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Abstract: Environmental pollution, global warming, energy consumption, and limited natural re-
sources are some key factors from which today’s built environment faces interrelated problems and
their management plays a vital role in sustainability. The building sector is involved in 35% of
global energy usage and 40% of energy related CO2 emissions. Application of bioactive elements
on buildings’ façades is a novel approach for solving the above-mentioned problems. Management
of some important factors such as thermal comfort, energy efficiency, wastewater treatment, and
CO2 capture is positively affected by bioactive façades because of their environmentally friendly
nature. They also have positive effects on global warming, pollution control, social wealth, and
sustainable development on a larger scale. The buildings integrated with photobioreactors (PBRs) can
meet their thermal needs due to thermal insulation, shading, solar collection, and light-to-biomass
conversion. Energy savings up to 30% are estimated to be met by PBR-integrated buildings due to
reduced heating, cooling, ventilation, and lighting loads. The above amount of energy saving results
in less CO2 emission. Moreover, the algae-integrated buildings can sequester CO2 with an average
sequestration rate of 5 g/ft2/day when optimum growing environments and operation modes are
implemented. This study is an overview of microalgae intervention and PBR-adapted buildings as
an innovative approach for energy efficiency in the built environment with regard to implemented or
speculative cases, pros and cons, challenges, and prospects.
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1. Introduction

The energy crisis, beginning in 1970s, and climate change due to the emission of green-
house gases (GHGs) have directed attention to renewable energy sources and their related
supporting policies [1,2]. The construction sector is among the major GHG producers
either during the construction process or during the energy use of buildings, especially
through air conditioning and ventilation. Energy consumption in the built industry has
increased in recent decades due to population growth, urbanization, and industrialization,
resulting in increased demand for energy derived from fossil fuels [3–5]. Apart from be-
ing energy intensive, this sector has drastically produced large amounts of GHGs due to
burning non-renewable resources along with waste landfilling [6]. Approximately, more
than 35% of global final energy use and nearly 40% of energy-related CO2 emissions are
attributed to the construction sector. It is expected that GHG emissions from buildings
will be doubled over the next 20 years; thus, designing more energy efficient buildings is
important to achieving a low carbon future [7–10]. Energy efficient buildings are “buildings
that need less energy with the precautions taken during the design phase, meet the energy
they need from renewable sources and make minimum emission by using the energy in
the most efficient way” [11,12]. Of the required stock for 2050, 87% is expected to have
already been built; therefore, concentrating on retrofitting can have a more significant effect
than new construction [13,14].
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Green building standards and rating systems for buildings, such as the American
LEED [15,16] and the British BREEAM [17], provide practical tools for designers with the
aim of achieving high quality architectural solutions on one hand, and making it easy for
consumers to identify product quality and encouraging the demand for green buildings on
the other hand [18]. Elements such as solar panels and small wind turbines are incorporated
in the next generation of buildings to generate local clean energy; however, they are not
able to supply 100% of the energy demand, and additional renewable technologies are
required to back up and supplement these systems [8,19]. The conversion of algal biomass
produced on buildings’ façades into bioenergy is a new approach to supplying the energy
required for a building’s need. Different forms of energy such as electricity, heat, and
biofuels are produced by conversion of biomass as a promising eco-friendly alternative
source of renewable energy. In 2014, it was claimed that bioenergy is no longer in transition
due to 88 GW worldwide energy production using biomass [20–22]. The “symbiosis”
between a building and a microalgae photobioreactor (PBR) has the potential to reduce
the consumption of fossil fuels by the building and consequently to reduce the carbon
footprint. This symbiosis is mutually beneficial for algae growth and building performance:
on the one hand, the high capital and operating costs of PBRs are reduced by integrating
buildings with PBRs; on the other hand, the thermal function of the building will also be
improved, reducing thermal loads and the energy and heating requirements of the building
through the conversion of algal biomass to biogas for use in the infrastructure, supplying
hot water and partially gaining electricity [11,23,24]. Aggravated urban warming and
the constant increase of energy use lead us to the intelligent utilization of energy and
improvements to its efficiency. Investigating data on temperature effect shows that the
energy consumption due to air-conditioning can be reduced up to 30–60% as a result of
insulation related to the stagnant air layer created by green walls [25–27]. Alongside the
energy saving resulting from increased thermal efficiency, it is claimed that PBR-integrated
buildings purify polluted air and wastewater, and consequently provide improved air
quality [11,28,29]. The PBR’s function includes dynamic shading, thermal insulation,
solar thermal collector, and biomass production. A balance between climates, building
space, window-to-wall ratio (WWR), aesthetics of microalgae growth, energy savings, and
occupants’ satisfaction should be considered in the design and placement of microalgae
enclosures. According to the expansion of renewable energy use, these buildings are
both more energy efficient and sustainable and can offer environmental, economic, and
commercial opportunities [23,24].

In this review, we explore the algae building technology (ABT) as an innovative
approach to energy efficiency in the built environment, refer to conceptual designs and
real-world examples of a microalgae system in the area of architecture interventions, and
discuss the advantages and disadvantages of buildings retrofitted with this technology.

2. Microalgae and Their Intervening Role in Buildings’ Design

Microalgae are photosynthetic microorganisms which convert water and CO2 into
organic compounds and oxygen using light energy. As the oldest resident of our planet,
they have an important role in building our atmosphere. Due to their fast growth rate and
high content of nutritional and bioactive compounds, they can be cultivated for various
applications in bioenergy, cosmetics, pharmaceutical, agricultural, and food industries.
Various factors including cultivation systems, the type of algal species, environmental
conditions, and algae–bacteria interaction can affect the biomass productivity of microalgae
and the biochemical composition. The algae theoretical efficiency of solar energy conversion
to biomass is 9%, which is at least three times higher than the amount related to C4 plants.
Microalgae are known as carbon mitigators due to their high capacity of CO2 sequestration
by uptaking 1.8 kg of CO2 per 1 kg of biomass. The decarbonization and oxygenation (more
than 75% of the oxygen needed is produced by microalgae) through photosynthesis could
be a cost-effective and sustainable way to address global environmental issues [30–33].
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Microalgae have a promising role in the bioremediation of anthropogenic pollutions
to air, soil, and water. Their environmental benefits consist of atmospheric decarbonation
through photosynthetic carbon capture, wastewater treatment through taking nutrients
and organic wastes from the wastewater, and soil decontamination through biosorption
and bioaccumulation of heavy metals. On the other hand, the use of agricultural land
with a limited area capacity and a limited capacity of fuel obtained from agricultural
products which form the basis of fuel products, makes algae more productive among other
types of biomasses [34–36].

There are different systems for microalgae cultivation, including an open cultivation
system, a closed cultivation system, or a hybrid of both. Open cultivation systems including
different configurations of open ponds have the advantages of low initial and operational
cost and low operational energy, but they need larger ground areas for light availability
and are more susceptible to contamination, water evaporation, and unfavorable weather
conditions. On the other hand, the closed cultivation systems, including different configu-
rations of PBRs, have overcome these limitations by minimizing the required space and
better controlling the growing conditions. However, they incur more costs and energy
consumption for installation, operation, and maintenance. It is reported that PBRs yield
13 times more productivity compared with open raceways. The feasibility study of a
microalgae-integrated system is vital for understanding the key cultivation technologies
and environmental growth parameters such as nutrients, pH, temperature, light intensity,
salinity, and carbon concentration, and also production conditions such as aeration, mixing,
dilution rate, and harvesting frequency [37–39].

Recently microalgae-integrated buildings have been considered by architects and
designers. The multifunctionality of microalgae, such as phycoremediation and the produc-
tion of biomass as feedstock, offers advantages for integrating microalgae system into urban
green buildings [40,41]. Microalgae can grow in different aquatic habitats and tolerate
a wide range of environmental conditions. They become a part of building materials or
service systems in a microalgae-integrated building. Due to their rapid growth (a key factor
of their superiority), microalgae can reach high densities and cover the façade in a short
time. They also can be cultivated all year round [25]. By remediating wastewater coupled
with capturing CO2, generating O2, and producing renewable energy potentials, they
benefit the building and the occupants. They also reduce the building energy consumption
due to providing effective shading in summer, solar heating in winter, and year-round
daylighting penetration. These multi-functionalities and multiple benefits have caused
various approaches to be introduced by architects, designers, and engineers for integrating
algal systems in different scales of the built environment [42]. Evaluating different types
of building envelope technologies in terms of two factors, namely, energy efficiency and
compliance with the building, shows that algae bioreactor façades are in the first place
in terms of energy efficiency. Biological energy generated in this system results in the
reduction of environmental pollution as well as high efficiency. On the other hand, in terms
of compatibility with architecture, the highest score goes to the algae bioreactor façade,
showing that the algae bioreactor façade, among building-interactive technologies, should
be considered a promising example [43].

3. Façade-Integrated Algae

The building-integrated microalgae cultivation system is an innovative technology for
high-performance adaptive architecture that offers multiple benefits, including sequestra-
tion of CO2 and production of O2 to reduce the air pollution, conversion of solar radiation
into heat and biomass, providing shading through changes in algal density, and creating
sound insulation. It can also make a dynamic exterior vision due to the color changes of
the algal culture [44]. Algae façade-integrated buildings as living designs are the result
of applying biomimicry in architecture design and planning; they their required energy
and water from their location and are adapted to their environment and climate. They
also do not pollute the environment. The responsiveness of the building’s skin to nat-
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ural factors including wind, rain, and sunlight, and vital functions including breathing,
carbon capture, and water consumptions, should be considered in the biodesign of such
buildings [45,46]. In algae façade-integrated buildings, the lifesaving sources of CO2 and
nutrients for microalgae growth are obtained from occupants and building operations. A
simulation study of PBR façade-integrated building showed a 13% reduction in CO2 level
compared to a standard building with 200 occupants [27,47]. The high concentration of CO2
produced by occupants’ respiration and nutrients from domestic wastewater increases the
biomass productivity. This symbiotic relation causes CO2 fixation, wastewater treatment,
and biomass production for various uses [42].

The microalgae façade is a patent-pending system under development by XTU Archi-
tects for many years. There are some conceptual designs or built examples of a microalgae
system in the area of architecture interventions. Table 1 summarizes some of these mi-
croalgae application in architecture interventions. Green Loop Tower (2011) is a project of
retrofitting old building enclosures with green technologies. It is a proposed building inter-
vention of the Marina City Tower where the parking deck and roof top are enclosed with
microalgae systems for the purpose of CO2 reduction, wastewater treatment, bioenergy
production, and net zero energy building (ZEB) [42,48]. Process Zero (2011) is a proposed
office retrofitting, speculated for the General Services Administration in Los Angeles, where
the building is enclosed with microalgae reactors with different densities depending on
open view provision and solar availability [42,49]. Algae BRA (2011) is another concept
proposal, speculated for a fashion company housing offices and commercial spaces. It is
a proposed office building installed with external and internal tubular PBRs, presenting
thermal regulation, passive cooling, decarbonation, biomass production, and flexible spatial
organization [42,50]. The FSMA Tower (2011) is a project researching the integration of
biological systems and skyscrapers. It is a speculative skyscraper enclosed with PBRs
dispersed across the vertical surface, supporting social interaction and environmental
benefits [42,51]. Algae Therapeia (2011) is a proposed research complex near the coastline,
enclosed with PBRs as an external environmental skin to filter light, heat, sound, and air. It
is a dome-shaped building, focusing on seawater and algae for medical, nutritional, and in-
dustrial usages [42,52]. UrbanLab (2012) is a speculative R&D office building enclosed with
plastic PBRs with the aim of developing the microalgae technology for biofuel production
along with wastewater treatment. The project will be implemented with the participation
of Ennesys, a French-based startup, and Origin Oil, a company dedicated to transforming
algae into biofuels in La Defense, France. Using approximately 10,000 m2 of bioreactor
panels, it is expected that the building will be capable of reducing water usage by 80%
along with an energy saving of 80% [42]. BIQ (Bio-Intelligent Quotien) house (2013) is a
real-world application of flat PBRs installed on a residential building with the purpose of
energy saving, carbon sequestration, and biomass production. The building is enclosed
by microalgae glass panels on two sides. The solar energy stored in the panel and the
grown algal biomass supply the renewable energy required for building operation. The
installation sequesters approximately 16 kg of CO2 per day with a biomass production
equivalent to 30 kWh/m2year and heat production of 150 kWh/m2year [13,42,53]. The
CSTB Prototype (2014) is a technology demonstration project including bioreactor curtain
walls installed on an office building in France and focusing on carbon sequestration and air
quality improvement. This project is the first real-world application since microalgae façade
experiments in 2009 experimenting with different configurations and density effects in
daylight penetration [42,54]. In Vivo (2016) is another project with the purpose of attracting
social attention and openness toward a sustainable city. It consists of three buildings; each
has a unique façade integrated with different biological systems and functions. One grows
microalgae for medical research with potential solar energy revival for heat supply and
domestic hot water. In Vivo is a design competition-winning project and should increase
the visual appeal of a building for advertising its environmental, economic, and social
benefits, leading to increased acceptance for general use [42,55]. French Dream Tower
(2018) is a speculative mixed-use project, combating glass towers’ environmental problems
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related to quick energy transmission and high energy consumption. It consists of towers
enclosed with flat bioreactors for regulating solar energy and thermal insulation, collect-
ing rainwater, and filtering outdoor air [42,56]. Algae Tower (2021) is an office tower in
Melbourne, Australia, whose façade elements can be adjusted to the optimal sun angle
to maximize shading and biomass production [45,57]. Microalgae Ivy (2021) is a patent-
pending project for low-performing windows retrofitting. Its full-scale prototype was
installed at the School of Architecture at the University of North Carolina (UNC), Charlotte.
It consists of a network of interlocking bioreactors, providing the possibility of cultivating
different strains for different uses and aesthetics. The prototype demonstration filled with
five strains (Chlorella, Chlorococcum, Haematococcus, Scenedesmus, and Spirulina) for energy
efficiency, biofuel production, and indoor air quality enhancement was able to sequester
CO2 produced by three occupants and output 500 g of biomass per day [42].

Table 1. Conceptual designs of a microalgae system in the area of architecture interventions.

Project Objective and Design Data Ref.

Green Loop Tower, 2011
Location: Chicago, Illinois, USA
Designer(s): Influx Studio
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Process Zero, 2011
Location: Los Angeles, California,
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PBR type: Vertical tube PBR
Building type: Retrofitted building
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Table 1. Cont.

Project Objective and Design Data Ref.

FSMA Tower, 2011
Location: London, England
Designer(s): Dave Edwards
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A speculative building proposal enclosed with
microalgae PBR focusing on transforming algae
into biofuels, coupled with wastewater treatment.
PBR type: Flat panel PBR
Building type: New building
PBR façade area: 100,000 ft2

Microalgae yield: 150 ton/year
Produced biodiesel: 70 ton/year

[42]

In Vivo, 2016
Location: Paris, France
Designer(s): XTU Architects
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A speculative building integrating a
microalgae-producing PBR bio-façade for medical
research. The heat collected by the PBRs is used
for domestic hot water and heating.
PBR type: Flat panel PBR
Building type: New building
PBR area: 100,000 ft2 (932 m2)

[55,59]

French Dream Tower, 2018
Location: Hangzhou, China
Designer(s): XTU Architects
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The towers enclosed with PBRs for regulating
solar energy and thermal insulation, acoustic
insulation, and reducing the building’s carbon
footprint by absorbing CO2 and releasing oxygen.
PBR type: Flat panel PBR
Building type: New building

[56,59]
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Table 1. Cont.

Project Objective and Design Data Ref.

Algae Tower, 2020
Location: Melbourne, Australia
Designer(s): UOOU Studio
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The façade system acts as a large-scale PBR
transforming a classic façade shading system in
an “artificial-leaves-canopy”. The canopy protects
the building from direct solar radiation, generates
energy, and absorbs CO2.
PBR type: Artificial-leaves-canopy

[57]

By using the microalgae as the primary building envelope, the exterior view is ever-
changing due to the microalgae grown according to the changes in natural light, air flow,
and other environmental factors. For indoor applications, these systems can be effective in
good interior microclimates. The microalgae system can also be part of the building service
system such as HVAC (heating, ventilation, and air conditioning). It can be concluded that
the presence of microalgae in our living and working environments can help occupants to
be more productive and healthier and enhance their well-being. However, there are some
challenges that make concepts difficult to put into practice, including technical requirements
for creating bioenergy infrastructure, CO2 provision, and high initial cost. There should
be an onsite system to supply CO2, light, water, and nutrients along with harvesting
microalgae and extracting bioactive compounds. In addition, there is a requirement to
equip the algae-powered building with its own biogas plant to generate its own electricity,
which may be difficult to achieve, particularly on a residential scale. The integration of
the biorefinery system should also be in agreement with buildings’ legal regulations that,
accordingly, may require new regulations for building-integrated PBRs. Providing CO2
and integration of capturing, sequestering, and storing systems into buildings could also
be a big challenge. Alongside the aforementioned problems, there are also some important
factors that should be pointed out for expanding the design of PBRs on a building scale;
these include lightweight and durable materials at reasonable prices, easy maintenance,
and balanced cost and payoff [29,54].

4. Algae-Powered Buildings: Energy Efficiency and Environmental Performance

One of the building energy efficiency indicators is energy use intensity (EUI), which
explains the level of building energy performance and is determined by dividing total
annual energy use by building. Comparing different buildings across energy efficiency
is conducted according to this index. A lower EUI indicates lower usage of energy or
higher building efficiency. An average primary EUI is around 120 kBtu/ft2/year and
200 kBtu/ft2/year for residential and commercial stocks, respectively [42]. Space heat-
ing and cooling, lighting, water heating, and ventilation consume more than half of the
building’s energy usage. Major energy loss has been related to poor building envelope
construction and inefficient HVAC systems. Other factors affecting energy consumption
include the geometry of the building, energy characteristics of opaque walls and windows,
WWR, and microclimate control such as shading, trees, and landscape. Indoor air quality
is also affected by building enclosure and some other factors such as off-gassing interior
materials, molds/bacteria due to leaks, or lack of ventilation. Energy management in
general requires more efficient use of energy, water, and air quality protection, and wastes
and pollution control. Energy interventions play an important role in reducing pollutant
emissions and energy bills. The energy cost savings due to energy efficiency and on-site
energy production can improve living affordability. Integrating climate-responsive design
strategies with energy-efficient active systems and renewable energy generation typically
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increases upfront cost. However, it can lead to faster economic payoff with operational
energy savings [42].

The Paris Agreement aims for GHG reduction in the world. Public acceptance to im-
prove building energy efficiency is intensified by greater awareness of climate emergency
and economic returns. However, to deal with the climate crisis, both mandatory and volun-
tary implementations are required. New York City obligates carbon neutrality by 2050 and
demands improvement of buildings energy efficiency up to 23% above 2012 levels by 2030.
It is targeted to reach 40% GHG reduction by 2025 and 50% by 2030 [42]. At the voluntary
level, over 65,000 Passive House (PH) (a voluntary standard for energy efficiency in a
building which reduces the building’s ecological footprint) buildings are certified around
the world, starting in Germany in 1990s. The performance requirements are 15 kWh/m2 of
each heating and cooling demand focus with maximum 60 kWh/m2/year of renewable
primary energy demand (heating, hot water, and domestic electricity use) [42,60,61]. To
meet the energy requirements, there are strategies such as high insulative building enclo-
sures, energy-efficient windows, thermal breaks, and air tightness, which are related to
high-performance building enclosures, and ventilation heat recovery, which is related to
energy-efficient HVAC systems.

Buildings supplying their required energy (heat and electricity) from microalgae
(Figure 1) can serve as an alternative building system. The mechanism of the process is as
follows: first, water containing nutrients is being filled in the façade PBRs, where daylight
and CO2 are converted to algal biomass through photosynthesis; secondly, the biomass
and heat generated by the façade element are transferred through a closed loop system
to the plant room, where both forms of energy are exchanged by a separator and a heat
exchanger, respectively. For the supply of hot water and heating the building, a hot water
pump is used to adjust the temperature levels of the generated heat [62,63].
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Figure 1. Schematic of algae-powered buildings.

Microalgae enclosures buildings not only generate clean energy but also play a role
in GHG mitigation and can be considered as a carbon-neutral power source of energy.
Alongside the positive environmental effects, they also have financial profitability due to
the reduction of energy and operating costs and taxes which consequently cause lower
life cycle costs and increased rental costs without decreasing occupancy [45,64]. These
systems are also of interest in the field of net zero energy because of their effectiveness in
improving building energy efficiency, renewable power generation, and good air quality.
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Resulting in better temperature control, PBR façade-integrated buildings can reduce en-
ergy consumption by more than 33% in terms of fuel consumption and 10% in terms of
electricity consumption [25,29,54]. There is a micro-community integrated with microalgae
systems which restores wastes from buildings and converts them into operational valuable
resources; they can achieve off-grid power and water independency along with polluted
air decarbonation and wastewater treatment [42,65,66]. In 2013, an algae-powered building
was implemented in Hamburg, Germany. Since then, there have not been any implemented
real-world applications other than small-scale experiments for testing feasibility [42].

Energy savings and occupant satisfaction in algae-powered buildings is enhanced
by geometric configuration along with the cell concentration and color changes of mi-
croalgae due to environmental effects. Efficient photosynthetic performance of microalgae
enclosures lead to building energy savings by reducing heating, cooling, and artificial
light demand, along with CO2 reduction and indoor air quality improvement. The One
World Trade Center in New York City, a 94-story skyscraper enclosed with microalgae
windows, was investigated as a study building for estimating the energy savings. The
computer simulation indicated that the building would reduce energy usage (heating,
cooling, lighting, and ventilation load) by an average 20% annually and save over USD
1 million a year in electricity costs with a seven-year return on investment (ROI) [42,67].
The simulation results for estimating annual EUI of commercial and microalgae buildings
in different climate zones shows an average 20% energy saving that can be achieved from
microalgae window buildings by reducing heating, cooling, ventilation, and lighting loads.
This energy savings also results in an average reduction of 6000 tons CO2. Alongside the
carbon reduction due to energy savings, the study buildings can sequester over 7000 tons
of CO2 annually using a CO2 sequestration rate of 5 g/ft2 [42].

There are different parameters including panel size, orientation, and type of microalgae
which affect the thermal performance of the PBR façades. Some studies concentrated on the
U-value of the flat PBRs show that the air layer thickness has the greatest effect on providing
effective insulation. The thickness of PBR material and PBR depth are also effective,
respectively [11,36,68]. Other studies show that the U-value is affected by the growing algal
medium inside the PBR due to the lower heat transmittance of the algae zone compared
with the vision zone. Thus, algae culture density is another important parameter on thermal
insulation [69]. The density of algae is also effective in shading, and the more concentrated
culture within the PBR has more prevention against solar and light penetration into the
building. In addition, there are other factors such as climatic conditions, orientation, and
geography which affects the shading. Comparing three different façade systems as shading
elements, Martukusumo et al. showed that PBRs on the west façade had an effective role in
protection from excessive solar radiation [70]. As façade, PBRs act as solar collectors, and
the heat generated in PBRs is also affected by the above-mentioned factors. The evaluations
conducted by Negev et al. showed that as well as the thickness of the unit and the algal
concentration, type of algae is also a significant factor [8]. They observed that Chlorella
vulgaris has less light and heat transmission compared to Chlamydomonas reinnhardtii. The
produced algal biomass should be stored and then used for heat and energy generation.
The biomass productivity is affected by different factors including climatic conditions of the
building location, PBR material, PBR size and orientation, the intensity of solar radiation,
and the algae type. Studies show that the biomass productivity in PBRs with 45◦ inclination
changes through the year, while it is constant in vertical PBRs [24]. A 28.7% increase in
productivity was also observed by using C. vulgaris at an inclination of 75◦ compared
to Dunaliella tertiolecta at 90◦. Optimization of the mentioned factors would increase the
energy efficiency of PBR-integrated buildings. Table 2 summarizes the parameters affecting
the energy efficiency of the façade integrated PBRs from different aspects and Table 3
summarizes the value of influential parameters affecting the performance of PBR façades
according to different studies.
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Table 2. Effective parameters for increasing energy efficiency in PBR-integrated buildings.

Influencing Factor Influential Factors

Thermal insulation

PBR material
PBR size
Building WWR
Algae type
Culture medium density

Shading

PBR size
Orientation
Surface to volume ratio
Culture medium density

Biomass production

Regional climatic conditions
Algae type
Surface to volume ratio
Inclination degree
Orientation
Material thickness
Building aspect ratio

For adopting algae façades by building sector, environmental, technical, political,
economic, and the social performance of practically implemented algae-integrated build-
ings should be evaluated in decision-making process. In a common set of buildings, the
performance assessment seems difficult before the systems are operated [66,71]. There-
fore, for implementing algae façades in buildings, the requirements should be defined
and investigated. In a construction project, sustainable design considerations should be
conducted as early as possible to make the process time- and cost-efficient [72]. System
dynamics (SD) support integrated decision-making and its models are applied for consid-
ering repetition and feedback processes. Therefore, SD models can support the decision of
applying algae façade systems in the building design and also the multiple subsystems and
food–energy–water (FEW) feedback processes [73]. In a study conducted by Chang et al., a
framework based on building information modeling (BIM) is presented which helps define
the critical factors when applying algae façades in buildings, analyzes energy and waste
streams through an SD model, and evaluates the performance considering different build-
ing contexts [66]. This framework can be applied to determine feasibility when the algae
façade is integrated in a building by running the BIM-integrated SD model simulation.

Table 3. Influential factors affecting the performance of PBR façades.

Recommended PBR Design Parameters

PBRs Type Vertical Bubble
Column Vertical Airlift PBR Flat Panels Tubular PBR Ref.

Material

Glass, Low Density
Polyethylene
(LDPE), PVC,
PMMA (poly
methyl
methacrylate)

Glass, LDPE, PVC,
PMMA

Glass, Plexiglas,
Polycarbonate, PVC,
PMMA,
Polyethylene,
Plastic bags

Polypropylene
acrylic,
Polyvinylchloride,
PVC, PMMA, LDPE

[74–77]

Thickness/Diameter(D) D < 20 cm D < 20 cm D < 7 cm 5–9 cm [42,76,78]
Height/length (H) H < 4 m H < 4 m 1.5 m 100–150 m [42,76,78,79]PBR dimensions
Width - - 10 cm - [78]

Surface to volume ratio (S/V) 2–8 m−1 2–8 m−1 20–80 m−1 up to 100 m−1 [38,77,79,80]

Type of Mixing
Via gassing
(Bubbling of
CO2-enriched air)

Via gassing
Circulation flow,
Peristaltic pumps
and Via gassing

Circulation flow,
Peristaltic pumps [38,74,77,78]

Oxygen mass transfer coefficient High High Low Low [38]
Risk of photo-inhibition Low Low Medium High [38]
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Table 3. Cont.

Recommended PBR Design Parameters

PBRs Type Vertical Bubble
Column Vertical Airlift PBR Flat Panels Tubular PBR Ref.

Risk of self-shading of cells Medium–High Medium–High Low (at thin panel
thickness)

Low (at thin tube
diameter) [38]

Risk of bio-fouling Low Low High High [38]
Investment costs Low Medium Medium–High Medium–High [38]
Space occupation Low Low Medium Medium [38]
O2 -release Easy Easy Difficult Very difficult [38]
Scalability Difficult Difficult Very easy Very easy [38]

Advantages

Compact, good mixing with low shear stress,
low energy consumption, easy to sterilize,
good for immobilization of algae, reduced
photo-inhibition and photo-oxidation

Suitable for outdoor
cultures, good light
path, high biomass
productivities, easy
to clean up, low
power consumption
and shear stress,
easy temperature
control, low
operating cost

Suitable for outdoor
cultures, good
biomass
productivities,
improvement of air
residence time

[74,81]

Limitations

Construction requires sophisticated
materials, stress to algal cultures, decrease of
illumination surface area upon scale-up,
high cleaning cost

Scale-up requires
many
compartments,
difficulty in
controlling culture
temperature, some
degree of wall
growth, possibility
of hydrodynamic
stress to some algal
strains

Gradients of pH,
dissolved CO2 and
O2 gradients,
fouling, some
degree of wall
growth, photo
limitation, high
capital, and
operating costs

[74,81]

Recommended Operational and Environmental Parameters

pH

Chlorella 7.5–8 [42,82,83]
Spirulina 9 [42,84]
Chlorococcum 8.0–8.5 [42,81,84]
Haematococcus 7 [42]
Macro nutrients: Phosphorus and Nitrogen [82]Nutrients Trace metals: Fe, Mg, B, Mo, K, Co, Zn, Mb

Temperature 20–30 ◦C [42,81,82]
Light intensity 5000–10,000 Lux (100–200 µmol/(m2 × s)) [42,82]
Liquid velocity 20–50 cm×s–1 [42,81]
Partial pressure of CO2 in gas phase 0.2 kPa (0.076 mol × m–3) [80,81]
Aeration (bubble size) 1–7 mm [42]

5. Real-World Examples of ABT

There are a few real-world applications of algae buildings, summarized in Table 4.
The world’s first PBR façade project is the BIQ building, which is a part of the Interna-
tional Building Exhibition in Hamburg. BIQ consists of a penthouse plus 15 apartments
located on four floors. The integrated PBR system are installed on the southwest and south-
east faces of the building, consists of 129 flat panel glass bioreactors with dimensions of
2.5 × 0.7 × 0.08 m, with capacity of 150 kWh/m2 and 30 kWh/m2of thermal energy and
bioenergy production, respectively. The transformation efficiencies of the thermal energy
and bioenergy are determined to be 38% (compared with a typical solar thermal source
which is 60–65%) and 10% (compared with a conventional photovoltaic (PV) system which
is 12–15%), respectively. The produced biomass is harvested in an energy management
center where the generated heat is recovered by a heat exchanger to be reintroduced to
the system or stored in an underground aquifer. Methane is generated by conversion of
approximately 80% of the harvested biomass in an outdoor plant, and is returned to the
building for heat and electricity generation [11,13,85,86]. According to Arup, the imple-
mented system on the Hamburg building has high efficiency for growing the algal culture
and requires minimal maintenance [45,53,59,87,88]. Currently, the overall energy needs of
the building are reduced by 50%, and 100% is expected to be achieved if solar panels are
used to power the pumps and heat exchangers [62].



Sustainability 2023, 15, 3729 12 of 21

Table 4. Real-world examples of ABT.

Project Location Year Designer(s) Objective Data Ref.
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The project aims to demonstrate the 
economic and technical feasibility of 
simultaneous microalgae production 
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PBR type: Flat panel PBR 
PBR façade area: 300 m2 

Biomass production: 0.7–1 ton/year 
Sequestered CO2: 1–1.8 ton/ year 

[36,89] 

BIQ Building Hamburg, Germany 2013 Splitterwerk
Architects

The first and most well-known actual
enclosed PBR building that uses algal
biomass to produce heat and energy,
control light and provide shade,
sequestrate carbon, and improve
building energy savings.

PBR Type: Flat panel (24-L capacity)
Number of PBR modules: 129
(2.5 × 0.7 m)
PBR façade area: 2500 ft2

Sequestered CO2: 16 kg/day
Biomass production: 30 kWh/m2/year
Heat production: 150 kWh/m2/year
Cost of PBR’s installation: USD 2300 to
USD 3200

[45,53,59,88]
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CSTB prototype Champs-sur-Marne,
France 2014 XTU Architects

Microalgae curtain wall system that is
integrated with PBRs with the aim of
growing biomass, protecting the
apartments from both sun and noise,
carbon sequestration, and air quality
improvement.

PBR type: Flat panel PBR
PBR façade area: 200 m2 [54]
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6. Algae-Powered Buildings: Drivers and Barriers 
Although the algae-powered buildings have multiple advantages, this technology is 

still in its early life and there are many technological, economic, environmental, social, 
and regulatory issues which need to be addressed before wide implementation of these 
systems. Some major challenges include long-term performance in energy efficiency and 
effective CO2 sequestration, thermal and acoustic insulation, the indoor color controlling 
due to variation of algae culture density, algae medium discoloring, algae panels’ dura-
bility against climate changes, the need for maintenance, construction, and maintenance 
costs, and negative environmental effects such as potential toxins and odor produced by 
harmful algae [29,44,71,93]. Of course, the concern about the high cost can be alleviated 
due to the long-term benefits. Table 5 summarizes the algae-powered buildings pros and 
cons. Cost is the main barrier to the adoption of the algae system. The real-world ABT 
buildings are few and there is an insufficient track record of green performance and lon-
gevity in real-world applications. The ROI is also unknown and there is a need to be 
within the lifecycle of 25 years [14]. However, this technology provides the possibility of 
enjoying the benefits of a low-carbon economy. Energy savings up to 30% in heating, cool-
ing, lighting, and ventilation load can be economically attractive. The scale of installation 
is effective in making the algae building economically viable. Larger installation may be 
more economically viable. Moreover, the possible revenue from the sale of biomass or 
high-value bioproducts, and use of the building waste, may offset the energy costs 
[14,42,94]. Environmentally, there are clear gains due to the reduction of energy consump-
tion and energy efficiency, onsite production of biomass, generation solar thermal energy, 
biofuel production, and wastewater treatment. Potential daily productivity is 1–5 g/ft2/day 
when optimum growing environments and operation modes are implemented. The adop-
tion of this technology leads to the reduction of GHG emissions; however, there are con-
cerns about the overall carbon footprint. Using the maximum growth rate, a medium-size 
office building (100 feet × 100 feet × 5 stories (65-feet tall)) retrofitted with microalgae en-
velopes can sequester 17–85 metric tons of CO2, produce 10–50 metric tons of dry biomass, 
and 1400–7000 gallons of biofuel. Using the commercial rate of carbon removal in the 
range of USD 500 to USD 1690 per ton of CO2, the cost savings according to this case study 
could be up to USD 145,000 per year [14,42,95]. Microalgae based wastewater treatment is 
also of interest. Combined with wastewater treatment processes, algal culture efficiency 
in removing phosphorous and nitrogen is in the range of 80–100% [42]. However, there 

PhotoSynthetica Dublin, Ireland 2018 ecoLogicStudio
The curtains capture CO2 from the
atmosphere, store is via algae and
transform into reusable biomass.

PBR type: Curtain module
Sequestered CO2: 1 kg/day
Number of PBR modules: 16 (2 × 7 m)

[90,91]
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Although the algae-powered buildings have multiple advantages, this technology is 

still in its early life and there are many technological, economic, environmental, social, 
and regulatory issues which need to be addressed before wide implementation of these 
systems. Some major challenges include long-term performance in energy efficiency and 
effective CO2 sequestration, thermal and acoustic insulation, the indoor color controlling 
due to variation of algae culture density, algae medium discoloring, algae panels’ dura-
bility against climate changes, the need for maintenance, construction, and maintenance 
costs, and negative environmental effects such as potential toxins and odor produced by 
harmful algae [29,44,71,93]. Of course, the concern about the high cost can be alleviated 
due to the long-term benefits. Table 5 summarizes the algae-powered buildings pros and 
cons. Cost is the main barrier to the adoption of the algae system. The real-world ABT 
buildings are few and there is an insufficient track record of green performance and lon-
gevity in real-world applications. The ROI is also unknown and there is a need to be 
within the lifecycle of 25 years [14]. However, this technology provides the possibility of 
enjoying the benefits of a low-carbon economy. Energy savings up to 30% in heating, cool-
ing, lighting, and ventilation load can be economically attractive. The scale of installation 
is effective in making the algae building economically viable. Larger installation may be 
more economically viable. Moreover, the possible revenue from the sale of biomass or 
high-value bioproducts, and use of the building waste, may offset the energy costs 
[14,42,94]. Environmentally, there are clear gains due to the reduction of energy consump-
tion and energy efficiency, onsite production of biomass, generation solar thermal energy, 
biofuel production, and wastewater treatment. Potential daily productivity is 1–5 g/ft2/day 
when optimum growing environments and operation modes are implemented. The adop-
tion of this technology leads to the reduction of GHG emissions; however, there are con-
cerns about the overall carbon footprint. Using the maximum growth rate, a medium-size 
office building (100 feet × 100 feet × 5 stories (65-feet tall)) retrofitted with microalgae en-
velopes can sequester 17–85 metric tons of CO2, produce 10–50 metric tons of dry biomass, 
and 1400–7000 gallons of biofuel. Using the commercial rate of carbon removal in the 
range of USD 500 to USD 1690 per ton of CO2, the cost savings according to this case study 
could be up to USD 145,000 per year [14,42,95]. Microalgae based wastewater treatment is 
also of interest. Combined with wastewater treatment processes, algal culture efficiency 
in removing phosphorous and nitrogen is in the range of 80–100% [42]. However, there 

AirBubble Warsaw, Poland 2018 ecoLogicStudio

The world’s first biotechnological
playground integrated with
air-purifying microalgae. The white
bubbling noise of the algae gardening
system masks the surrounding urban
noise to provide a calming atmosphere
in which to play and interact.

PBR type: Glass algae reactors
Number of PBR modules: 52
Total volume of microalgae: 520 L
Flow of polluted air: 200 L/min

[92]
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more economically viable. Moreover, the possible revenue from the sale of biomass or 
high-value bioproducts, and use of the building waste, may offset the energy costs 
[14,42,94]. Environmentally, there are clear gains due to the reduction of energy consump-
tion and energy efficiency, onsite production of biomass, generation solar thermal energy, 
biofuel production, and wastewater treatment. Potential daily productivity is 1–5 g/ft2/day 
when optimum growing environments and operation modes are implemented. The adop-
tion of this technology leads to the reduction of GHG emissions; however, there are con-
cerns about the overall carbon footprint. Using the maximum growth rate, a medium-size 
office building (100 feet × 100 feet × 5 stories (65-feet tall)) retrofitted with microalgae en-
velopes can sequester 17–85 metric tons of CO2, produce 10–50 metric tons of dry biomass, 
and 1400–7000 gallons of biofuel. Using the commercial rate of carbon removal in the 
range of USD 500 to USD 1690 per ton of CO2, the cost savings according to this case study 
could be up to USD 145,000 per year [14,42,95]. Microalgae based wastewater treatment is 
also of interest. Combined with wastewater treatment processes, algal culture efficiency 
in removing phosphorous and nitrogen is in the range of 80–100% [42]. However, there 

Microalgae Ivy Charlotte, NC, USA 2021 EcoClosure + UNC
Charlotte

A full-scale prototype to retrofit
low-performing window for biomass
production and CO2 reduction.

Full-scale prototype dimension:
(8 × 12 feet)
Biomass production: 200 kg/year

[42]
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The first curtain wall PBR prototypes were constructed by a French consortium in the
University of Nantes, which shares the PBR expenses via an efficient building integration
through a symbiosis of thermal energy, light quality, and air quality [54]. The CSTB
prototype includes a 200 m2 PBR curtain wall located at CSTB (Scientific and Technical
Centre for Building) site in Champs-sur-Marne, a town slightly east of Paris, France.
Built on microalgae façade experience since 2009, this project became the first technology
demonstration installed in a real-world application, testing different configurations and
density effects on daylight penetration. The project capitalizes on high growth rate and
superior carbon sequestration, in which 1 m3 of microalgae absorbs the same amount of
carbon dioxide as 80–100 trees. The operation and monitoring system helps the year-round
algae growth, and such technological demonstrations help raise awareness of its possibility
for benefiting human and built environments [42,54].

SYMBIO2 is another project in France, implemented in Nantes. It integrates a 300 m2

biofaçade in a waste processing plant for simultaneous microalgae production (0.7–1 ton/year)
and partial treatment of flue gas (CO2 biofixation: 1–1.8 ton/year). It is proposed that the
economic and technical feasibility of this new approach for the production of microalgae be
demonstrated by this project. The final interest of this concept will be the result of mutual
benefits achieved between the buildings and the needs of microalgae; thus, optimization of
the symbiosis is critical here [36,89].

Urban Morphogenesis Lab—UCL and Synthetic Landscapes Lab—University of Inns-
bruck, in collaboration with ecoLogicStudio, a London-based architecture and urban design
studio, presented PhotoSynthetica in Dublin during the Climate Innovation Summit, 2018.
PhotoSynthetica is a photosynthetic building cladding system which removes CO2 and
pollutants from the atmosphere and produces a valuable food resource in the form of algae,
using the algal power. It shows how biotechnology integration with our cities helps to
achieve carbon neutrality. Conceived as an “urban curtain”, the system captures approxi-
mately one kilogram of CO2 per day, equivalent to that of 20 large trees. The installation
on the Irish Revenue and Custom building in Dublin contains 16 custom-made bioplastic
containers (2 × 7 m), each of which functions as a PBR. The modules are designed digitally
to utilize daylight for feeding the algal cultures and release luminescent shades at night
which is very scenic. CO2 molecules and air pollutants in the inlet air introduced at the bot-
tom of the biofaçade are captured and stored by the algae and grow into reusable biomass
while air bubbles naturally raise through the watery medium within the bioplastic PBRs.
The harvested biomass can be employed for the production of bioplastic raw material that
constitutes the main building material of the PBRs. To culminate the process, freshly photo-
synthesized oxygen is released at the top of each façade unit into the urban microclimate.
In order to hold the carbon for as long as possible, the PBRs are designed in the serpentine
scheme so that the algae can process it. As in other ecoLogicStudio projects, the curtain is a
form of biomimetic, a design that copies structures and processes from nature [90,91].

AirBubble, a real urban algae greenhouse, invents a new architectural typology
and demonstrates the first biotechnological playground in the world integrated with
air-purifying microalgae. It consists of a cylindrical wooden structure wrapped in an
ethylene tetrafluoroethylene (ETFE) membrane, protecting 52 large glass algae reactors.
The reactors are filled with 520 L of Chlorella sp. algae culture that can filter 200 L/min of
polluted air. The algae actively eat the pollutant molecules, such as carbon dioxide, and
then release fresh clean oxygen. The equipment used in this space, such as ropes, foot
pumps, and bouncy spheres, makes it possible to use it both as a playground and as an
outdoor classroom. The surrounding urban noise is masked by the white bubbling noise of
the algae gardening system. As a result, a calming atmosphere is provided in which to play
and interact. The architectural morphology of the playground structure is also effective in
improving the filtering process. The air circulation and natural ventilation is stimulated by
the inverted conical roof membrane, which, in turn, keeps the play area clean. This project,
as a real bubble of clean air, creates a purified microclimate for children to play in in the
center of Warsaw, Poland, one of the most polluted cities in Europe [92].
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The air quality index (AQI) for six main pollutants, namely, fine particulate PM2.5 and
PM10, ground level ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon
monoxide (CO), are compared through real-time measurements by use of the monitoring
system which is integrated with urban air pollution sensors and is connected to a data
processing platform. AirBubble is able to absorb nitrogen and the particulate matter in
the air up to 97% and 75%, respectively. In May 2021, PM2.5 concentrations within the
playground had fallen well within the World Health Organization’s (WHO) recommended
range (green zone, AQI below 20), with the peak drop rate of 83%. To verify these promising
achievements over a longer period of time, the monitoring phase was continued throughout
the summer and the autumn, under different climatic conditions and patterns of use. Over
these few months, AirBubble served as a test bed of biotechnology application in tackling
air pollution and reducing its negative effects on children’s health [92].

Microalgae IVY is a patent-pending technology for retrofitting low-performing win-
dows. The system consists of a network of interlocking bioreactors and allows the cultiva-
tion of different strains for multi-functional use and aesthetics. Commercial windows are
responsible for more than half of a building’s energy consumption and emission. The pro-
totype was developed as an alternative to energy-efficient retrofitting for low-performing
windows. A full-scale prototype (8 feet tall by 12 feet wide) was developed and installed
at the School of Architecture at the University of North Carolina, Charlotte. Five strains
(Chlorella, Chlorococcum, Haematococcus, Scenedesmus, and Spirulina) were cultivated in the
system using a semi-continuous production mode. Their biological performance and envi-
ronmental benefits (e.g., biomass production, CO2 reduction potentials) were monitored
and measured using various environmental sensors and biological measuring tools. By
utilizing 26 valves, the microalgae can easily be transported and extracted once the microal-
gae are ready for harvesting. The system was able to sequester CO2 produced by three
occupants and output 500 g of biomass per day (~200 kg of biomass per year) [42].

6. Algae-Powered Buildings: Drivers and Barriers

Although the algae-powered buildings have multiple advantages, this technology
is still in its early life and there are many technological, economic, environmental, social,
and regulatory issues which need to be addressed before wide implementation of these
systems. Some major challenges include long-term performance in energy efficiency and
effective CO2 sequestration, thermal and acoustic insulation, the indoor color controlling
due to variation of algae culture density, algae medium discoloring, algae panels’ durability
against climate changes, the need for maintenance, construction, and maintenance costs,
and negative environmental effects such as potential toxins and odor produced by harmful
algae [29,44,71,93]. Of course, the concern about the high cost can be alleviated due to
the long-term benefits. Table 5 summarizes the algae-powered buildings pros and cons.
Cost is the main barrier to the adoption of the algae system. The real-world ABT buildings
are few and there is an insufficient track record of green performance and longevity in
real-world applications. The ROI is also unknown and there is a need to be within the
lifecycle of 25 years [14]. However, this technology provides the possibility of enjoying
the benefits of a low-carbon economy. Energy savings up to 30% in heating, cooling,
lighting, and ventilation load can be economically attractive. The scale of installation is
effective in making the algae building economically viable. Larger installation may be
more economically viable. Moreover, the possible revenue from the sale of biomass or high-
value bioproducts, and use of the building waste, may offset the energy costs [14,42,94].
Environmentally, there are clear gains due to the reduction of energy consumption and
energy efficiency, onsite production of biomass, generation solar thermal energy, biofuel
production, and wastewater treatment. Potential daily productivity is 1–5 g/ft2/day when
optimum growing environments and operation modes are implemented. The adoption
of this technology leads to the reduction of GHG emissions; however, there are concerns
about the overall carbon footprint. Using the maximum growth rate, a medium-size office
building (100 feet × 100 feet × 5 stories (65-feet tall)) retrofitted with microalgae envelopes
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can sequester 17–85 metric tons of CO2, produce 10–50 metric tons of dry biomass, and
1400–7000 gallons of biofuel. Using the commercial rate of carbon removal in the range of
USD 500 to USD 1690 per ton of CO2, the cost savings according to this case study could
be up to USD 145,000 per year [14,42,95]. Microalgae based wastewater treatment is also
of interest. Combined with wastewater treatment processes, algal culture efficiency in
removing phosphorous and nitrogen is in the range of 80–100% [42]. However, there are
considerations about contamination caused by some algae species which contain toxins or
generate volatile organic compounds (VOCs) which are harmful to human health [14,96].
From the social aspect, this technology is in harmony with nature and can cause increased
health and well-being due to its environmentally positive impacts, but there are also
concerns about potential health effects caused by damage or leakage and the need to
manage this risk. For large-scale production, educating and informing a wider community
about this technology is therefore very important [14,42,71]. There are also technological
issues, such as cleaning and periodic replacement of glazing panels and pipes, which arise
over production rates. The durability and lifespan of the technology is unknown, and
maintenance may be onerous [14,71]. At all stages of the development process, algae panel
information and design guidelines are required. Generally, the technological issues are
summed up as “complex” due to the novelty of the technology. It should be noted that all
identified issues need further research and experimentation, and with the development
and advancement of technology, they will be fixed in the future.

Table 5. Advantages and disadvantages of ABT.

Advantages

â

Energy savings due to promoting natural cooling process, improving thermal
insulation capacity, transmitting natural light; inside the building, and
providing shades;

â Capturing airborne pollutants and reducing noise;
â Reducing CO2 levels and enjoying the benefits of low-carbon economy;
â Providing aesthetic variation and creating visual interest;
â Production of biofuels and other high-value bio-products;
â Wastewater treatment.

Disadvantages

â High costs;
â Health and safety concerns due to odors and toxins may produce by algae;
â Requiring highly efficient and specialized maintenance;
â Unknown durability of technology and long ROI;
â Guidelines needed;
â Technology complexity.

7. The Future of PBR-Integrated Buildings

Although the technology of algae-powered buildings is still a relatively new field, it is
possible to achieve zero emission buildings, environmental protection, and improved life
quality through the algae integrated façades. Algal façades can be integrated in a variety
of buildings, especially those which consume large amounts of energy, including hotels,
hospitals, laboratories, and office buildings. PBR inclusion in architecture is not restricted to
the building’s façades, but they can also be used at the urban level with the aim of producing
biofuel, admitting light, providing shade, and raising public awareness with regard to
alternative fuels. In optimal performance mode, the microalgae enclosure can cause energy
savings due to reduced heating, cooling, and artificial lighting loads. Moreover, it can
sequester carbon and treat wastewater or other contaminants. The aesthetic aspects of
microalgae envelopes can also be a potential driver for public acceptance. The green
features can cause higher physical and physiological well-being and school performance
in children. A wide acceptance due to financial incentives through carbon credits and the
production of value-added products can also lead to the development of this technology
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in future. Concentrating on the consumption of energy and the energy saving costs,
the sustainability and success of the microalgae applications in the built environment
will be specified [23,24,29,47]. The bibliographic analysis shows that these systems are an
increasingly active and rapidly growing area of research and practice (Figure 2). Application
of ABT at precinct and at city scale could contribute to reducing the predicted 3-degree
temperature rise we face. With more research, designers will acquire a better understanding
of this technology and be able to apply natural patterns to save the planet.
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8. Conclusions

Green walls and algae façade-integrated buildings as an alternative element in the
built environment will have high potential regarding the environment and the carbon
footprint if the government support them with new legislation and subsides to inform the
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public of their benefits. More real-world applications can better attract people; if the market
benefits from the environmental and economic advantages, then demand will increase,
which, in turn, will act as an accelerator for the developing market. The success of PBR
systems integrated with building façades will be directly dependent on the cost and payoff
balance in acquiring the chance of application. Other than this bottleneck, there should be
an integrated design approach in order that PBRs could be served as an effective building
element. Alongside various concepts introduced at the design stage, there are only a few
real-life, full-scale proofs, which reflects the fact that this technology is still in its infancy.
However, the understanding of the various benefits of microalgae by owners, users, and
built environment professionals will be the driving force for future developments.
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