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Abstract: Owing to the rapid increase in construction and demolition (C&D) waste, the information
of waste generation (WG) has been advantageously utilized as a strategy for C&D waste management.
Recently, artificial intelligence (AI) has been strategically employed to obtain accurate WG infor-
mation. Thus, this study aimed to manage demolition waste (DW) by combining three algorithms:
artificial neural network (multilayer perceptron) (ANN-MLP), support vector regression (SVR), and
random forest (RF) with an autoencoder (AE) to develop and test hybrid machine learning (ML)
models. As a result of this study, AE technology significantly improved the performance of the ANN
model. Especially, the performance of AE (25 features)–ANN model was superior to that of other
non-hybrid and hybrid models. Compared to the non-hybrid ANN model, the performance of AE
(25 features)–ANN model improved by 49%, 27%, 49%, and 22% in terms of the MAE, RMSE, R2,
and R, respectively. The hybrid model using ANN and AE proposed in this study showed useful
results to improve the performance of the DWGR ML model. Therefore, this method is considered a
novel and advantageous approach for developing a DWGR ML model. Furthermore, it can be used
to develop AI models for improving performance in various fields.

Keywords: artificial intelligence; autoencoder; demolition waste; hybrid model; machine learning;
waste management

1. Introduction

The World Bank (2018) predicted that the annual volume of municipal solid waste
(MSW) generated in cities will increase to 3.4 billion tons in 2050 [1]. In addition to the
deterioration of the urban environment, the increase in waste poses various environmen-
tal and health risks, such as groundwater pollution, land degradation, increased cancer
incidence, child mortality, and birth defects [2]. Therefore, governments worldwide and
researchers in related industries have been striving to realize effective waste management
(WM) strategies, and in recent years, advanced technologies and intelligent systems have
been introduced in an attempt to manage waste.

Accounting for 35–40% of global waste, construction and demolition waste (C&DW)
is increasing at an alarming rate and has emerged as a concern for the national economy
and sustainable development goals [3–5]. In addition, the generation of C&DW is steadily
increasing [6–8], wherein demolition waste (DW) accounts for 70–90% of C&DW [9,10]. As
such, copious amounts of generated C&DW create considerable problems and increase
the social and environmental burden through their deleterious effects on the environment.
Therefore, pertinent management of C&DW is essential, and as a potential WM strategy,
several researchers have utilized the information on waste generation (WG) as an advanta-
geous tool for C&DW management. However, WM processes involve complex systems
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influenced by several factors, and obtaining adequate and satisfactory information for WM
is a challenging task.

Consequently, the application of artificial intelligence (AI) technology has been ac-
tively considered in recent years to derive useful and satisfactory information for WM
from multidimensional and noisy data. In this regard, several studies have employed
AI technology for predicting the volume of C&DW or MSW generated. For instance, an
artificial neural network (ANN) algorithm has been applied to predict WG [11–19]. In
addition, a support vector machine (SVM) algorithm has been utilized to develop a WG
prediction model [12,13,18,20–28], and several studies have developed a WG prediction
model using linear regression (LR) [11,13,29–36]. Moreover, a WG prediction model has
been developed using a decision tree (DT) algorithm [3,37–40]. In particular, scholars prefer
using standalone algorithms, e.g., ANN, SVM, LR, and DT algorithms, as AI models for
WG prediction. Overall, the ANN and SVM algorithms are the most representative and
frequently applied algorithms.

After Abbasi and Hanandeh (2016) developed a WG prediction model based on the
k-nearest neighbor algorithm, several scholars have attempted to develop an AI model for
WG prediction by applying a random forest (RF) algorithm [27,41–44]. The performance
of the AI models rendered by the aforementioned standalone algorithms vary depending
on the characteristics of the data, e.g., data size and input variable type, data process-
ing method, and employed hyperparameters [45]. Generally, ANN and SVM algorithms
are unsuitable for datasets in which the input-variable type is categorical data instead of
numerical data [39,46]. In contrast, algorithms such as DT can be applied regardless of
categorical data or numerical data, thereby yielding an acceptable performance. Further-
more, various performance results can be obtained for each study based on the selection
of hyperparameters. Thus, the predictive performance of AI models developed using a
standalone algorithm depends on the algorithm type, dataset characteristics (e.g., size or
input-variable type), and selected hyperparameters. Accordingly, the predictive perfor-
mance of AI models can be determined based on these influencing factors (e.g., algorithm
type, data characteristics, and selected hyperparameters).

Although certain methods can be used to develop superior prediction models with
improved prediction performance, these approaches pose considerable limitations. Recent
research have focused on the development of hybrid AI models [13,14,18–21,24,47] to
overcome the limitations associated with the existing standalone algorithms and augment
the predictive performance of AI models. To this end, Abbasi et al. (2013, 2014) [20,21],
Cai et al. (2020) [24], Dai et al. (2020) [47], Golbaz et al. (2019) [13], and Song et al.
(2017) [18] developed hybrid models with improved predictive performance to predict
C&DW and MSW generation by applying the following algorithms: the SVM algorithm,
wavelet denoising method (WT), partial least-squares (PLS), long- and short-term memory
(LSTM), fuzzy information granulation-genetic algorithm (FIG-GA), fuzzy, and gray model
(GM). Furthermore, Liang et al. (2021) [14] and Soni et al. (2019) [19] improved the ANN
model performance using Archimedes’ optimization algorithm (AOA)–ANN and GA–
ANN hybrid models, which enhanced the performance of the MSW prediction model as
well. More importantly, the performance of existing hybrid models have improved in
terms of their statistical metrics: root–mean–square (RMSE) values improved from 21% [21]
to 48% [14], and coefficient of determination (R2) increased from −6% [13] to 21% [19].
Similarly, other performance indicators, such as MSE, MAE, and MAPE, have demonstrated
notable performance improvements in AI models. Overall, the characteristics common
across most research on existing hybrid models include the application of the ANN and
SVM algorithms with numerical data for the input-variable type of the dataset. Notably,
ANN and SVM algorithms yield a superior performance in case of handling numerical
data, which supports the stated trend.

This study aims to develop a hybrid DW model for predicting the volume of DW
generation. Although existing studies primarily use numerical input data, this study
proposes a method for developing a novel, hybrid predictive model that can deliver a
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superior prediction performance in comparison to the DW prediction model applied with
standalone algorithms for categorical input data. The following procedures were performed
to fulfill the present research objective:

(1) Two distinct data-preprocessing methods were applied to construct the dataset. The
first data-preprocessing method constructed a dataset by eliminating outliers, stan-
dardizing, and label-encoding categorical variables. The second method developed
a dataset by reconstructing the numerical data using AE technology on the dataset
obtained from the first method. After the application of the AE, various feature
groups (i.e., number of features: 3, 6, 9, 15, 25, and 30) were created according to the
representation size;

(2) The development of DW predictive models with standalone algorithms (i.e., ANN,
SVR, and RF) and hybrid DW predictive models (i.e., AE–ANN, AE–SVR, and AE–RF)
with respective algorithms and AE technology;

(3) The leave-one-out cross-validation (LOOCV) technique was utilized for model valida-
tion. The performances of various developed models were evaluated based on the
statistical metrics of R, RMSE, R2, and MAE;

(4) The performance results of DW predictive models and hybrid DW predictive models
via standalone algorithms were compared and discussed. Finally, the optimal hybrid
predictive model yielding the greatest performance improvement was proposed for
DW generation, and the corresponding application method was discussed.

The remainder of the paper is organized as follows. The data and data processing
methods used in this study, including the applied algorithms and the underlying reasons
for their application along with the verification and evaluation method of the model, are
introduced in Section 2. Thereafter, the performance results of the DW predictive models
developed with standalone algorithms and the hybrid AE-based DW predictive models are
comparatively analyzed in Section 3. In Section 4, the performance and applicability of the
proposed hybrid model were compared with those of the existing models developed for
predicting C&DW and MSW generation. Lastly, the major findings and limitations of this
study along with the future scope of research are summarized in Section 5.

2. Methods and Materials

The data used in this study, data processing method, characteristics of the employed
algorithms, and the validation and evaluation methods of the developed predictive models
for predicting the demolition waste generation rate (DWGR) are described herein. In par-
ticular, the size and characteristics of the acquired data are detailed in Section 2.1; the data-
preprocessing methods, including the categorical variables, are elaborated in Section 2.2,
after which the application of the unsupervised and supervised machine learning (ML)
algorithms is detailed in Section 2.3. Subsequently, the setup of the hyperparameters prior
to the application of the algorithm is discussed in Section 2.4, and lastly, the verification
and evaluation methods of the ML models developed for DWGR prediction are presented
in Section 2.5. A schematic of the current research flow is illustrated in Figure 1.
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tion. The relationship between the DWGR and these six building characteristics is ex-
pressed in Equation (1), and the DWGR is defined in Equation (2). 

DWGR = f (location, structure, usage, GFA, wall type, roof type), (1)

DWGRi = 
∑ A of buildingi 

GFA of buildingi
, (2)

where DWGRi denotes the demolition waste generation rate (kg·m2) of building i, A indi-
cates the WG of building i (quantity; kg), and GFA symbolizes the gross floor area (m2) of 
building i. 

Table 1. Sample building input and output of raw data. 

Building Features Output 
Bldg ID Location Structure Usage Wall Type Roof Type GFA (m2) Demolition Waste Generation (kg·m−2) 
Bldg 1 Project B RC Residential Concrete Slab 289.50 1279.71 
Bldg 2 Project A RC Residential Brick Slab 114.20 2060.07 
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Figure 1. Flowchart of research steps performed in this study (undercomplete AE and overcomplete
AE are detailed in Section 2.3).
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2.1. Data Source

Building characteristics (e.g., floor area, usage, structure, and region) are the core influ-
encing factors of DW generation [48]. Additionally, Banias et al. (2011) [49] and Cha et al.
(2017) [37] considered the building usage (e.g., residential or commercial) as an important
influencing factor for DW generation. Furthermore, Wang et al. (2021) [50] and Wu et al.
(2021) [51] showed that the region in which the building is located influences the DW gener-
ation. Cha et al. (2017) [37] showed that wall type and roof type are also important factors
influencing DW generation. Thus, to acquire information on the amount of decommission-
ing waste generated, the building characteristics (e.g., location, structure, usage, wall type,
roof type, and gross floor area (GFA)) were obtained from a direct survey of 782 buildings
prior to the demolition of buildings. The data included the records of dismantling waste
discharge (kg/m2) collected from demolition sites in redevelopment areas of two South
Korean cities—Daegu and Busan. Thereafter, the dataset was constructed based on the
information acquired from trucks disposing the demolition waste after building demolition,
and the details of the demolition WG (kg) were obtained from the demolition company. A
segment of the raw constructed dataset is presented in Table 1, wherein the size of the entire
dataset was 782 rows × 7 columns. In Table 1, the building characteristics, e.g., the location,
structure, usage, GFA, wall type, and roof type, represent the major factors affecting the
DWGR. Therefore, we leveraged these six building features (i.e., location, structure, usage,
GFA, wall type, and roof type) as variables of DWGR prediction. The relationship between
the DWGR and these six building characteristics is expressed in Equation (1), and the
DWGR is defined in Equation (2).

DWGR = f (location, structure, usage, GFA, wall type, roof type), (1)

DWGRi =
∑ A of buildingi
GFA of buildingi

, (2)

where DWGRi denotes the demolition waste generation rate (kg·m2) of building i, A
indicates the WG of building i (quantity; kg), and GFA symbolizes the gross floor area (m2)
of building i.

Table 1. Sample building input and output of raw data.

Building Features Output

Bldg ID Location Structure Usage Wall Type Roof Type GFA (m2)
Demolition Waste
Generation (kg·m−2)

Bldg 1 Project B RC Residential Concrete Slab 289.50 1279.71
Bldg 2 Project A RC Residential Brick Slab 114.20 2060.07
Bldg 3 Project A RC Residential Brick Slab 100.45 3875.76
Bldg 4 Project A RC Residential Brick Slab 100.45 1644.75
Bldg 5 Project A RC Residential Brick Slab 197.68 1458.22
Bldg 6 Project A RC Residential Brick Slab 190.36 2519.33
Bldg 7 Project A RC Residential Brick Slab 114.80 2494.95
Bldg 8 Project A RC Residential Brick Slab 118.41 3398.11
Bldg 9 Project A RC Residential Brick Slab 47.11 1849.38
Bldg 10 Project A RC Residential Brick Slab 106.45 2665.72
Bldg 11 Project A RC Residential Brick Slab 87.53 2805.48
Bldg 12 Project A RC Residential Brick Slab 82.40 3024.04
Bldg 13 Project A RC Residential Brick Slab 95.15 6033.67
Bldg 14 Project A RC Residential Brick Slab 51.11 2426.00
Bldg 15 Project A RC Residential Brick Slab 149.51 1990.99
. . . . . . . . . . . . . . . . . . . . . . . .

Bldg 781 Project C Masonry Residential Block Slate 85.66 823.51
Bldg 782 Project B Masonry Commercial Block Slab and roofing tile 94.44 1166.09
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The basic statistical analysis of DWGR in terms of the building status and character-
istics derived from the collected data is presented in Table 2, wherein the mean values of
the DWGR characteristics observably varied with the location, usage, structure, wall type,
and roof type of the buildings. In particular, the GFA and DWGR of most buildings were
≤300 (m2) and ≤3000 (kg·m−2), respectively, which can be attributed to the acquirement of
data from redevelopment areas that predominantly housed old low-rise buildings.

Table 2. Building status and statistical analysis of raw data.

Category Numbers
DWGR (kg·m2)

Total Min Mean Max

Location
Project A 343 450,310 298 1313 6034
Project B 356 485,037 83 1362 8574
Project C 83 101,531 736 1223 1808

Usage
Residential 595 767,578 83 1290 8574
Residential and commercial 172 251,381 418 1462 5718
Commercial 15 19,510 607 1301 2474

Structure
RC 87 169,538 418 1949 6034
Masonry 604 788,042 83 1305 8574
Wood 91 80,889 298 889 2237

Wall type

Concrete 9 10,357 871 1151 4696
Brick 236 391,259 252 1658 6034
Block 500 596,799 83 1194 8574
Mud plastered and mortar 37 40,056 517 1083 2591

Roof type

Slab 289 479,356 252 1659 6034
Slab and roofing tile 33 38,877 252 1178 1808
Slate 178 227,923 306 1280 8574
Roofing tile 282 292,314 83 1037 2527

2.2. Data Preprocessing and Dataset Size

As the construction of a stable dataset is a prerequisite for improving the performance
of ML predictive models, we performed data preprocessing on the acquired dataset. The
categorical input variables were converted into numerical variables by preprocessing
the data as follows: encoding, outlier elimination, and standardization. First, encoding
was performed to convert the data into vectors of real numbers, which would act as the
input variables for the AE. As AEs contain neural network structures that operate on
real vectors [52], the categorical data must be converted into a real vector to enable the
application of a neural network on qualitative data [53]. This study implemented label
encoding to convert the categorical variables into real vectors; the label encoding regime
for each categorical variable is listed in Table 3. The data-encoding process was followed
by outlier elimination according to Equation (3), after which the size of the processed
dataset was reduced to 690 rows × 7 columns. In particular, this encoded and processed
dataset was employed for developing the ML model. Thereafter, data standardization was
performed according to Equation (4) to construct a dataset of the same scale unit.

Q1 − 1.5 × IQR < selecting data < Q3 + 1.5 × IQR, (3)

where IQR denotes the interquartile range, derived as Q3 − Q1; Q denotes the quartile, Q1
indicates the 25th percentile, and Q3 denotes the 75th percentile.

xstandardization =
x− x
σ

, (4)

where x, x, and σ represent the element, mean, and standard deviation of the data,
respectively.
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Table 3. Label encoding for numerical data conversion of categorical variables in this study.

Categorical Variable Numerical Value Assigned
by Label Encoding

Location Location_project A 0
Location_project B 1
Location_project C 2

Structure Structure_RC 0
Structure_masonry 1
Structure_wood 2

Usage Usage_ residential 0
Usage_residential & commercial 1
Usage_ commercial 2

Wall type Wall type_concrete 0
Wall type_brick 1
Wall type_block 2
Wall type_ mud plastered and mortar 3

Roof type Roof type_slab 0
Roof type_slab and roofing tile 1
Roof type_slate 2
Roof type_roofing tile 3

2.3. Application of ML Algorithms

The inherent properties of the AE algorithm, the reasons for its implementation in
this study, and its overall applications are described herein. In addition, we examined the
characteristics of the supervised learning algorithms adopted for developing the DWGR
prediction model and discussed the reasons for its adoption.

2.3.1. Autoencoder (Unsupervised Learning)

AE is an ANN-based unsupervised ML algorithm [54] that utilizes a neural network
to reconstruct an output value equal to an arbitrary input value [55]. In particular, the
basic AE contains a symmetrical structure comprising two functional segments—encoder
and decoder—and three layers: input layer, hidden layer, and output layer. The encoder
transforms the original input data (X) into a lower-dimensional layer, called the com-
pressed representation (also known as feature or latent vector). Additionally, the decoder
decompresses the representation into new input data (X′) reconstructed according to the
relationship between the input variables [56]. Thus, the features of the input values re-
generated by the AE exhibit numerical differences. This AE characteristic is beneficial for
supplementing the characteristics of numerical values simply converted via label encoding
into ordinal variables. This is because the categorical variables converted via label encoding
are arbitrarily assigned integer values, and information cannot be used because of the
numerical difference between the encoded values [53]. As the model performance can be
expectedly improved by considering the numerical difference characteristics to these cate-
gorical variables, this study implemented an AE to convert the categorical input variables
into input variables with numerical information.

In the AE, the size of the hidden layer determines the size of the representation (latent
vector or feature) [57]. This algorithmic property of the AE can be utilized for feature
engineering. Specifically, the number of features depends on the size of the hidden layer.
Although AEs can improve the performance of regression and classification tasks through
lower-dimensional representations [52], the dimensionality in this case should be reduced
to accommodate the substantially high number of features. Conversely, in the case of
fewer features, the number of features can be increased using an overcomplete AE on the
original dataset, i.e., an AE architecture with a hidden layer dimensionally larger than the
input layer [58]. Nonetheless, an overcomplete representation is advantageous because
it increases the stability of the representation [59]. However, as reported by Fan et al.
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(2019) [60] and Meyer (2015) [61], if the hidden layer size is larger than the input layer size
in a basic AE, a problem may occur in the generalization of the mode. As observed in
stacked AEs, the generalization issue can be resolved by incorporating a hidden layer [62].
In a stacked AE, the pre-training is performed by considering a single layer at a given
instant. The layers of the stacked AE are trained to individually minimize the errors
arising from the input reconstruction of the layers [63]. In particular, the pre-training aids
generalization by ensuring that the learned information is extracted from the input [62,63].

Therefore, the stacked AE architecture was applied in this study to implement a
hidden layer that was larger than the input layer, as illustrated in Figure 2. Moreover,
we constructed a dataset in which the number of features was adjusted according to the
undercomplete and overcomplete AE architectures by altering the representation size of the
hidden layer. As indicated in Figure 2, the architectures of an undercomplete AE (feature
representation size = 3) and six overcomplete AEs (feature representation sizes = 6, 9, 15,
20, 25, and 30) were applied to construct the feature sets with data sizes of 3, 6, 9, 15, 20, 25,
and 30 columns.
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In general, the AE minimizes the distance between the input and output by maximally
recovering the information from the original input [64]. To this end, the AE model uses
loss functions to recreate the features and updates the weight parameters to obtain more
efficient results, as well as reduce the likelihood of errors. In addition to minimizing the
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loss, the AE converges the value of X′ to that of X. Thus, the appropriate transformation of
the input variable via the AE can be determined from the loss result. In particular, the loss
function based on the reconstruction error is expressed in Equation (5). According to the
loss result, the data conversion conducted in this study was assessed to be appropriate.

L
(
x, x′

)
=

1
n ∑n

i=1

(
x− x′

)2, (5)

where x and x′ indicate denotes the output and input of the decoder, respectively.

2.3.2. Supervised Learning Techniques Used for DWGR Estimation

This study applied supervised learning algorithms to various sets of features con-
structed using the AE, i.e., subsets comprising 3, 6, 9, 15, 20, 25, and 30 features. In
particular, the SVR, ANN, and RF were selected as the learning algorithms. The SVR and
ANN algorithms have been widely applied in the field of waste prediction [45,65,66]. More-
over, RF is an ML algorithm with excellent predictive performance and is considered one
of the ten best classifiers [67]. In particular, RF can utilize both categorical and continuous
variables and is useful for comparing performance variations with the application of AE on
SVR and ANN. The details of the supervised learning techniques employed in this study
are described below.

Random Forest

Initially proposed by Breiman (2001) [68], RF is a representative ensemble technique
based on bagging, which is used to perform bootstrap sampling. Overall, RF is considered
one of the most powerful ML algorithms. In principle, RF creates a tree (called weak
learner) for each subset by extracting multiple subsets (bootstrap sampling) from the
original dataset. The final prediction determines the strong learner based on the majority
of votes obtained from the results of each tree. Through this process, RF can prevent
overfitting as the number of trees increases and is minimally influenced by outliers. Even
for an unbalanced class, this classification algorithm offers superior predictive performance
compared to other machine learning algorithms [67]. Recently, certain researchers used RF
to predict the amount of waste generated in the fields of C&D and solid WM; Cha et al.
(2020, 2021) [41,42] applied RF to estimate the DWGR for diverse types of waste generated
during the building–dismantling process, whereas Kumar et al. (2018) [27] leveraged RF
to predict the plastic WG rate. Additionally, Dissanayaka and Vasanthapriyan (2019) [43]
employed RF to predict MSW generation, and Namoun et al. (2022) [69] used RF to predict
household solid WG. Furthermore, this algorithm was implemented by Rosecký et al.
(2021) [39] to predict MSW generation at the regional level.

Support Vector Regression

The working principle of SVR is stated as follows: a linear decision function is con-
structed in the feature space by mapping the input data to the feature space using a
nonlinear map. The principal aim of SVR is to determine the optimal decision function.
Thereafter, using kernels, SVR nonlinearly maps a linear decision function of the feature
space to the original space [28]. The SVR model intends to overcome the fundamental draw-
back of parametric regression. Overall, it is a novel and powerful ML technique based on
statistical learning theory and adheres to the principle of structural risk minimization, i.e.,
it aims to minimize the upper bound of the generalization error instead of minimizing the
training error [25,28,70]. As reported, the SVR model performs reliably in solving problems
with small samples, nonlinearities, and high-dimensional characteristics [71]. Coupled
with ANN, the SVR model has been effectively utilized for AI models in various fields, and
several researchers have applied it in WG-related fields as well. In this regard, Abbasi et al.
(2014, 2013) [20,21], Abbasi and Hanandeh (2016) [22], Abunama et al. (2019) [23], Dai et al.
(2020) [47], Golbaz et al. (2019) [13], Graus et al. (2018) [26], Kumar et al. (2018) [27], and
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Song et al. (2017) [18] used SVR to predict MSW generation, whereas Cai et al. (2020) [24]
and Cha et al. (2022) [12] employed SVR to predict C&DW and DW generation.

Artificial Neural Networks

The ANN theory was initially proposed by McCulloch and Pitts (1943). According to
the signal transmission modes, ANNs are classified as feedforward and feedback neural
networks. Owing to their simpler and superior performance over feedback neural net-
works, feedforward neural networks have been widely used in the field of WM [68]. As
reported in the literature, the multilayer perceptron (MLP) is a prominent feedforward
ANN architecture that is employed for forecasting problems [72,73]. The basic structure of
an MLP contains three layers: input, hidden, and output layers, and the nonlinear transfer
function comprising multiple layers of neurons enables the learning of nonlinear and linear
relationships between input and output neurons. These neurons are connected to the
adjacent layer and hidden layer, and the interconnections of all neurons contain weights
indicating the strength. The number of input neurons—identical to the number of input
variables—is responsible for receiving external information. In the hidden layer, the sum of
weights is passed through an activation function that determines the relationship between
the input and output. Subsequently, the output of the hidden layer is inputted to the output
layer, and the weights are calculated and transformed via the linear activation function of
the output layer [29,74]. The ANN algorithm is the most frequently used algorithm for AI
models in the field of WM [45]. In relation to WG, ANNs have been utilized by Golbaz
et al. (2019) [13] to predict solid WG from hospitals, by Liang et al. (2021) [14], Shamshiry
et al. (2014) [17], and Soni et al. (2019) [19] to predict MSW generation, and by Cha et al.
(2022) [12] and Song et al. (2017) [18] to predict C&DW generation.

2.4. Application of Algorithms and Hyperparameter-Tuning

Hyperparameters significantly influence the predictive performance, robustness, and
generalization ability of a model. Therefore, prior to the application of AE, we tuned
the hyperparameters to derive the optimal performance model for each algorithm (i.e.,
RF, ANN-MLP, and SVR). For instance, we adjusted the ANN models according to the
number of hidden layers and neurons, and the ANN (MLP) models were tested with 1–4
hidden layers and 20, 30, and 40 neurons for each hidden layer. Based on the test results,
we selected the ANN-MLP model with the structure of input layer—first hidden layer
(10 neurons); second layer (30 neurons)—output layer and two hidden layers, featuring
10 neurons in the first hidden layer and 30 neurons in the second hidden layer.

For the SVR model, hyperparameters such as the kernel, kernel coefficient (γ), and
penalty parameter of the error term (C) were adjusted in this study. In addition, a radial
basis function kernel, widely used in regression problems, was considered for the kernel.
This strategy was selected considering that it can nonlinearly map samples to a high-
dimensional space and can easily handle nonlinear relationships between class labels and
properties [75]. As for the kernel coefficient, γ = 1/6 was applied according to γ = 1/K (where
K denotes the number of features), as proposed by Chang and Lin (2011) [76]. For the penalty
parameter of the error term (C), the optimal value was searched for values ranging from 10−5

to 101, and the value of C = 10−3 yielded the optimal performance results.
For the RF model, the optimal predictive performance was derived by adjusting the

number of trees and features. The number of trees was varied in increments of 50 units
ranging from 100 to 500 and tested with submodels containing 3, 4, 5, and 6 variables. The
test results revealed that the RF model delivered the optimal results with 450 trees and
6 variables.

2.5. Model Evaluation
2.5.1. Model Validation

In this study, the proposed model was validated using LOOCV, which is a special
case of k-fold cross-validation technique. LOOCV is regarded a suitable validation method
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for small sample sizes [77,78]. Accordingly, several studies have adopted LOOCV to
evaluate the performance of algorithms handling a small number of instances in the
dataset [8,79]. In principle, LOOCV utilizes all samples as the test-and-training data
to secure adequate training and validation sets. Compared with the 10-fold or k-fold
cross-validation, LOOCV is advantageous for obtaining stable results with small target
datasets [41,42,80,81]. Therefore, considering the size of the dataset in this study, LOOCV
was applied as a model validation method.

2.5.2. Performance Measures

The performance of the DWGR predictive models developed in this study were
evaluated based on statistical metrics such as the MAE (Equation (6)), RMSE (Equation (7)),
R2 (Equation (8)), and R (Equation (9)). Generally, a satisfied model yields high R2 and R
values and low MAE and RMSE values.

MAE =
∑n

i=1|yi − xi|
n

(6)

RMSE =

√
∑n

i=1
(yi − xi)

2

n
(7)

R2 = 1− ∑n
i=1(yi − xi)

2

∑n
i=1(yi − xi)

2 (8)

R =
∑n

i=1

(
xi −

¯
x i

)(
yi −

¯
yi

)
√

∑n
i=1

(
xi −

¯
x i

)2
√

∑n
i=1

(
yi −

¯
yi

)2
(9)

where xi denotes the observed quantity of generated DW, yi represents the predicted
quantity of the generated DW, xi denotes the mean observed quantity of generated DW,
yi indicates the average predicted quantity of generated DW, and n denotes the number
of samples.

3. Results
3.1. Learning Validity Assessment of the Stacked AE Utilized in this Study

The loss function values derived during the learning process are plotted in Figure 3.
In the current case of the representation applied with six features, the validation loss
approximated the training loss at nearly epoch 20, and thereafter, converged to 0. The
validation loss results of the six-feature representation revealed that overfitting did not
occur in the applied AE model. For the remaining feature representations (i.e., 3, 9, 12, 15,
20, 25 features; refer to Supplementary Material, Figure S1), the validation loss was larger
than the train loss, ranging from approximately epochs 15–20. However, in all feature
representations beyond this range, it yielded stable results converging to 0. As observed
from these loss results (refer to Figures 3 and S1), overfitting did not occur in all feature
representations and the validation loss exhibited a pronounced declivity. In addition, the
stacked AE architecture evidently facilitated the stable conversion of the categorical input
variable data by considering the numerical information relationship between the input
variables, as it maintained the existing data characteristics. The distribution of data values
converted from categorical variables into numerical variables through the stacked AE is
depicted in Figure S2 (refer to Supplementary Material).
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3.2. Comparison of Performance Results and Improvement of Models

The performance results of the predictive models based on standalone algorithms (i.e.,
ANN-MLP, SVR, and RF) and hybrid models combined with AE for the DWGR prediction
are comparatively presented in Figure 4. First, as demonstrated by the results of ANN-
MLP (Figures 4 and 5a), the performance of the model with AE implementation yielded
significantly improved results for all performance indicators (i.e., MAE, RMSE, R2, and
R). In terms of model stability, the MAE and RMSE of all AE–ANN (MLP) models were
significantly stabilized below 212.133 and 274.371 (i.e., MAE and RMSE values of worst-
performing AE (three features)–ANN (MLP) model), respectively, compared to the ANN
(MLP) model (MAE: 356.697; RMSE: 316.186). In particular, the AE (25 features)–ANN
(MLP) model yielded the lowest values of the MAE and RMSE at 182.105 and 230.819,
respectively. In addition, the R2 and R values were significantly improved in comparison to
those of the ANN (R2: 0.458; R: 0.676), and the R2 and R of the AE (25 features)–ANN (MLP)
model were 0.680 and 0.825, respectively, which were superior to those of the remaining
AEs–ANN (MLP) models.
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In the SVR results depicted in Figures 4 and 5b, the MAE and RMSE of all AE–SVR
models were significantly more stable in comparison to those of the SVR models (MAE:
1020.304; RMSE: 1116.266). Specifically, the MAE and RMSE of the AE (three features)–SVR
model were 302.244 and 384.347, respectively, thereby demonstrating optimal results with
no significant variation from the MAE and RMSE results of remaining AE–SVR models.
Moreover, as noted from the R values, the performance of AE–SVR models was significantly
improved compared to that of the SVR model, wherein the AE (15)–SVR model (R: 0.568)
yielded the optimal R value. However, in terms of R2 values, all AE–SVR models delivered
improved their performance over the existing SVR model (R2: 0.007). In contrast, the R
of the AEs–SVR models ranged from 0.071–0.110 and suggested the inferior accuracy of
the AEs–SVR models, which signifies the inapplicability of these models for prediction
purposes.

The performance results of the RF and AE–RF models are plotted in Figures 4 and 5c,
which indicate distinct patterns compared to those of the AE–ANN (MLP) and AE–SVR
models. For the prediction model applying solely the RF algorithm, the MAE and RMSE
results were 197.004 and 249.597, respectively, whereas those of the AE–RF models were
191.867–206.940 and 253.159–275.385, respectively. In terms of stability, the MAE of certain
AE–RF models was superior to that of RF models. However, their RMSE results were
inferior to those of RF models in all cases. In terms of R2 and R values, the performance of
all the AE–RF models was marginally worse than the RF model. These results indicated
negligible improvement in the performance of AE–RF models. Essentially, as the RF
algorithm can handle all types of categorical and numerical variables, the application of
variable conversion technology such as AEs can be evidently ineffective. However, as
depicted in Figures 4 and 5, a significant performance improvement was observed for
the ANN and SVR algorithms. The ANN model yielded a significant improvement in
all the performance indicators (MAE, RMSE, R2, and R), and in particular, the predictive
performance of the AE (25)–ANN (MLP) model was superior to that of the RF model.
Furthermore, the SVR model displayed a significant improvement in the performance
indicators (MAE, RMSE, and R), and in terms of R2, the resulting performance improvement
was inadequate.

As indicated by the aforementioned performance index results, the AE (25)–ANN
(MLP) model delivered the most outstanding performance for predicting DW generation.
The degree of performance improvement obtained by applying AE can be clearly confirmed
by comparing the correlation results between the observed and predictive values of the



Sustainability 2023, 15, 3691 13 of 20

ANN (MLP) model and AE (25 features)–ANN (MLP) model (Figure 6a,b), and the results
of the predictive model (Figure 7). As indicated in Figure 6a,b, the observed and predictive
values of the AE (25 features)–ANN (MLP) model, compared to the ANN (MLP) model,
were more closely distributed along the line with a correlation coefficient of 1. Moreover, as
depicted in Figure 7, the predicted values of the AE (25 features)–ANN (MLP) model more
closely approximated the trend of the observed values than the ANN (MLP) model. The
mean of the observed values was 1165.04 kg·m−2, and the mean of the predictive values
of the ANN (MLP) and AE (25 features)–ANN (MLP) models were 1157.656 kg·m−2 and
1162.437 kg·m−2, respectively. These results confirmed the significant improvement of
the predictive performance of the AE (25 features)–ANN (MLP) model. Moreover, the
utilization of AE can be considered an advantageous new method for the development of
predictive models with excellent performance on datasets containing categorical variables.
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4. Discussion and Recommendations

To more accurately estimate the generation of C&DW during building demolition,
this study aimed to develop a hybrid predictive model that can improve the predictive
performance of a dataset comprising categorical data. To date, numerous studies on hybrid
model development have attempted to improve the performance of the WG prediction
model in the fields of C&DW and MSW [12–14,18–21,24,47]. As listed in Table 4, the existing
hybrid ML models aimed to predict C&DW and MSW generation at various estimation levels
such as building, district, city, and region. Commonly, these studies applied the ANN and
SVR techniques as ML algorithms, primarily using numerical data as the input variables.
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Table 4. Comparison of performance results of non-hybrid and hybrid models for prediction of C&D and solid WG.

Study
Estimation Level Waste Type Input Variable Data Composition

(Number of Input Variables or
Characteristics of Data)

Model Type
Performance of Predictive Model

RMSE MSE MAE MAPE R2 R Error Rate (%)

This study Building DW Numerical (1); categorical (5)

ANN (MLP) 316.186 356.697 0.458 0.676

AE (25 features)–ANN (MLP) 230.819 128.105 0.680 0.825

SVR 1020.304 1116.266 0.007 0.083

AE (3 features)–SVR 302.224 384.347 0.110 0.494

Abbasi et al.,
2013 [20]

City MSW Numerical (time series data)
SVM 2070 0.761

PL–SVM 1541 0.869

Abbasi et al.,
2014 [21]

City MSW Numerical (time series data)
SVM 814–3268 0.702–0.756

WT-SVM 639–2283 0.813–0.887

Song et al.,
2017 [18]

Regional C&D waste Numerical (time series data)
GM 21

GM -SVR 4.6

Golbaz et al.,
2019 [13]

Building
MSW
(hospital solid
waste)

Numerical (7); categorical (1)
SVM 0.001–0.003 0.79–0.98

F–SVM 0.001–0.002 0.79–0.92

Soni et al.,
2019 [19]

City MSW Numerical (4)
ANN 165.5 0.72

GA–ANN 95.7 0.87

Cai et al.,
2020 [24]

Regional C&D waste Numerical (time series data) SVR 50.19 17.29

LSTM–SVR 29.04 10.02

Dai et al.,
2020 [47] District MSW Numerical (3; time series data)

SVR 34.725 14.434 0.8376

FIG–GA–SVM 5.703 2.012 0.9845

Liang et al.,
2021 [14]

City MSW Numerical (8)
ANN 11.23 10.29 0.76

AOA–ANN 5.89 6.21 0.88
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For instance, Abbasi et al. (2013) [20] developed a PLS–SVM hybrid model to improve
the performance of the SVM model based on daily solid WG-related time-series data from
2004 to 2005 of Tehran city. Moreover, Abbasi et al. (2014) [21] attempted to enhance
the performance of the SVM model using the WT method on the MSW time-series data
corresponding to Tehran city. Furthermore, Song et al. (2017) [18] developed a GM–SVR
hybrid model to predict C&DW generation in 31 provinces of China, and reported a
significant improvement in its performance.

Additionally, Golbaz et al. (2019) [13] leveraged multiple ML models, such as mul-
tilinear regression, ANN, SVM, least squares–SVM, and fuzzy logic (F)–SVM, to predict
solid WG from hospitals, among which the F–SVM hybrid model yielded the best perfor-
mance. Furthermore, Soni et al. (2019) [19] developed a GA–ANN model to predict MSW
generation. The GA–ANN model yielded performance improvements of 42% and 21%
compared to the ANN model, respectively. More recently, Cai et al. (2020) [24] developed
hybrid models using the statistical analysis models of autoregressive integrated moving
average, SVR, back-propagation neural network, and LSTM algorithms, among which the
LSTM–SVR model delivered the best performance.

Dai et al. (2020) [47] developed a FIG–GA–SVR model to predict district-level MSW
generation (Huangshi city, Hubei Province, China). The FIG–GA–SVR model produced
performance improvements of 84% and 86% in terms of MSE and MAPE compared to
the SVR model, respectively. Additionally, Liang et al. conducted a study on hybrid
models, combining algorithms such as ANN, GA, particle swarm optimization, a sine–
cosine algorithm, and AOA to predict MSW generation in major cities of Iran. Among the
hybrid models, the AOA–ANN model yielded the best predictive performance.

The degree of performance improvement of the hybrid AI models developed for
predicting C&D and solid WG was 21%–48% in terms of RMSE (derived from the results
of [14,19–21,24]), 40% in relation to MAE (deduced from the results of [14]), and 0–21% in
R2 values (based on the results of [13,14,19–21,24]). On the other hand, the AE (25 features)–
ANN(MLP) model developed in this study yielded performance improvements of 49%, 27%,
49%, and 22% in terms of MAE, RMSE, R2, and R, respectively (listed in Table 4), compared
to the non-hybrid ANN model. Moreover, compared to the non-hybrid SVR model, the AE
(three features)–SVR model yielded an improvement of 70% and 66% in terms of MAE and
RMSE, respectively (refer to Table 4). Therefore, the application of the AE technique to the
categorical variables in this study significantly influenced the stabilization and accuracy of
the model, which resulted in superior performance improvements compared to the existing
hybrid models. As summarized in Table 4, unlike previous studies that developed hybrid
models for numerical data, this study explored a new direction with the proposed hybrid
model to significantly improve the prediction performance for categorical data.

As depicted in Figures 4 and 5, the prediction performance of the RF algorithm for
categorical data is superior to those of the ANN and SVR algorithms. In general, the
RF algorithms are considered adequately robust to ensure an optimal prediction perfor-
mance [66]. Accordingly, these algorithms have been widely used in several fields owing
to their excellent performance, as well as fast and efficient training process [82]. Therefore,
developing an ML regression model with a predictive performance superior to that of the
RF model is a challenging task. However, the predictive model proposed in this study
combined the ANN and SVR algorithms with AE technology and used categorical variables
to deliver a superior performance compared to the RF model. Therefore, this study presents
a new strategy to overcome the limitations emerging from the characteristics of the variable
type. As demonstrated, the development of hybrid model via AEs can be advantageous
toward achieving excellent predictive models with superior performance.

This strategy is beneficial in the case of applying ML algorithms that require numerical
data, such as ANN and SVR, or in case (1) The dataset contains more categorical data than
numerical data; or (2) The implemented ML algorithm is applicable regardless of the input
variable type, such as RF (e.g., decision tree, extra classifier tree, Xgboosting, and gradient-
boosting machine). In particular, the proposed strategy will be of great interest to demolition
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companies because it can facilitate the development of a DW waste-prediction model in a
limited-data environment (e.g., lack of numerical input information for buildings subjected
to demolition and building characteristics data comprising simple nominal variables).
Moreover, the proposed method can be combined with various ML algorithms to improve
the predictive performance of models for C&DW and MSW management. Furthermore, the
application of the current methodology in a similar data environment will be advantageous
for developing models with excellent predictive performance in several other fields as well.

5. Conclusions

This study developed a novel hybrid AI model using standalone algorithms with AE
technology to predict DWG from the demolition of buildings in redevelopment areas in
South Korea. This study reports novel research findings relevant to the field of C&DW and
MSW management. The performance of the ANN-MLP and SVR models was improved
using categorical data, and a hybrid DW predictive model was developed by applying
AE. In particular, compared to the ANN (MLP) model, the AE (25)–ANN (MLP) model
improved performance in terms of MAE, RMSE, R2, and R, thereby significantly influencing
the model’s stability and accuracy. The mean of the observed values was 1165.04 kg·m−2,
and those of the predictive values obtained by the ANN (MLP) and AE (25)–ANN (MLP)
models were 1157.656 kg·m−2 and 1162.437 kg·m−2, respectively. In addition, the applica-
tion of AE technology to the SVR algorithm considerably enhanced the prediction stability
of the AI model based on the significantly improved results in terms of MAE and RMSE.

Notably, the potential of performance improvement with AE will be insignificant
for algorithms (e.g., RF) that can handle both categorical and numerical data as an input
variable type. However, as the AE (25)–ANN (MLP) predictive model demonstrated a
superior performance compared to the RF predictive model, this method is considered
a novel and advantageous approach for developing a DW predictive model because it
produced an excellent predictive performance for datasets comprising categorical data.
More importantly, the present findings are crucial for surpassing the limitations of the
feasible ML algorithms that rely on data characteristics and developing various AI models
with superior predictive performance. Therefore, the results of this study can help develop
ML models with better performance in various fields. In addition, the results of this study
are expected to be useful for decision-making by related industry officials or policymakers
by providing more accurate DW generation prediction information.

However, as this study was limited to the use of ANN, SVR, and RF algorithms,
more diverse algorithms should be considered in the future, and further research should
be conducted on various datasets. For example, in the future, it is necessary to conduct
research on the development of ML models using AE for datasets other than the categorical
input variables used in this study. In addition, efforts are required to find an optimal
DWGR ML model by applying additional algorithms.
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