresponds to dolomitic limestone and
marly limestone, respectively, and characterized by higher productivity (exceed 100 L/s).
These aquifers provide several springs, among which the most famous in the study area
are the Toudgha gorges springs and the Sacred Fishes spring in the downstream part of
the Toudgha gorges; (2) the Cretaceous deep aquifer, which includes two main levels:
the Infra-Cenomanian sandstones, which is the most productive level at the area (about
14 L/s), and the Senonian sands and sandstones; (3) the Anti-Atlas deep aquifer, which
contains limited resources (productivity average less than 1 L/s) circulating in Ordovician
sandstone and Devonian limestone; (4) the Toudgha alluvium aquifer, generally oriented
along the Toudgha river in which the water flows in the quaternary alluvial. Fluvial-
lacustrine formations are characterized by an extreme permeability. Groundwater flow is
very discontinuous in the northwest, where it is strongly controlled by the faults. However,
it is homogeneous in the southeastern region, where it is controlled by the characteristics of
the different formations.

2.2. Methodology and Data Sources

The adopted methodology of this study is summarized in Figure 3, which describes
the three major steps. Step (I) is devoted to the input database generation, which is
composed of the GWP inventory map and the GWP-influencing factors maps, namely,
geological factors (lithology, fracture density (FD), closeness to fracture (CF)), climatic factor
(Rainfall), land surface factors (Normalize Difference Vegetation Index (NDVI), LULC),
hydrological factors (drainage density (DD), runoff depth (Q), closeness to stream (CS) (i.e.,
distance to stream), Stream Power Index (SPI), Topographic Wetness Index (TWI)), and
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topographic factors (aspect, convergence, curvature, elevation, slope length (LS), Melton
ruggedness number (MRN), multi-resolution ridge top flatness (MRRTF), multi-resolution
valley bottom flatness (MRVBF), plan curvature, profile curvature, slope, and Terrain
Ruggedness Index (TRI)). The input database was transferred into numerical data using the
frequency ration (FR) method in order to determine the relationships between the GWP and
the influencing factors. Then, the GWP-influencing factors were selected according to their
importance and multi-collinearity analyses such as correlation matrix (CM) results, variance
inflation factors (VIF), tolerances (Tol), and mutual information (MI) test. Step (II) was
focused on the models’ application and produced the predicted GWP maps. Step (III) was
dedicated to assessing the efficiency and the ranking of the prediction models according to
several validation criteria related to performance metrics such as sensitivity (Se), specificity
(Sp), precision (Pr), false positive rate (FPR), accuracy (Ac), F1-score, mean absolute error
(MAE), root-mean-square error (RMSE), and the area under curve of the receiver operating
characteristic (AUC-ROC). In the second and third steps, the database was randomly
divided into training data and testing data used for the generation of the GWP maps and
for evaluating the medals’ performances, respectively. A preliminary stability test of the
prediction and success rates regarding optimal data partitioning was performed.
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Table 1 shows the various sources of the acquired data, while the details of the method
used are outlined in the next sections.
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Table 1. Database and sources used.

Data Source

Water withdrawal points inventory

Field investigation
Data collection from:
the Hydraulic Agency of Guir, Ziz, Rheris Basin (ABHGZR)
the Regional Office of Agricultural Development (ORMVAO)
the National Office of Electricity and Drinking Water (ONEE)

GPM_3IMERGM v06 produced by the Global Precipitation
Measurement (GPM) mission [43]. Pixel size: 10 km × 10 km

https://giovanni.gsfc.nasa.gov/giovanni/
(Accessed on 1 July 2022)

Digital Elevation Model (DEM) Produced by ALOS PALSAR.
Pixel size: 12.5 m × 12.5 m

https://vertex.daac.asf.alaska.edu/
(Accessed on 1 July 2022)

Landsat Oli-8 images.
Pixel size: 30 m × 30 m

https://earthexplorer.usgs.gov/
(Accessed on 1 July 2022)

Geological Maps.
Scale: 1/200,000

Jbel Saghro-Dades

Geological service of Morocco
Toudgha Maider

Ouaouizaght Dades

Haut Atlas of Midelt

2.3. Database Generation
2.3.1. Water Withdrawal Points Inventorying

The water withdrawal inventory is an indispensable component of water resources
management. Therefore, it presents a baseline step in the GWP mapping [14]. The study
area is known for several types of groundwater withdrawal systems, and its inventorying
was prepared after extensive field investigation and data collection.

The data related to the exploratory and monitoring drillings and wells were collected
from the ABHGZR. The irrigation water exploitation data for the irrigation was gathered
from the ORMVAO. The data related to the drinking water exploitation within the urban
area were collected from the ONEE, whereas the drinking water exploitation data within
the rural area, the inventorying of springs, and the Khettarats (i.e., Qantas) were collected
through field visits. The GWP of the water withdrawal systems was determined from
available pumping tests, organizations’ reports (ABHGZR, ORMVAO, and ONEE), and
field surveys with the local community. Accordingly, a high GWP was assigned to high
productive withdrawal at a yield value ≥ 86.4 m3/d. Therefore, 442 water withdrawal
points have been identified.

Several scholars recommend integrating sampling data from areas without ground-
water withdrawal in order to balance the input dataset ([8,13,20] and references therein;
therefore, the list of the water withdrawal systems (set to 1, i.e., a high GWP) inventoried
was completed using the same number of locations with no water withdrawal systems (set
to 0, i.e., a very low GWP), and it was randomly mapped using the function create random
points in a GIS environment, resulting in a total of 884 points (Figure 1). At this step, a vari-
ation in the percentage of the data split (training/testing) has been noted among the most
recent studies, in which the division of 70/30% was the most used partition [14,23,25] in
addition to the partition 75/25% and 80/20%, which have been used by Namous et al. [20]
and Talukdar et al. [9], respectively. Accordingly, the 884 points were randomly divided
into training (70%) and validation (30%) data, which were used to develop and validate the
groundwater potential prediction models. Furthermore, to evaluate the stability of the mod-
els related to the partitioning data, the prelaminar test values of the prediction and success
rates using the three cited partitions (70/30%; 75/25%, and 80/20%) were examined.

2.3.2. Mapping the GWP-Influencing Factor

The GWP is dependent upon several varied factors. In this regard, Díaz-Alcaide and
Martínez-Santos [10] have confirmed through a systematic review that twenty factors were

https://giovanni.gsfc.nasa.gov/giovanni/
https://vertex.daac.asf.alaska.edu/
https://earthexplorer.usgs.gov/
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found to be commonly integrated, of which geology, lineaments, landforms, land use/land
cover (LULC), rainfall distribution, drainage density, and slope were mostly always present.
However, the determination of the variables influencing the GWP is still strongly controlled
by data availability. Accordingly, and based on the previous studies [15,23] twenty-three
factors were considered in the present work, including geological factors (lithology, FD,
CF), climatic factor (rainfall), land surface factors (NDVI, LULC), hydrological factors (DD,
Q, CS, SPI, TWI), and topographic factors (aspect, convergence, curvature, elevation, LS,
MRN, MRRTF, MRVBF, plan curvature, profile curvature, slope, and TRI). In this regard,
the above-mentioned factors have been identified considering that: first, the geological
factors presents a direct influence on groundwater storage conditions and water quality [15];
second, the climatic factor is a crucial component in the groundwater recharge process as it
controls the water resource availability [44]; third, the land surface factors that influence
water infiltration and surface runoff have a substantial impact on groundwater potential
and the recharge process [45]; finally, the hydrologic and topographic factors are essential
for determining hydrological conditions such as groundwater flow and soil moisture [46].

The GWP-influencing factors maps preparation was achieved through distinctive
primary (RS data) and secondary (published data) data sources, which have been processed
using numerous spatial analysis initiatives provided by the GIS environment.

The land surface factors maps and fracture maps (includes lineament, i.e., faults and
fractures) have been generated from Landsat OLI-8 images with supervised classifications
to map the LULC: image analysis to map the NDVI; principal component analysis; and
lineament automatic extraction to produce the base layer to map the FD and CF. Extensive
interpretation using a geologic map, topographic map, high-resolution images from Google
Earth Pro, and the colored composition of the Landsat OLI-8 image bands was carried
out in order to sort and eliminate lineaments other than fractures (roads, rivers, etc.). The
climatic factor map was obtained from the Global Precipitation Measurement (GPM) data
validated by Ouali et al. [3] within the studied area. The lithology map was digitized from
the 1:200,000 geological map of Morocco. From the DEM data, topographic and hydrologic
factors were derived using the terrain analysis tools except for the Q map, which has been
elaborated by integrating the LULC map, hydrologic soil group map, and rainfall map on
the basis of the CN-SCS method [47], adapted by the Food and Agriculture Organization
(FAO) for application in North Africa [48]. Considering that the majority (fourteen factors)
of the integrated factors present a spatial resolution of 12.5 m × 12.5 m, all other thematic
maps have been resized to the same level using a resampling method. Therefore, a total of
twenty-three maps were prepared (Figure 4).
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2.3.3. GWP-Influencing Factors Optimized Selection Analysis

The GWP-influencing factors selection optimization analysis reduces the prediction
models’ complexity, and it aims to select the most appropriate factors [9,23]. In this
study, to advance the ML GWP prediction, the integrated GWP-influencing factors have
undergone several primary tests, including the multicollinearity analyses of CM, VIF
(Equation (1)), Tol (Equation (2)), and MI (Equation (3)). It allows for the elimination of
redundant (e.g., collinear factors) and insignificant factors. According to O’Brien [49] and
Zhou et al. [50], the high multicollinearity is indicated by a Tol score of 0.1 and a VIF value
of >10. Furthermore, according to the CM for each highly correlated pair of factors that
respond to these requirements, whichever one has the highest VIF is to be eliminated. MI
provides information about the GWP-influencing factors’ importance. A negative value of
MI indicates that the factor has no effect and will be eliminated.

Tol j = 1− R2
j (1)

VIF j = d 1
Tolj
e (2)

MI(n, j) = H(n)− H(n/j) (3)

where j is the GWP-influencing factor, n is the subclass of the GWP-influencing factors,
Tol i is the tolerance of j, VIF j is the variance inflation factors of j, MI (n; j) is the mutual
information for n and j, R is the determinant coefficient of the regression for predisposing
of j, on all the other predisposing factors, H(n) is the entropy of n, and H (n | j) is the
conditional entropy for n given the groundwater condition factor j.

The GWP-influencing factors optimized selection analysis and models application
were founded on the normalized frequency ratio (NFR) determination, which has recently
been a recommended step for unifying the input data type importance to the varied
factors [20,51]. Therefore, the frequency ratio (FR) (Equation (4)) was assigned for the
GWP-influencing factors’ subclass in the sense of defining the relationship between the
water withdrawal locations (i.e., GWP) and the feature (i.e., GWP-influencing factors) [6].
Then, the results were normalized using Equation (5). Accordingly, all of the used maps
have been converted to an NFR ranging between 0 (low GWP) and 1 (high GWP).

FRn =
Wn
Wt
Pn
Pt

(4)

NFRn =
FRn−Max(FRn)

Max(FRn)−Min(FRn)
∗ (0.99− 0.01) + 0.01 (5)

where n is the subclass of the GWP-influencing factors, FRn is frequency ratio of n, NFRn is
the normalized frequency ratio of n, Wn is the number of water withdrawal points localized
in the n, Wt is the total number of water withdrawal points, Pn is the number of pixels of n,
and Pt is the total number of all pixels.

The GWP-influencing factors’ subclass have been determined through the classification
of the produced maps using the Jenks natural break technique [52]; the exceptions are the
aspect, LULC, and lithology, which have been accordingly classed depending upon the
directional units, supervised classification, and lithological units, respectively.

2.4. GWP Prediction Algorithms

In this research, ten algorithms were employed (MLP, KNN, DT, SVM, RF, AdB, GraB,
XGraB, DLNN, and voting) to predict the GWP. For the description, Table 2 illustrates
the selected algorithms. Furthermore, details about their classification, functionality, and
parameters are available in Liu and Lang [28] and Sarker [53].
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Table 2. Description of the applied algorithms.

Model Developed by Description Applied by

MLP Rosenblatt [54] and Rumelhart
et al. [55]

Multilayer perceptron is a fully connected, feedforward
artificial neural network (ANN) comprising several
nodes, including three layers, as the input layer (i.e.,
GWP-influencing factor), a hidden layer (i.e., weights
application), and an output layer (i.e., GWP).

Farooq et al. [56] and Kanj et al. [57]

KNN Fix and Hodges [58] and Cover
and Hart [59]

K-nearest neighbor is founded on the collector theory.
The prediction of a new data point (i.e., GWP) is based
on the simple majority vote of its nearest real data points
(i.e., water withdrawal points and non- water
withdrawal points).

Kombo et al. [60] and Aburub et al.
[61]

DT
(CART) Breiman et al. [62]

Decision tree is structured like a tree, where the
algorithm selects the most suitable features (i.e.,
GWP-influencing factor) as a root and generates the child
nodes. The prediction is based on top-down observations
and processing results at each level, from the rote to the
child nodes corresponding to the new data (i.e., GWP).

Zhao et al. [63] and Choubin et al. [64]

SVM Vapnik [65,66]

Support vector machine is a non-parametric kernel-based
model aimed at locating a maximum margin separation
hyperplane in the n-dimensional feature space. The
radial basis function was used to predict the GWP.

Liu et al. [67] and Ijlil et al. [68]

Voting Littlestone and Warmuth [69]

Defined as a hybrid model, it is based on an aggregation
approach that combines the results of several algorithms.
In this study, it was used for the shallow (i.e., DT, SVM,
MLP, and KNN) models to balance out their individual
weaknesses.

Saqlain et al. [70] and Gandhi and
Pandey [16]

RF Breiman et al. [71]

Random forest is a meta-estimator that adjusts a given
number of DT classifiers on various subsets of the
GWP-influencing factors obtained by the bootstrap
aggregation (i.e., bagging) and random feature selection
methods. It serves to optimize the predictive efficiency of
the model.

Das and Saha [23], Liu et al. [14]

AdB Freund and Schapire [72]

Adaptive boosting is an ensemble learning algorithm; it
is founded on combining several basic and weak
predictors to produce more effective trees. It tweaks the
instance weights at every interaction.

Mosavi et al. [26]

GraB Ridgeway [73]

Gradient Boosting is also known as gradient tree
boosting, and its approach is like the AdB algorithm. It
serves to minimizes the overall prediction error (i.e., the
loss function).

Park and Kim [13]

XGraB Chen and Guestrin [74]

eXtreme Gradient Boosting is an improved GraB
algorithm with a structure offering parallel tree boosting.
It employs second-order derivatives that reduce the loss
function and provide more accurate trees.

Naghibi et al. [21], Park and Kim [13]

DLNN Kingma and Ba [75]
Deep learning neural network is an advanced ANN that
consists of several layers: the input layer, several hidden
layers, and the output layer.

Pradhan et al. [76]

2.5. Performance Analysis and Model’s Reinking

In the present study, the prediction models’ performance was evaluated based on
several indicators, such as Se, Sp, Pr, FPR, Ac, F1-score, MAE, RMSE, and AUC-ROC. These
indicators are determined using Equation (6)–(14). Higher values of Se, Sp, Pr, Ac, F1 score,
and AUC-ROC are proportional to good performance. In contrast, higher values of FPR,
MAE, and RMSE indicate lower performance [23].

Se =
TP

TP + FN
(6)

Sp =
TN

FN + TN
(7)
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Pr =
TP

TP + FP
(8)

FPR =
FP

FP + TN
(9)

Ac =
TN + TP

TP + FP + TN + TP
(10)

F1 score =
2

1
Pr +

1
Recal

Recall =
TP

TP + FN
(11)

MAE =
1
m

m

∑
i=1

∣∣∣(Vi predicted −Vi real

)∣∣∣ (12)

RMSE =

√
1
m

m

∑
i=1

(
Vi predicted −Vi real

)2
(13)

AUC =
∑ TP + ∑ TN

P + N
(14)

where TP is the true positive, TN is the true negative, FP is the false positive, FN is the false
negative, P is positive, and N is negative. Vi predicted is the predicted classes of GWP, Vi real is
the real class of the GWP of the tested model, and m is the total number of predicted and
real values.

The prediction models’ prioritization was applied to select the most efficient model
using the compound factor (Cf ). The method is based on the ranking of the performance
indicators calculated for each model in the previous section according to Equation (15).

C f =
1
n

n

∑
i=1

R (15)

where R is the rank of the model and n is the indicator.

3. Results
3.1. GWP-Influencing Factors Selection

The results of the multicollinearity analysis show a Tol value that ranges between 0.95
and 0.095 for the SPI and the TRI, respectively, as well as a VIF maximum value of 10.5 for
the TRI and a minimum value of 1.06 for the SPI (Figure 5a). The CM depicted a strong
linear correlation between the following factors: elevation with the runoff, the LS with
the slope, and the TRI with the LS, where the highest VIFs among each pair are presented
for the TRI, the Ls, and the elevation (Figure 5b). Afterwards, and according to the Tol
and VIF requirements cited above, among the twenty-three factors, the TRI, the LS, and
the slope were removed in the following analysis. After that, the MI of the other twenty
factors (Figure 6) presents positive values that range from 0.207 (lithology) to 0.0005 (FD).
Therefore, lithology is classified as the most important, followed by the Q (MI = 0.201) and
the rainfall (MI = 0.106).
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3.2. Groundwater Potentiality Maps

The GWP was mapped based on the application of the ten algorithms. The results
were presented as a predicted probability ranging between 0 and 1, corresponding to the
lower and higher GWP, respectively. The produced maps were then classified into the
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following five different zones using the Jenks natural break classification: very low, low,
moderate, high, and very high.

The first visual analysis of the ten resulting maps produced by the MLP (Figure 7a),
KNN (Figure 7b), DT (Figure 7c), SVM (Figure 7d), voting (Figure 7e), RF (Figure 7f), AdB
(Figure 7g), GraB (Figure 7h), XGraB (Figure 7i), and DLNN (Figure 7j) models shows that
the very high GWP values are concentrated at the eastern part, particularly in the plain
zone, and they are slightly represented in the western part. Meanwhile, the very low GWP
values are localized in the northern and the southern part.
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For the shallow models, the results show that the very low, low, moderate, high,
and very high GWP covers 28%, 34%, 19%, 13%, and 7% of the study area, respectively,
for the MLP model (Figures 7a and 8)), 38%, 28%, 15%, 9%, and 10% of the study area,
respectively, for the KNN model (Figures 7b and 8), 66%, 7%, 6%, 3%, and 18% of the study
area, respectively, for the DT model (Figures 7c and 8), and 60%, 15%, 8%, 6%, and 12% of
the study area, respectively, for the SVM model (Figures 7d and 8).
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In the case of the hybrid models, the five GWP classes (very low, low, moderate, high,
and very high) cover 48%, 17%, 14%, 9%, and 12% of the areas, respectively, for the voting
model (Figures 7e and 8), 40%, 24%, 15%, 11%, and 9% of the areas, respectively, for the RF
(Figures 7f and 8) model, 75%, 3%, 2%, 4%, and 26% of the areas, respectively, for the AdB
model (Figures 7g and 8), 52%, 17%, 11%, 10%, and 10% of the areas, respectively, for the
GraB model (Figures 7h and 8), and 51%, 17%, 12%, 9%, and 11% of the areas, respectively
for the XGraB model (Figures 7i and 8) respectively. For the deep learning model (i.e.,
DLNN), most areas are predicted as having very low (57%) and low (16%) GWP, and the
remaining area is associated with moderate (9%), high (7%), and very high (10%) GWP
values (Figures 7j and 8).

In general, the proportion of the GWP classes (Figure 8) shows that the low and very
low GWP are the dominating classes; they cover more than 60% of the total area, except
for the GWP map predicted by the AdB and DT algorithm, in which only the very low
GWP class dominates. However, the last presented category is the high GWP class with an
average percentage of 8% of the total area. The moderate and the very high GWP classes
simultaneously present 11% on average for the entire area.

3.3. Models’ Performance

The success rate was determined using the training dataset, which reflects the accuracy
of the model fit to the observed GWP. The prediction rate was determined using testing
data, which shows how well the model predicts the GWP.

The success and prediction and rates of the applied models were examined for the
training/testing partition at ratios of 70/30%, 75/25%, and 80/20% of the dataset; the
results are shown in Figure 9. Considering the success rate for the three used partitions, the
results show equal values for the RF (success rate = 1) and equal values (variation average
of 0.02) over other models except for the MLP, which presents a slight variability. On the
other hand, the prediction rate presents a slight variation between the results of the three
partitions for each model. Nevertheless, a high prediction rate is noted for the GraB (0.83)
models, followed by the AdB (0.82) and XGraB (0.82) models for the 70/30% partition.
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Figure 9. The success and prediction rates of the used models using 70/30%, 75/25%, and
80/20% partitions.

To further assess the ten models’ efficiencies at predicting the GWP, the Se, Sp, Pr, Ac,
F1-score, FPR, MAE, RMSE, and AUC-ROC were evaluated using the training (70%) and
testing dataset (30%). The results of this part are presented in Table 3 and Figure 10.

Table 3. Validation indicators of the used models using the training data and validation data.

Model
Performance Indicators

Se Sp Pr FPR Ac F1-Score MAE RMSE AUC

Training Data

RF 1.00 1.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00

MLP 0.83 0.70 0.70 0.30 0.76 0.76 0.24 0.24 0.85

GraB 0.91 0.87 0.86 0.13 0.89 0.88 0.11 0.33 0.96

AdB 0.84 0.83 0.80 0.17 0.83 0.82 0.17 0.41 0.91

DT 0.89 0.85 0.83 0.15 0.87 0.86 0.13 0.36 0.92

SVM 0.81 0.82 0.79 0.18 0.82 0.80 0.18 0.43 0.88

KNN 0.76 0.84 0.80 0.16 0.81 0.78 0.19 0.44 0.88

XGraB 0.86 0.84 0.82 0.16 0.85 0.84 0.15 0.38 0.91

Voting 0.84 0.82 0.79 0.18 0.83 0.81 0.17 0.42 0.95

DLNN 0.88 0.88 0.86 0.12 0.88 0.87 0.12 0.35 0.89
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Table 3. Cont.

Model
Performance Indicators

Se Sp Pr FPR Ac F1-Score MAE RMSE AUC

Testing Data

RF 0.83 0.79 0.78 0.21 0.80 0.80 0.20 0.44 0.89

MLP 0.81 0.64 0.67 0.36 0.72 0.73 0.28 0.53 0.85

GraB 0.87 0.80 0.80 0.20 0.83 0.83 0.17 0.41 0.91

AdB 0.87 0.78 0.78 0.22 0.82 0.82 0.18 0.42 0.89

DT 0.83 0.78 0.77 0.22 0.80 0.80 0.20 0.44 0.81

SVM 0.80 0.77 0.76 0.23 0.79 0.78 0.21 0.46 0.88

KNN 0.77 0.78 0.76 0.22 0.77 0.76 0.23 0.47 0.87

XGraB 0.86 0.78 0.78 0.22 0.82 0.82 0.18 0.43 0.94

Voting 0.80 0.76 0.75 0.24 0.78 0.77 0.22 0.47 0.88

DLNN 0.81 0.76 0.76 0.24 0.79 0.78 0.21 0.46 0.88
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For the training dataset, the RF model shows an excellent and flawless prediction,
presented by maximum Se, Sp, Pr, Ac, AUC, and F1-scores (values = 1) and null FPR, MAE,
and RMSE scores (values = 0). The GraB, AdB, DT, XGraB, and DLNN models show very
high performance, indicated by Se, Sp, Pr, Ac, AUC, and F1-score values being above 0.80
and negligible FPR, MAE, and RMSE scores. For the MLP, SVM, KNN, and voting models,
the validation indicators show a high performance as presented by a minimum match value
of 0.7 (i.e., for values of Se, Sp, Pr, Ac, AUC, and F1-score) and a maximum gaps value of
0.44 (i.e., for values of FPR, MAE, and RMSE).

For the testing dataset, all of the applied models present a high to very high perfor-
mance. The Se values range from 0.87 for the AdB and 0.77 for the KNN, the Sp, Pr, Ac,
F1-score, FPR, MAE, and RMSE values are between 0.8 and 0.64, 0.8 and 0.67, 0.83 and 0.73,
0.83 and 0.73, 0.20 and 0.36, 0.17 and 0.28 and, 0.41 and 0.53, respectively, the maximum
values are all marked for the GraB model, and the minimal values are all marked for the
MLP model. The AUC-ROC ranges from 0.81 for the DT to 0.91 for the GraB.

3.4. Models’ Prioritization

Considering the variation in the models’ rankings relative to each performance metric,
the highest-performing model was selected using the Cf (Figure 11). The model prioritiza-
tion results indicate that, for the training dataset, the RF model is the best GWP predictive
model followed by the GraB model. In the case of the testing dataset, GraB and AdB are
the highest-performing models for the GWP prediction. In contrast, the MLP model is
classified as the lowest performing model for both cases.
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4. Discussion

In recent years, the combined effect of the rapidly increasing water needs and the
prolongation of drought periods requires effective and timely interventions that ensure
the sustainable planning and management of water resources. Nowadays, researchers
have experienced the benefits of AI technology, particularly in GWP mapping in different
areas over the world using several ML and DL algorithms and numerous influencing
geo-environmental factors. In this regard, due to the models’ variety, shallow models, a
bagging model, boosting models, a deep learning model, and a hybrid model were applied,
evaluated, and compared to provide the most efficient GWP map for its management.
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This section discusses in detail (i) the GWP-influencing factors and their importance,
(ii) the models’ performance and periodization, and (iii) the achievement of the used
methodology.

4.1. Importance of GWP-Influencing Factors

After the water withdrawal points’ field investigation and data collection, the first step
for GWP spatial prediction was the influencing factors dataset preparation. Amongst the
twenty-three prepared factors, the TRI, LS, and elevation have been eliminated according
to their collinearity with other factors that limits the prediction performance. On the
other hand, according to the MI, the most crucial factor is lithology, which is in line with
the results of Namous et al. [20], followed by the Q. Meanwhile the less key factor is
the FD. Additionally, rainfall, MRVBR, DD, slope, LULC, CS, NDVI, convergence, CF,
aspect, MRRTF, plan curvature, TWI, curvature, SPI, and profile curvature have presented
a considerable impact on the GWP, respectively. The importance accorded to lithology was
confirmed by several researchers given that geology has a major influence on the water
mobilization process; it directly controls groundwater recharge and storage of an area
depending on several criteria related to lithology, faulting, and karstification. In fact, areas
with higher porosity (rocks permeability and/or fractures) permit water infiltration and
provide pathways for water to flow into the subsurface [15]. Furthermore, it was described
by Díaz-Alcaide and Martínez-Santos [10] as the single most crucial factor for determining
groundwater occurrence. The Q was integrated for the first time on the GWP prediction
analysis. Indeed, it presents a high importance that confirms the interdependence of
groundwater and surface water [3]. In contrast to previous research, the FD was classified
as the less important factor. Considering the geomorphology of the studied area, the
findings are also in accordance with the predicted GWP maps (Figure 7). In fact, the
high and very high GWP classes are almost localized everywhere that the formations are
permeable, especially the alluvium, sand, and sandstone formation, which are characterized
by a thickness that can reach 30 m. Meanwhile, karstic limestone and the fissured rocks
are characterized by a high DF and therefore low GWP; this can be justified by the fact
that the fractured formation, especially in high reliefs, can be considered as groundwater
recharge areas. Accordingly, we fervently request further studies concerning groundwater
flow origin of recharge in the Toudgha Oasis.

4.2. Models’ Performance and Periodization

The examination of the training and validation datasets splitting indicates considerable
stability for the 70/30% division. In fact, it represents an essential part of selecting the
most adequate partition to achieve high performance. The models’ evaluation indicates
that all of the applied algorithms have a high to very high efficiency for GWP prediction,
despite a slight weakness being noted for the MLP. MLP’s weak performance is also
reported by previous studies in different fields, such as in the spatial prediction of a
landslide hazard by Hong et al. [44], in lithofacies prediction by Nwaila et al. [77], in
groundwater level prediction by Kombo et al. [60], in groundwater pollution risk mapping
by Ijlil et al. [68], etc.

According to the success rate, the RF model performed excellently, as is the usual in
other studies on city and urban scales [13] and at a large mountainous scale [20], followed
by the GraB model, which has outperformed the XGraB, unlike in the result of Park and
Kim (2021). Besides these points, the GraB and AdB show the most accurate prediction
rates. The low performance of other models can be directly related to the high value of the
tested prediction error indicators, such as the FPR, MAE, and RMSE. However, the spatial
variability of the erroneous predictions shows a clustered pattern and positive spatial
correlation in the prediction errors for all of the used models. Furthermore, according to
the Cf, the RF and GraB models are ranked as the most efficient models for the testing
and the training datasets, respectively. However, The RF rank has been lowered for the
testing dataset because of a slight decrease in the performance parameter values and an
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increase in the error indicators; this instability of the RF model has also been confirmed
by previous studies [23,78]. the DLNN is performs slightly poorer, and this result can
be related to the fact that deep learning algorithms require more training data than other
machine learning models [79]. According to the result, the GraB model is the most efficient
and stable model for the GWP spatial prediction in the present study. The performance of
the GraB model was also confirmed by Sahour et al. [29] for predicting the groundwater
salinity in a coastal aquifer. Overall, the boosted models (GraB, AdB, and XGraB) and
bagged model (RF) have presented more efficiency and stability than the deep learning
models, shallow models (i.e., MLP, DT, KNN, SVM), and their ensemble (i.e., voting). This
requires us to disregard shallow models and their ensembles and to use more boosted
models. Therefore, we strongly recommend future research to include ensemble-boosted
models in order to improve their performance.

4.3. Effectiveness of the Used Methodology

Regarding the used methodology, this work is in line with recent research [22,80,81]
that has highlighted the importance of ML-DL, RS, and GIS in spatial decision-making,
especially in the field of groundwater management, on account of their high and rapid
efficiency. It responds to the major importance of water resources management in arid oasis
areas with financial limitations and those undergoing socioeconomic growth. Furthermore,
the resulting tools conform to the application of the sixth and the thirteenth sustainable
development goals, which aim to guarantee sustainable water resources management and
climate change effect mitigation.

The GWP map predicted by the GraB algorithm has excellent performance and may
be used for groundwater management in the Toudgha Oasis; essentially, it can be used for
locating water monitoring points, i.e., piezometers, and can map the pumping prohibition
zones upstream of the Khettarats and springs. In addition, this map can be included
with the MCDM analysis in order to identify the potential area for artificial groundwater
recharge and/or the development of underground dams.

The achievement of this method depends on several parameters related to the input
dataset, as well as on the algorithm’s application and validation. Regarding the input
dataset, this work has integrated the maximum of the available spatial dataset of the study
area in addition to an extensive field investigation of the groundwater mobilization systems
inventory. Otherwise, the application and comparison of ten diverse models based on the
same dataset have provided a more reasonable model prioritization.

Therefore, as a limitation of this method, the resulting GWP maps may be changed for
every dataset integration and/or the application of novel models. Otherwise, the method
has focused more on the quantitative assessment of GWP; to this end, we recommend that
future research conducts assessments of this methodology in other areas with different
geo-environmental characteristics, with the integration of qualitative indicators, in order to
guarantee both water availability and usefulness.

5. Conclusions

This research adopts an alternative and efficient approach to select the outperforming
spatial GWP prediction model for an arid oasis area. In fact, distinct types of algorithms
(MLP, KNN, DT, SVM, voting, RF, AdB, GraB, XGraB, and DLNN) have been applied,
evaluated, and compared based on 442 inventoried water withdrawal points and twenty-
three geo-environmental factors. Among the latter, the lithology and Q factors have been
designated as the key influencing factors for the GWP, while the TRI, LS, and elevation were
eliminated from the analysis according to the multicollinearity test and MI importance.
The GWP spatial distribution demonstrates an approximately similar variation for the ten
produced maps, which have been confirmed by the geomorphological particularity of the
study area. Furthermore, the validation of the GWP maps was simultaneously tested with
the model’s evaluation using nine performance metrics (Se, Sp, Pr, Ac, AUC-ROC, F1-score,
FPR, MAE, and RMSE), where the findings depicted that all of the applied models have
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satisfied the validation standards for both the training and validation tests of the GWP
prediction. Nevertheless, water management needs to be based on the most advanced
and powerful techniques. Therefore, the models’ prioritization analysis has been applied.
The results demonstrate the outperforming of the GraB model (AUC training = 0.90, AUC
testing = 0.96) and accordingly the efficiency of the GWP map as predicted by this model.
The methodology developed in this study has generated a necessary ML-RS-GIS-based
tool for GWP mapping devoted to implementing suitable water resources protection and
management plans in arid oasis areas, and it could be adapted and applied in other regions
around the world.
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