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Abstract: One of the most significant problems in industrial processes is the loss of energy according
to the sort of heat. Thermoelectrics are a promising alternative to recovering this type of thermal
energy, as they can convert heat into electricity, improving the industrial efficiency of the process.
This article presents the characteristics of low-cost thermoelectric modules typically used for gen-
eration (SP1848-27145SA (TEG-GEN)) and refrigeration (TEC1-12706 (TEC-REF)), both utilized in
this research for heat recovery. The modules were evaluated against various configurations, source
distances, and distributed systems in order to determine optimal recovery conditions. The exper-
iments were conducted both at the laboratory level and in a large-scale furnace of the traditional
ceramics industry, and they revealed that even refrigeration modules are suitable for energy recovery,
particularly in developing countries, whereas other generators are more expensive and difficult to
obtain. These thermoelectric generators were tested for low-temperature heat recovery in regular
furnaces, and the results are to be implemented elsewhere. Results show that even the thermoelectric
refrigeration modules can be a solution for heat recovery in many heat sources, which would be
particularly strategic for developing countries.

Keywords: thermoelectric generator; thermoelectric modules; cost-efficiency ratio; sustainability; life
cycle; circular economy

1. Introduction

The current COVID-19 crisis has generated essential changes in the contemporary
lifestyle, leading to greater awareness of the use of available resources [1]. The environmen-
tal and social impacts caused by the various energy generation technologies used today are
becoming more and more evident. Of these technologies, nearly 70% of energy is produced
through non-renewable sources such as coal, oil, and nuclear energy [2]. In addition to
this, the economic and population increase is directly proportional to energy expenditure
worldwide, and although by 2020, the demand for energy decreased by approximately 4.5%
due to the health contingency from COVID-19 [3], it is expected that with the economic
reactivation and the lifting of restrictions, this percentage will decrease significantly [4].
Therefore, the search for new renewable sources is a global need [5].

From a material science point of view, there are multiple approaches to providing
solutions to the energy demand, the environmental crisis, and energy waste: rechargeable
batteries [6], solar cells [7], piezoelectrics [8], wind energy [9], nuclear energy [10], thermo-
electrics [11], and more. Thermoelectric materials, aside from the current limitations of their
generated power, show promising potential to decrease waste energy and pollution [12].
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The most outstanding attribute of thermoelectric materials is that they can generate
energy by taking advantage of the temperature difference between two environments,
which can be used in multiple industrial processes in which energy is wasted and discarded
into the environment according to the sort of heat [13–16]. In this scenario, thermoelectric
materials could play a significant role in generating unpolluted energy by recovering resid-
ual energy from different industrial processes, such as the automotive [17], aerospace [18],
industrial [19], and construction sectors [20], among others [21].

Thermoelectric materials are usually found in solid-state devices called thermoelectric
modules, which are composed of an array of thermocouples and semiconductor materials
alternating between two ceramic plates of high thermal conductivity [22]. In general,
commercial thermoelectric modules are divided into two groups: thermoelectric cooling
modules (TEC), [23] and thermoelectric generation modules (TEG) [18]. TEC modules
are mainly designed so that when an electric current is applied, a change in temperature
is generated between their faces (what is known as the Peltier effect), so the materials
that constitute it must tolerate low temperatures. On the other hand, the TEG modules
are designed so that, when experiencing a change in temperature between their faces,
they provide a difference in electrical potential (Seebeck effect). In these modules, the
materials used in their construction must tolerate higher temperatures than in the case
of TEC modules, which makes this type of thermoelectric module more expensive [24].
Although the TEC and TEG modules are conceived for different purposes, the operation of
these modules is governed by thermoelectric effects (Seebeck, Peltier, and Thomson effects),
effects that are reversible so that the two types of modules can be used, for both generation
and cooling. Therefore, the extreme temperatures to which the materials that make up the
modules are subjected must be taken into consideration [25].

Thermoelectric modules exhibit certain advantages compared to conventional genera-
tion systems, such as the absence of moving parts, being compact components, presenting
silent operation, and having a long, useful life. However, in turn, they exhibit clear lim-
itations that prevent this type of power generation system from being optimal from an
efficiency–cost approach. In this sense, its main limitations lie in its low thermal conversion
efficiency (approximately 4% in commercial modules), its high cost due to the materials that
constitute it, and the complexity of the processes required for its production [26]. Likewise,
in modules for power generation applications, an effective temperature difference must be
certified between the faces of the module. Therefore, incorporating a cooling mechanism
into the low-temperature face of the module would allow greater efficiency, and help to
achieve energy recovery [27,28].

The most common thermoelectric modules at an industrial level are those built with
Bi2Te3 base material. These modules are used for low temperatures, and are readily
available at lower prices in the market. As mentioned above, one of the major drawbacks
of thermoelectric modules is their high cost/efficiency ratio, which makes it difficult to
introduce them to the industries of many countries. Thus, the central focus of current
research is to improve the efficiency of the modules through manufacturing processes, or
to improve the base material so as to finally introduce the current commercial modules
at the industrial level through the union of methods in a hybrid clean power generation
process [12].

The present study is aimed at developing and optimizing a TEG system from three
approaches: (1) the selection of thermoelectric materials with a high number of merit
(greater efficiency), low cost, and easy manufacturing; the latter is due to the fact that the
recent development of materials with higher efficiency, such as Half Heusler alloys [29],
Skutterudite materials [30], and nanostructured materials [31], among others, exhibit
improved performance. However, in most cases, their manufacturing at an industrial level
is limited due to their high manufacturing complexity and high production cost; (2) the
redesign of thermoelectric modules seeking to improve their performance [24]; and (3) the
design of cooling devices for thermoelectric generators [31–33].
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It is estimated that the residual heat generated in industrial processes can reach
up to 50% of the primary energy inputs. These energy dissipations are usually present
in the exhaust gases, waste fluids, and evaporation processes, stages wherein radiation
phenomena are induced, among others [18,33]. Such circumstances make the incorporation
of thermoelectric generators very attractive for the purpose of taking advantage of the
residual heat present in the different industrial processes. In general, residual heat is
classified into three categories according to the temperatures reached in the processes
involved; according to this categorization, residual temperatures are low when they are
below 100 ◦C; they are considered medium when the temperature varies between 100 ◦C
and 300 ◦C; and, finally, when temperatures are above 300◦C, they are considered high [34].

In this study, two low-cost thermoelectric modules were characterized, a refrigeration
module reference (TEC1-12706 (TEC)) and a thermoelectric generation module reference
(SP1848-27145SA (SP)), with the aim of manufacturing a thermoelectric generator system
(TGS) for the recovery of waste heat at a low-medium temperature on an industrial level.
The modules were evaluated at the laboratory level in different configurations, distances
from the source, and with a finned heat dissipation system in order to establish improved
energy recovery conditions. The manufactured TGS was designed for heat recovery in
low-medium residual temperature processes, and was tested in an industrial drying oven
of the Sumicol SAS company.

This article provides an overview of the efficiency and challenges of incorporating
thermoelectric heat recovery systems, made with economic thermoelectric cells marketed in
Latin America, when evaluated at the laboratory level (under controlled conditions) and at
an industrial level (under uncontrollable conditions). The project is part of a local strategy
to improve material circularity [35,36] and energy optimization [37–39] in materials and
industrial processes in the country, which are issues which have been considered important
for decades at the legislative and technological levels. The case study presented here is
applicable elsewhere, and is a particularly inexpensive and green solution, feasible to run
in developing countries where generation cells are difficult to obtain.

2. Materials and Methods

First, the structural assembly of the TGS was designed, which included two comple-
mentary components: a metal plate that might need to be in contact with the brink of the
warmth source, and a finned conductor component for cooling the cold face of the modules,
aiming to improve the temperature difference on the faces of the thermoelectric modules.
Subsequently, the thermoelectric modules were placed between the metal conductors; see
Figure 1.
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Table 1 shows the technical specifications of the thermoelectric modules, SP1848-27145SA
(TEG-GEN) and TEC1-12706 (TEC-REF), used to assemble the TGS provided by the manufac-
turer.

Table 1. Technical specifications of the references of the thermoelectric modules.

SP1848-27145SA (TEG-GEN) TEC1-12706 (TEC-REF)

Cost (USD) 3.50 Cost (USD) 3.05
Dimensions (mm) 40 × 40 × 3.4 Dimensions (mm) 40 × 40 × 3.8
Maximum temperature difference (◦C) 100 Max. temp. difference between faces (◦C) 66–75
Nominal current (mA) 669 Maximum current (A) 6.4
Maximum open circuit voltage (V) 4.8 Maximum voltage (V) 16.4
Nominal power (W) —— Nominal power (W) 72
Hot side temperature (◦C) 150 Hot side temperature (◦C) 50–57
Thermal conductivity (W/cm.◦C) 1.6 Thermal conductivity (W/cm.◦C) 1.2

An assembly was implemented where the heat was supplied through electrical resis-
tances, in which the voltage (mV) and current (mA) values were recorded by different TGS
configurations. The TGS configurations were made up of arrangements of 2 and 6 intercon-
nected thermoelectric modules. In the case of the TGS, it was made up of 2 thermoelectric
modules, and serial and parallel connections were implemented. For the TGS, it was made
up of 6 thermoelectric modules, and serial and mixed connections (combination between
modules connected in series and in parallel, see Figure 2 were used. Likewise, two distances
from the TGS to the heat source were evaluated.
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mixed connection.

Later, an in situ large-scale company furnace facility was tested using the assembly of
the TGS made up of 6 modules, with the same connections used at the laboratory level, but
now with a real process occurring (Figure 3). The heat source, in this case, was the surface
of a drying oven of the Colombian company Sumicol SAS, the larger-scale company of
traditional ceramics in Colombia. In this process, a measurement of the surface temperature
of the furnace wall was made using thermographic techniques. The TGS was mounted
vertically, and the respective voltage (mV) and current (mA) measurements were taken.

Figure 4 is a diagram of the assembly of the experimental platform used, consisting
of the thermoelectric generator with the cells; the fin-type heat dissipation system; and the
data acquisition system, which delivers the information of cold side temperature, hot side
temperature, temperature delta (temperature range: 0 to 800 ◦C), voltage (range: 0 V to 26 V
DC), and current (range: 0 to 3.2 A) and inputs it into Microsoft Excel.
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3. Results and Discussion

The modules used (see Table 1) present a reasonable difference in their cost, the
SP1848-27145SA module being USD 0.45 more expensive than the TEC1-12706 module. The
technical sheet of the two types of modules is quite different, due to the targeted application
for which each one is commercially intended. The SP1848-27145SA module is sold as a
generation module capable of withstanding a maximum temperature of 100 ◦C between
faces, and the TEC1-12706 module is sold as a cooling module and supports a temperature
range of 66–75 ◦C between the faces. The modules evaluated are composed of bismuth
telluride-based materials, both n-type and p-type.

The evaluation of different TGSs was carried out under the experiment design shown
in Table 2, which specifies the parameters for both laboratory and industrial-level tests in
the drying oven.
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Table 2. Design of experiments for the thermoelectric generator at the laboratory and industrial levels.

TGS Designation Level Test Module
Type

Number of
Modules

Connection
Type

Distance
from Source

2TEG-GEN-S-10cm Laboratory TEG-GEN 2 Serial 10 cm

2TEG-GEN-P-5cm Laboratory TEG-GEN 2 Parallel 5 cm

2TEC-REF-S-10cm Laboratory TEC-REF 2 Serial 10 cm

2TEC-REF-S-5cm Laboratory TEC-REF 2 Parallel 5 cm

6TEG-GEN-S-2cm Laboratory TEG-GEN 6 Serial 2 cm

6TEG-GEN-M-2cm Laboratory TEG-GEN 6 Mixed 2 cm

6TEG-REF-S-2cm Laboratory TEC-REF 6 Serial 2 cm

6TEG-REF-M-2cm Laboratory TEC-REF 6 Mixed 2 cm

6TEG-GEN-S-5cm Industry TEG-GEN 6 Serial 5 cm

6TEG-GEN-M-5cm Industry TEG-GEN 6 Mixed 5 cm

6TEG-REF-S-5cm Industry TEC-REF 6 Serial 5 cm

6TEG-REF-M-5cm Industry TEC-REF 6 Mixed 5 cm

3.1. Characterization of Commercial Thermoelectric Cells and Construction of the TGS

Figure 5 shows the results for two TGSs of each reference. The modules used were
SP1848-2714SA (TEG GEN) and TEC-12706 (TEC REF) in both series and parallel connec-
tions at different distances (5 and 10 cm from the heat source). The average temperature of
the source was 530 ± 3 ◦C. For the two cell references, a higher power generation could
be observed when the connection between the modules was in parallel. In the case of the
reference SP1848-2714SA, the configuration that exhibited the better voltage and current
recovery was obtained through parallel connections, with a distance of 5 cm from the
source, and reached a temperature difference of 22.25 ◦C (Tc = 70.75 ◦C and Th = 93 ◦C), a
voltage of 1068 mV, and a current of 106.1 mA. In this configuration, despite presenting
the best performance when reaching maximum difference temperature for each case, the
current and voltage began to decrease.

Figure 5 also shows some fluctuations in the data, which have been related to the
time interval for collecting the information from the data acquisition system, which is
an interval of 2400 ms between samples, and to the rapid increase in temperature delta
experienced by the faces of the thermoelectric modules. It was also observed that when
the modules reached their maximum generation point, the temperatures of the two faces
began to equalize, which resulted in a concentration of data in the final part of the graphs.

The reference of modules TEC-12706 presented a better performance in the configuration
parallel to 5 cm of distance from the source at a different temperature of 17.5 ◦C (Tc = 78.75 ◦C
and Th = 96.25 ◦C), and obtained a voltage of 506.4 mV and a current of 49.8 mA. It can be
seen in Table 3 that a large difference in temperature between the faces of the cells is important,
since this does not guarantee a good performance in the generation of power. This can be seen
in the tests 2TEC REF P 5cm and 2TEC REF S 5cm, in which the difference in temperature is
not directly linked to the voltage, current, or electrical power generated by the cells.

In the TGS GEN P 5 cm and 2TEC REF P 10 cm, it was observed that the maximum
generation for each of the cells was given for a different temperature, 22.25 ◦C. This
differential temperature is given in very similar values of the cold and hot faces of the cells
in the two tests. However, the voltage generation and electrical power reflect the generation
capacity of each of the cells, and it can be observed that the SP1848-2714SA cells come to
generate more than double the energy generated by the TEC-12706 cell under the same
conditions. This is due to the nature of the modules which, in the case of the latter, are
manufactured for thermoelectric cooling, while sp1848-2714SA cells are generating cells,
and support a much higher temperature range.
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Figure 5. Results of electrical power vs. differential temperature for laboratory TGS tests of two
thermoelectric modules (a) TEG- SP1848-2714SA; (b) TEC-12706.

Table 3. Results of the maximum energy recovery values in laboratory tests on two thermoelectric
cells at the laboratory level.

TGS T. Cold (Tc)
(◦C)

T. Hot
(Th) (◦C)

Difference
Temp (◦K)

Electrical
Voltage (mV)

Electrical
Current (mA)

Electrical
Power (W) %ER

2TEG GEN P 5cm 70.75 93.00 22.25 1068.00 106.10 113.31 3.38
2TEG GEN S 5cm 69.25 96.00 26.75 762.60 75.50 26.78 1.43
2TEG GEN P10cm 64.50 80.50 16.00 820.00 80.80 66.26 2.75
2TEG GEN S 10cm 65.25 84.25 19.00 521.00 51.40 57.58 0.94
2TEC REF P 5cm 78.75 96.25 17.50 506.40 49.80 25.22 1.43
2TEC REF S 5cm 80.5 105.75 25.25 256.00 25.50 20.13 0.26
2TEC REF P 10cm 68.25 90.50 22.25 452.40 44.50 7.56 0.90
2TEC REF S 10cm 75.75 90.00 14.25 279.00 27.10 6.53 0.53

Figure 6 shows the voltage and current production of thermoelectric cells for laboratory-
level tests on six thermoelectric modules, SP1848-2714SA and TEC-12706, in mixed and
serial connection. The results obtained for the TEC1-10706 modules in the different con-
nections, 6TEC-REF-S-5cm and 6TEC-REF-M-5cm, do not show a significant difference in
power generation. On the other hand, among the connections in which the SP1848-27145SA
modules were evaluated, a significant difference was observed with respect to the type of
connection. For the 6TEG-GEN-M-5cm test, in which two groups of three modules were
connected in series and then connected in parallel, the difference temperature that was
reached was 35 ◦C, and a power generation of 40 mA and 400 mV was achieved. When
compared to the 6TEG-GEN-S-5cm test, in which the modules were connected in series,
the power generation was higher than 47 mA and 450 mV, but the maximum difference
temperature before the cells began to decrease was 17 ◦C.

Table 4 shows the efficiencies obtained in each 6-cell connection, finding that the
highest efficiency is obtained in the 6TEG-GEN-M-5cm connection at a temperature delta
of 17.3 ◦C.
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Figure 6. Results of laboratory tests with TGS of 6 thermoelectric cells: electric voltage vs. differential
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Table 4. Results obtained for the evaluation of heat recovery efficiency in laboratory tests with TGS
of 6 thermoelectric cells.

Test ∆T (◦K) Pout (mW) QT (W) % ER

6TEC-REF-M-5cm 16.3 6.74 4941.47 0.17
6TEC-REF-S-5cm 15.3 1.99 4638.32 0.22

6TEG-GEN-M-5cm 17.3 14.71 7815.53 0.29
6TEG-GEN-S-5cm 35.7 4.83 16,128.00 0.10

3.2. Industrial-Level Tests in a Drying Oven of the Sumicol S.A.S Company

When characterizing the heat source, the drying oven of the company Sumicol S.A.S
(see Figure 7) was found to have an approximate surface temperature of 163 ± 54 ◦C.
Therefore, the assembly was carried out with the configurations of Table 2. The results of
the differential temperature between the faces of the cell, electrical voltage, and electric
power generated can be seen in Figure 7.
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In Figure 8a, it can be observed that the temperature difference for the different TGS is
small, and that they vary between tests. This is because the parameters of the furnace are
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constantly modified, as the material to be dried can arrive with different humidity levels.
Therefore, the operator in charge creates variations in the operating parameters of the
furnace, thus also generating heating of the ambient temperature, and causing the fin-type
heat dissipation system not to be sufficient to maintain a good difference in temperature
between the faces of the modules. In Figure 8b,c, it can be seen that the best TGS generation
was obtained with 6TEG-GEN-M-2cm. In general, the mixed connections for the different
thermoelectric modules presented better generation than the serial connections. There was
also evidence of fluctuation in the values of the collected data.
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In order to evaluate the heat recovery efficiency of the manufactured thermoelectric
generator, it was taken as a single system, regardless of the number of thermoelectric
modules used. First, an energy balance was created, in which the basic energy equations
were raised. A steady state was assumed, without resistance to contact, and without
radiation. There was a conversion by convection on the internal faces of the thermoelectric
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modules; therefore, the heat flow calculated in the system remained constant, and was
evaluated by means of the equation:

Q = kA
∆T
∆x

(1)

where k is the thermal conductivity of the module, A is the cross-section of the module, and
∆x is the thickness of the module. The ∆T used to find the heat for each of the thermoelectric
generator configurations was the ∆T corresponding to the highest value of electrical power
that was generated during the experimental part.

Equation (1) is the heat flow for a single cell, as the system evaluated at an industrial
level in the drying oven is composed of six cells. This value is multiplied by the total
number of cells in order to obtain the total heat flux of the theoretical system in Watts, see
Equation (2).

QT = 6∗Q (2)

The percentage of electrical power recovered is calculated as follows in Equation (3):

%ER =
Pout

QT
(3)

With Pout, this is the maximum electrical power reached by each configuration. In
Table 5 and Figure 9, the obtained results can be seen.

Table 5. Results obtained to evaluate heat recovery efficiency.

TEST ∆T (◦K) POUT (W) QT (W) % ER

6TEC-REF-M-2cm 6 6.74 2273.68 0.30
6TEC-REF-S-2cm 0.75 1.99 284.21 0.70
6TEG-GEN-M-2cm 2.75 14.71 1242.35 1.18
6TEG-GEN-S-2cm 1.5 4.83 677.65 0.71
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It is evident that the maximum heat recovery efficiency was 1.18% for the 6TEG-
GEN-M-2cm test, in which the SP 1848-27145 cells of thermoelectric generation in mixed
connection were used. This low heat recovery can be attributed to the low temperature
difference that was achieved with the finned heatsink. This is because the constant op-
eration of the drying oven caused the ambient temperature to increase, preventing high
temperature deltas between the faces of the cells.
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As expected and revealed in Figure 2, with less distance to the head source, more
current was recovered (as was voltage and power), which also corresponds to a lower
temperature difference and has a better advantage when compared to cells positioned
further from the head source. When thermoelectric refrigeration cells (TEC-REF) and ther-
moelectric generation cells (TEG-GEN) were globally compared (see Figure 2), TEG-GEN
produced nearly 50% more current than TEC-REF, which justifies its use as recommended
by the manufacturer.

From the results presented above, it is clear that the thermoelectric refrigeration
cells (TEC-REF) are not recommended for generation due to their low costs and poor
availability, although they could be used in many developing countries where regular
generation thermoelectric modules can be unfeasible. This could be a good alternative for
recovering thermal energy and, perhaps upon the optimization of the process, could be
used in the industry under controlled conditions, particularly controlling thermal shock,
high temperature, and handling. In addition, Figure 3 shows the use of a six-cell package,
which is quite suitable for both systems, regardless of the fluctuations between the cells
and their repeatability.

The configurations of primary connections in series and parallel were made in order to
determine which connection presented a better performance for the voltage drop compared
with the direct current circuit in the generator. At the laboratory level, higher voltage values
are shown in the series configuration. Then, for the experimental phase at the industrial
level, a mixed configuration was made in order to have a better balance between the voltage
and current generated. It did not show significant effects on the measurements of these
parameters by the voltage drop, due to external arrangements (such as the size of the cables
used in the two experimental stages). In this last stage, it is evident that, although the
temperature delta is not very high, the configuration that presents better performance is
the mixed one.

On the other hand, Latin America and many other areas of the world have a significant
amount of wasted energy from industrial sources released by chimneys, which are poorly
optimized or not optimized at all for lower emissions of gasses, fumes, and heat. Any
solution towards the circular economy for particle and gas emission reduction may also
consider heat waste reduction, which is not implemented at all in many countries. Therefore,
heat recovery must be considered in the equation if sustainable processing is the goal, and
thermoelectrics are a direct way to recover this.

By observing the results obtained, the implementation of a hybrid heat dissipation
system that uses the recirculation of air or wastewater from industrial processes can be
a promising alternative for thermoelectric generators, aiding them in improving their
efficiency in an environmentally friendly way using the circular economy.

4. Remarks and Conclusions

A summary of the main findings and conclusions are:

• An adequate coupling between the parts of the generation system promotes the best
performance of the thermoelectric modules.

• The TEC1-12706 and SP 1848-27145 generation cooling cells are modules for low-
temperature applications. In the tests carried out, the hot face of the module can reach
a maximum temperature of 120 ◦C when the assembly is 5 cm from the source, which
may explain the fluctuations in the measurements and the mechanical failures in the
cells.

• The speed of variation of the temperature gradient is a determining factor in the power
value generated by the module system, and due to the fact that the two sides of the
cell can reach the same temperature very quickly, the efficiency of the thermoelectric
modules is decreased.

• A heat dissipation mechanism is required that allows a temperature gradient between
the cell faces, and that can be maintained for longer times, which improves the optimal
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performance of the generation system, guaranteeing higher voltages and a better
system performance.

• The maximum heat recovery efficiency was 1.18% for the 6TEG-GEN-M-2cm test, in
which the SP 1848-27145 cells of thermoelectric generation in mixed connection were
used. It is recommended for future work that a hybrid heat dissipation system be
implemented that uses the recirculation of air or wastewater from industrial processes.
This is necessary to increase the temperature delta and to obtain better performances
of the modules.
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