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Abstract: The optimization of battery electric buses (BEBs) systems in transit is receiving considerable
scholarly and practical attention. The practice is to minimize the total system cost to inform the
optimal resource allocation. However, a minimization approach is insensitive to assessing and
accommodating the robustness of BEB transit systems under disruption. This study evaluates the
robustness of the BEB transit system under charging infrastructure disruption using complex network
theory. The results of a mid-size multi-hub network indicate that the BEB system is robust against
disruption if the disruption is resolved in a timely manner (within one hour). Furthermore, multi-
charger charging stations have severe impacts on the system’s robustness. Overall, the BEB system
robustness is more sensitive to the hourly number of buses charging at each station and the duration
of the charging events.
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1. Introduction

The relevance of incorporating electric drive technologies into public transit networks
is expanding to mitigate transportation-related greenhouse gas (GHG) emissions and
improve energy efficiency. This motivated several cities to adopt alternative-fuel buses,
particularly electric buses (e-Buses), in the transit sector. E-Buses have long been seen as
a viable option to substitute conventional internal combustion engine (ICE) buses due to
their enhanced operation performance, noise reduction, and reduced operational costs [1,2].
Furthermore, e-Buses promise significant GHG reductions per passenger kilometer traveled,
even if the electricity is not 100% carbon-free [3].

In general, e-Buses are categorized into three main types: Fuel Cell e-Bus (FCEB),
which generates onboard electricity from fuel cells; Trolly e-Bus, which utilizes overhead
wires that supply the electric motor with the energy continuously; and Battery e-Bus (BEB),
which stores the energy on onboard batteries to power the electric motor [4]. The latter is
considered more economically feasible as it enables the optimal utilization of the charging
process during dwelling times. Moreover, compared to BEB, FCEB faces various practical
challenges due to the lack of global technical regulations for hydrogen vehicles. Also,
Trolley e-Buses require an extensive overhead-wiring infrastructure system [4].

That said, the utilization of BEBs in transit necessitates robust infrastructure planning
and optimization, where each bus route must have a compatible charging scheme to ensure
BEB’s adherence to the operating schedule. However, before phasing out fuel buses, it
is vital for decision-makers and transit agencies to comprehend the implications of an
all-electric bus fleet on the energy infrastructure [5–8].

Towards that end, previous BEB research has been carried out across three broad
domains: (1) BEB components, including the motor, battery, and auxiliary systems that
determine the energy consumption rates [9–11]. Typically, this research domain is tied to
advancing BEB design, and its practical implications are geared toward bus manufacturers.
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(2) Charging infrastructure, including energy storage systems (ESS), charger’s capacity, the
number of chargers, and their spatial distribution. This domain targets the optimal spa-
tiotemporal allocation of BEB infrastructure to satisfy the energy demand/utilization [12,13].
These studies implement two approaches to charging BEBs: en-route and overnight. (3)
Bus transit network modifications, which involve altering bus routes, location of bus stops,
and transfer stations in favor of electrification [14,15].

Together, these domains are addressed using advanced optimization models, which
aim at minimizing the total costs of adopting BEBs systems while mitigating their external
impacts (e.g., on the utility grid and GHG emissions). Furthermore, previous work also
considered the optimal operational feasibility, namely, operational features such as energy
consumption, charging time, availability of chargers, and state of charge (SoC) [1,16,17];
economic features such as the costs of charging infrastructure, operation, maintenance,
vehicle, and battery [18–20]; and environmental features including GHG emissions and the
air quality [21,22].

Despite the plethora of well-established optimization models in the BEB literature,
almost all these models are based on a minimization cost function, meaning that the BEB
system configuration is designed without any redundancy. However, recent optimization
approaches in BEB transit network configuration address this issue by accommodating the
uncertainty related to transit operation and energy demand/supply. These uncertainties are
often associated with energy consumption [23–25], arrival delay to charging stations [26],
and power supply variability [27]. Acknowledging the systemic uncertainty is indeed es-
sential to offer practical solutions for the adoption of BEBs in transit. However, the scope of
these studies focuses on designing the optimal BEB transit system that accommodates these
uncertainties yet not measuring the impacts of disruptions on the system’s performance.

As such, there is a clear gap in understanding and assessing the behavior of the BEB
transit system during disruption (e.g., electricity outage or equipment malfunction), which
has been recently documented [28]. Furthermore, the cascading impacts of disruption on
the BEB transit network operation are still unknown. One can argue for the dire need to
quantify the vulnerability of the BEB transit system to accurately design an optimal BEB
system configuration.

Put another way, the works of [29–31] documented the vulnerability of transit net-
works (using ICE buses) to disruption. In this context, vulnerability indicates the ability of
the BEB transit network to operate under the cascading failure resulting from a disruption
in the network. In this context of BEB, additional disruptions could take place due to an
electricity outage at any point in the utility grid or a malfunction in any of the system
components (chargers).

Toward that end, this study aims to address two research questions:
(Q1) What is the robustness of BEB transit networks under disruptive events such as

electricity outages or equipment malfunction?
(Q2) Which charging profile parameters have significant impacts on the robustness of

BEB transit systems?
In the context of this study, we follow [32] in their definition of robustness is defined as

the system’s ability to maintain the desired level of service despite disruption. In this study,
transit system robustness refers to the ability of the transit system to deliver scheduled trips.
As such, robustness is measured using a service frequency indicator (detailed in Section 3).

Overall, addressing these three research questions brings three substantial contribu-
tions to the BEB research:

- First, we quantify the robustness of a BEB transit network using complex network
theory.

- Second, we analyze the sensitivity of the BEB service robustness to several operational
parameters.

- Lastly, this is the first attempt to evaluate the robustness of BEB transit system net-
works using complex network theory, offering some new insights into the design,
planning, and optimization of BEB transit networks.
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Following this introduction, a literature review of the current BEB optimization studies
is discussed in Section 2. Section 3 presents the methodology, including the optimization
model and the proposed complex network theory model. Section 4 describes the case
study. Section 5 discusses the results, optimization, and robustness. Section 6 explains the
sensitivity analysis results. While section seven discusses the findings and presents the
concluding remarks.

2. Literature Review

The state-of-the-art for optimizing BEB transit system configurations, along with the
associated infrastructure and the charging profile, focuses on optimizing the system costs.
That is to minimize the total cost of ownership (TCO) associated with the implementation
of BEB fleets in transit networks through the optimal allocation of resources. Previous
studies related to BEB system configuration optimization are categorized into three groups;
cost, utility impact, and GHG remissions, as listed in Table 1.

Table 1. Recent BEB system configuration optimization studies.

Author

Objective Functions (Minimize)
BEB System Configuration

Cost Utility
Impact

GHG
Emission

Li [33] 3 Number of chargers
Xiong [1] 3 Number of chargers

Benoliel [34] 3 Number of chargers & Fleet size
Liu [12] 3 Number of chargers & Chargers’ power

Uslu and Kaya [17] 3 Number of chargers
Wu [35] 3 3 Number of chargers & Fleet size

El-Taweel [6] 3 3 Battery capacity, number of chargers & power
Lotfi [36] 3 Battery capacity & Chargers’ power

He [2] 3 Battery capacity & Chargers’ power
Lin [37] 3 3 3 Number of chargers
Lin [37] 3 3 Number of chargers
Liu [7] 3 Battery capacity & Chargers’ power
Bi [22] 3 3 Battery capacity & Number of chargers

Rogge [8] 3 Number of chargers & Fleet size
Kunith [19] 3 Battery capacity
Wang [38] 3 Number of chargers

Cost optimization models, where the main aim is to minimize the TCO of the BEB
system, considering the number of chargers, their locations, and the charging schemes
that fulfill the transit schedules limits [1,8,17,33,34,38]. Furthermore, various studies de-
veloped optimization models for fast-charging infrastructure system that minimizes the
system cost by reaching the optimal battery size for each bus and their charger-rated
power [2,7,12,19,36].

In comparison, cost-utility optimization models aim to minimize the operational cost
and the impact on the utility grid [37]. Moreover, spatial optimization models are proposed
to quantify the number of chargers required for a BEB fleet to minimize construction,
operational and maintenance costs [35]. At the same time, cost-emission optimization
models aim at minimizing the BEB system cost and the life-cycle GHG emissions for both
the operation stage and the end-of-life stage [22].

Another distinct stream of research accommodates the uncertainty of BEB operation
through the utilization of Robust and Two-stage Stochastic optimization approaches), such
as the works of [13,24–26,39–42]. This approach considers the uncertainty associated with
several parameters, as detailed in Table 2. The advantages of the two-stage stochastic and
the robust optimization models are their ability (1) to design the system for the worst-case
scenario and (2) to accommodate the uncertainty distribution of several parameters at
the same time. However, their limitations, with respect to the scope of this study, are the
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inability to assess the robustness of the BEB system under disruptive events. The latter is
the main aim of the present paper.

Table 2. BEB optimization studies with uncertainty.

Author

Robust and Two-Stage Stochastic Optimization

Energy
Consumption Travel Time Charging

Time
Passenger

Load (Mass)
Charging
Demand

Liu [24] 3

Zheng [26] 3

Zhou [40] 3

Bie [39] 3 3

Hu [42] 3 3

Jiang [41] 3

An [13] 3

Liu [25] 3

Overall, the literature adopts optimization models for BEB relying on a minimization
function of the system cost, utility impact, and component sizing. However, a minimization
function is not ideal for BEB system configuration, especially when challenged with disrup-
tion events (e.g., power outage) [43]. Indeed, there is a significant degree of uncertainty
associated with the vulnerability of the BEB transit systems and their robustness against
disruptive events. As such, it is essential to assess the robustness of BEB systems to inform
the optimal BEB system configuration.

3. Methodology
3.1. Problem Description

Infrastructure disruption for BEB transit systems can happen due to two main reasons:
electricity outages and charging station malfunction. Although there are other types
of transit operation disruptions (e.g., congestions, etc.), here we focus on BEB charging
infrastructure disruptions. Figure 1 represents a hypothetical example of the charging
scheme for two BEBs operating on the same route (inbound and outbound). The BEBs
are served by an en-route charging station. A disruption before the scheduled charging
event (e.g., an electricity outage in the charging station) will have varying impacts on the
operation of this route.
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Figure 1. A hypothetical example of the uncertainty in the BEB system’s vulnerability.

If the charging station is disrupted (e.g., no power or charger malfunction), BUS 1 will
not be able to complete the assigned trip, given that the battery State of Charge (SoC) is
lower than the required energy to complete the trip. In comparison, BUS 2 will complete
the assigned trip as their SoC is higher, yet the scheduled charging event will be shifted to
another time (if available).

Therefore, BEB’s infrastructure disruption entails the assessment of the spatiotem-
poral utilization of the charging network, BEB’s SoC, and transit timetables. Given the
interdependency of these three elements, several complex scenarios arise during disruption.

First, some BEBs will not be able to complete their assigned trips on the available
SoC (immediate operation impact). Second, some BEBs will be able to complete their trips;
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however, they will not be able to charge in the rolling horizon (shifted operation impact).
Third, the shifted charging/energy demand will be higher than the capacity of the utility
grid (cumulative utility impact).

Therefore, assessing BEB transit system disruption should consider the spatiotemporal
features of (1) transit operation (timetable and BEB SoC over time), (2) the charging scheme
including schedule, location, and utilization time, and (3) the utility grid specification.

To address this issue, we (1) optimized a BEB transit system using the dominant
optimization technique in the literature. (2) Extract the resultant BEB system configuration,
including battery size, chargers’ rated power, spatial allocation, and the charging schedule.
(3) Model the BEB transit system as a directed weighted network and subject the network to
charging station (node) distribution. (4) Quantify the BEB system robustness by evaluating
the cascading impacts on the BEB transit system. (5) Conduct sensitivity analysis to identify
how the operational parameters influence the robustness of BEB transit systems. Figure 2
details these procedures.
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Figure 2. Robustness Assessment Process.

It should be noted that the contribution of the present study is not claimed from the
optimization model. The contribution is associated with the measurement of BEB system
robustness against charging infrastructure disruption. The optimization model is used as
input to feed the network disruption model. Second, the study is not aimed at offering a
service rescheduling solution, and we treat the scheduled timetable as a hard constraint in
the paper that must be satisfied.

3.2. Optimization Model: Mathematical Formulation

In this work, the optimization model satisfies the objective functions and constraints
based on recent BEB literature. Overall, the model minimizes the total system cost by
considering infrastructure, fleet, and operation. The model satisfies three common assump-
tions:

• The charging process is carried out using both en-route charging during the recovery
time as well as overnight at the depot;

• The charger-rated powers for all stations are homogenous [6];
• The battery sizes for all buses are homogeneous, enabling flexibility of operation [44];
• The model maintains the current fleet size and the operational timetable [13];
• The model accommodates the electricity time of use (ToU) tariff [24].

In particular, the model identifies the optimal number and locations of the charging
stations, which are selected from a set of candidate stations (I). Furthermore, the model
quantifies the optimal configuration of each charging station i ∈ I, (i.e., the number of
chargers Ni and the rated power Pch). From a fleet perspective, the model chooses the
optimal battery capacity for the fleet Ebat from a set of battery capacities Abat. A list of
abbreviations and notations used in the BEB system optimization model is presented in
Table 3.
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Table 3. Abbreviations and notations summary.

Abbreviation Description Index Description

GHG Greenhouse gas i, i′ Index of candidate charging station location

e-Buses Electric buses b Index of BEBs

ICE Internal combustion engine j Index of sub-trips (the distance between each
two consecutive candidate locations)

FCEB Fuel cell electric bus t Index of timeslots

BEB Battery electric bus Variables Description

ESS Energy storage system Fcons Cost of charging stations constructions ($)

SoC State of charge Fchargers Cost of chargers ($)

TCO The total cost of ownership Ff leet Cost of bus fleet, including battery ($)

ToU Time-of-use Fmaint Cost of maintenance ($)

Sets Description Fop Cost of electricity ($)

I Set of candidates charging
stations locations Fsystem Total annual system cost

B Set of BEBs Sarr
b,j,i

Arrival battery energy of bus b after sub-trip
j at charging station i (kWh)

Jb Set of sub-trips of bus b Sdep
b,j,i

Departure battery energy of bus b before
sub-trip j from charging station i (kWh)

Ach Set of charger-rated powers Ec
b,j,i

Energy consumption of bus b during sub-trip
j after departure from charging station i

Abat Set of battery-rated energies

Decision
variables Description

xi Binary decision variable, xi = 1 if the location i is selected to build a charging station, xi = 0 otherwise

Ni A non− negative integer indicates the number of the chargers deployed in location i ∈ I

Pch Charger-rated power (kW)

Ebat BEBs battery-rated energy for all buses (kWh)

yb,j,i,t
Binary decision variable, yb,j,i,t = 1 if the bus b charged at timeslot t in charging station i after sub-trip j,

yb,j,i,t = 0 otherwise

ρb,j,i,t
Binary variable, ρb,j,i,t = 1 if the charged state of bus b after sub-trip j in the charging station i for the current

timeslot t and the later timeslot t + 1 changes, ρb,j,i,t = 0 otherwise

σb,j,i,t
Binary variable, σb,j,i,t = 1 if the charged state of bus b after sub-trip j in the charging station i for the current

timeslot t and the previous timeslot t − 1 changes, σb,j,i,t = 0 otherwise

Parameters Description Parameters Description

Ccons
Cost of construction of

candidate charging station i
($)

e f
b,j

The energy consumption rate of bus b during
sub-trip j (kWh/km)

Cch Charger cost that is related to
its power ($/kW) ebat

b,j

The energy consumption rate of bus b during
sub-trip j caused by one unit of BEB battery

size for 1 km distance (1/km)

Cch
f charger fixed cost ($/unit) rm Maintenance cost percentage from purchase

cost (%)

Cbat Battery cost ($/kWh) Ce(t)
Electricity rate in timeslot t depending on

ToU ($/kWh)
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Table 3. Cont.

Cbus
f

Bus cost without battery
($/bus) θ Number of workdays

Ts Timeslot duration (min) µ0 Discount rate (%)

wb,j
Route factor of bus b in

sub-trip j β Lifespan (years)

Nm
i

Maximum limit of the number
of chargers in charging

station i
rmin Minimum limit (%)

Rb,j,i

Recovery time set of bus b
after sub-trip j at charging

station i
rmax Maximum limit (%)

ηch Charger efficiency (%) db,j Length of sub-trip j of bus b (km)

The objective function of the model is described in Equation (1). Fsystem denotes the
overall BEB system annual cost, which includes charging station construction cost Fcons,
chargers cost Fchargers, fleet cost Ff leet, maintenance cost Fmaint, and operation cost Fop.

All cost parameters in Equation (1), except the operational cost, are calculated for the
system lifespan. Therefore, these parameters are multiplied by an annualized factor related
to the lifespan β and the discount rate µ0 to annualize the cost of the system.

Fsystem =
(

Fcons + Fchargers + Ff leet + Fmaint

)( µ0(1 + µ0)
β

(1 + µ0)
β − 1

)
+ Fop (1)

The five individual costs in Equation (1) are calculated using Equations (2)–(6). The
construction cost is estimated in (Equation (2)), Where xi, i ∈ I is a binary decision variable
that denotes whether a charging station will be installed in location i or not, and I is the set
of candidates charging stations. The charger cost is considered in (Equation (3)) as a linear
function of the charger-rated power with a constant [2], where Ni is the number of chargers
deployed in location i, Pch is the charger’s power (kW), Cch is the charger cost related to
the charger power ($/kW), and Cch

f is the fixed cost ($).

The fleet cost Is presented in Equation (4) in two parts; the cost of the battery, Cbat

($/kWh), which is related to the battery capacity Ebat (kWh), and the cost of the bus,
Cbus

f ($). The maintenance cost is calculated in (Equation (5)) as a percentage, rm, of the
purchase cost of the infrastructure, chargers, and fleet costs. Lastly, the operational cost
is the electricity cost, which is related to the ToU tariff Ce(t) ($/kWh), as described in
(Equation (6)). Where θ is the number of network workdays, Ts is the timeslot duration (h),
Pch is the charger-rated power (kW), and yb,j,i,t is a binary decision variable that denotes
whether bus b ∈ B will charge after sub-trip j ∈ Jb in location i ∈ I during timeslot t ∈ T or
not.

Fcons = ∑
i∈I

Cconsxi (2)

Fchargers = ∑
i∈I

Ni(PchCch + Cch
f ) (3)

Ff leet = ∑
b∈B

(CbatEbat + Cbus
f ) (4)

Fmaint = rm
(

Fcon + Fchargers + Ff leet

)
(5)

Fop = θTs

[
∑
b∈B

∑
t∈T

∑
i∈I

∑
j∈Jb

Ce(t)Pchyb,j,i,t

]
(6)
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The total annual system cost in (Equation (1)) will be minimized under a set of
constraints. First, the battery capacity constraints are presented in Equations (7)–(9). In
Equations (7) and (8), the arrival (Sarr

b,j,i)\departure (Sdep
b,j,i) battery energy for the bus b

at\from the candidate charging stations i after\before accomplishing the sub-trip j (Sarr
b,j,i)

should be greater\less than a minimum\maximum threshold ratio (rmin\rmax) from the
battery size Ebat. These constraints are applied to all buses, b ∈ B, and for all sub-trips,
j ∈ Jb, except for the departure for the first sub-trip. The battery capacity equals the
maximum threshold as presented in (Equation (9)).

Sarr
b,j,i ≥ rminEbat ∀b ∈ B, ∀j ∈ Jb, i ∈ I (7)

Sdep
b,j,i ≤ rmaxEbat ∀b ∈ B, ∀j ∈ Jb, i ∈ I (8)

Sdep
b,1 = rmaxEbat ∀b ∈ B (9)

Equation (10) dictates that the arrival battery capacity for any bus b from a sub-trip j
in location i′ is equal to the departure battery energy from the previous location i mines the
energy consumed during the sup-trip j from i to i′(Ec

b,j,i). The energy consumption rate for
each sub-trip is taken as a linear function of the battery capacity. The energy consumption
for each sub-trip is calculated by multiplying the driving distance db,j of the sub-trip j

by the energy consumption rate (e f
b,j + ebat

b,j Ebat) and the sub-trip route factor wb,j which is
related to the road and traffic conditions following [5].

Sarr
b,j,i′ = Sdep

b,j,i − Ec
b,j,i ∀b ∈ B, ∀j ∈ Jb, i&i′ ∈ I (10)

Ec
b,j,i = db,j

(
e f

b,j + ebat
b,j Ebat

)
wb,j ∀b ∈ B, ∀j ∈ Jb, i ∈ I (11)

The charging strategy constraints in Equations (12)–(16) state that the departure battery
energy Sdep

b,j+1,i of bus b from location i for sub-trip j + 1 is equal to the summation of the
arrival energy Sarr

b,j,i from the previous sub-trip j and the charged energy during the recovery
time Rb,j,i, if it exists. The charged energy during the recovery time is related to the charger-
rated power Pch, charger efficiency ηch, and the decision if the bus was charged or not
yb,j,i,t. The charger decision of bus b after sub-trip j in location i during the timeslot t (yb,j,i,t)
is set to zero during the operation time ∀t /∈ Rb,j,i, as mentioned in (Equation (13)). As
the time is discretized, Constraints (14)–(16) are used to ensure the charging continuity of
each charging event. These constraints are drawn from the work of [45]. While ρb,j,i,t and
σb,j,i,t are auxiliary variables used to calculate the change of the charging state during the
recovery time. In addition, Constraint (16) emphasizes that if the bus charges, the change
from the state of not charging to charging is only one and the same for the change from
charging to not charging to ensure the charging continuity.

Sdep
b,j+1,i = Sarr

b,j,i + ∑
t∈Rb,j,i

ηchTsPchyb,j,i,t ∀b ∈ B, ∀j ∈ Jb, i ∈ I (12)

yb,j,i,t = 0 ∀b ∈ B, ∀j ∈ Jb, i ∈ I, ∀t /∈ Rb,j,i (13)

ρb,j,i,t ≥ yb,j,i,t − yb,j,i,t+1 ∀b ∈ B, ∀j ∈ Jb, i ∈ I, ∀t ∈ Rb,j,i (14)

σb,j,i,t ≥ yb,j,i,t − yb,j,i,t−1 ∀b ∈ B, ∀j ∈ Jb, i ∈ I, ∀t ∈ Rb,j,i (15)

∑
t∈Rb,j,i

ρb,j,i,t = ∑
t∈Rb,j,i

σb,j,i,t ≤ 1 ∀b ∈ B, ∀j ∈ Jb, i ∈ I, ∀t ∈ Rb,j,i (16)

For the charging station constraints, (Equation (17)) ensures no charger deployment
in location i without selecting the location as a charging station. In addition, it constrains
the number of chargers deployed in location i by an upper limit Nm

i which is related to the
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available area in site i. In Equation (18), the number of buses charged in location i should
be lower than the number of chargers available.

Ni ≤ Nm
i xi ∀i ∈ I (17)

∑
b∈B

yb,j,i,t ≤ Ni ∀i ∈ I, ∀t ∈ T (18)

For the variable’s types of constraints, Equations (19)–(25) emphasize that xi, yb,j,i,t, ρb,j,i,t,
and σb,j,i,t are binary, Ni is a non-negative integer, and Pch and Ebat are selected from prede-
fined sets containing different finite predefined levels.

xi ∈ {0, 1} ∀i ∈ I (19)

Ni ∈ Z0+ ∀i ∈ I (20)

Pch ∈ Ach (21)

Ebat ∈ Abat (22)

yb,j,i,t ∈ {0, 1} ∀b ∈ B, ∀j ∈ Jb, i ∈ I, ∀t ∈ Rb,j,i (23)

ρb,j,i,t ∈ {0, 1} ∀b ∈ B, ∀j ∈ Jb, i ∈ I, ∀t ∈ Rb,j,i (24)

σb,j,i,t ∈ {0, 1} ∀b ∈ B, ∀j ∈ Jb, i ∈ I, ∀t ∈ Rb,j,i (25)

The utilized optimization model for the BEB system design is formulated as follows:

Min (1)

s.t. (7− 25)

The optimization model in this formulation is represented as an integer non-linear
programming. The non-linearity exists in Equations (3), (6) and (12). The charger-rated
power (Pch) is the common variable in all the non-linear terms. In addition, the model
considers the homogeneity feature of the charger-rated power for the entire network (Pch).
Therefore, the utilized optimization model could be linearized using a scenario-based
optimization approach by solving the model several times using each level of the charger-
rated power in Ach set (finite set), compare them and select the one that minimizes the
objective function. In this case, the linear model will be solved

∣∣∣Ach
∣∣∣ times, and it will be

converted to an integer linear programming (ILP) model.
Several methods and algorithms have been developed to solve ILP models [46]. Branch

and bound, cutting plane algorithm, dynamic programming, linear programming relaxation
methods (e.g., Lagrangian relaxation), metaheuristics, and population-based evolutionary
algorithms [47]. These methods can be used alone or in combination to solve ILP problems
such as branch and price, branch and cut, and decomposition methods (e.g., Benders’
decomposition and column generation technique) [48]. A detailed description of each
method can be found in [47].

Any commercial solver developed for these methods could handle the ILP model in
a reasonable computational time (e.g., Gurobi and CPLEX). As such, and based on the
formulation of the proposed model, the model is solved using the Gurobi solver.

3.3. Complex Network Representation for BEB Transit System

The BEB transit system consists of e-buses operating several tips that connect between
stops/stations on predefined routes, as shown in Figure 3a. The BEB transit system is
represented through a Complex Network approach. As such, the system is modeled as a
directed weighted network that consists of nodes and links, as shown in Figure 3b.
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Figure 3. A hypothetical example of the BEB representation in complex network theory. (a) BEB
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blue lines represent the directed bus trips (links).

The charging stations (output of the optimization) represent nodes. In comparison,
links are represented by the number of BEBs connected to each charging station. Using this
classification, the Degree Centrality measure (CD) in Equation (26) [49] represents the total
number of bus links connected to each charging station in the network (undirected network),
which is divided into in-degree (Equation (27)) and out-degree (Equation (28)) (directed
network). Where,

←
a ij and

←
a ji are the number of buses going to and from j, respectively.

The total number of buses operating on a link between i and j is aij =
←
a ij +

←
a ji. J′ is the set

of stations connected to j.

Degree Centrality CD CD(j) = ∑J′

i=1 aij (26)

In−Degree Centrality
(

Cin
D ) Cin

D (j) = ∑J′

j=1
←
a ij (27)

Out−Degree Centrality
(
Cout

D ) Cout
D (j) = ∑J′

j=1
←
a ji (28)

The robustness of the BEB system is evaluated under charging infrastructure disrup-
tion using the service frequency indicator R f req

t in Equation (29). It estimates, during the
duration of the disruption, the losses in transit trips due to the disruption. In other words,
BEBs that will not be able to charge during disruption and their SoC cannot satisfy the next
trip will be deemed unavailable, and their assigned trips will be canceled.

Numerically, it represents the ratio between the frequency of bus trips (for each time
t ∈ T) operating on the network after disruption (ND

t ) to the total daily frequency (NTotal).

R f req
t =

ND
t

NTotal × 100 ∀ t ∈ T (29)

It should be noted that: (1) BEBs are removed from operation if the available battery
SoC is insufficient to complete their trips during the disruption time. In case SoC values
are sufficient, no BEBs are removed from the network. (2) We did not re-distribute BEBs to
other charging stations outside their routes, as the reallocation will also result in canceling
the assigned trips.

Furthermore, two disruption scenarios are considered for the charging stations (nodes).
First, we assume a node disruption that will be resolved within the next hour. This is
referred to as hourly disruption. In this scenario, each charging station is disrupted for
one hour, and the impacts of this disruption are assessed for each charging station. Second,
we assume a node disruption that will be resolved by the end of the operation day. This
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is referred to as daily disruption. During the daily disruption, the charging station is
assumed to be out of service from the disruption time till the next day of operation. In this
case, the impact of the daily disruption during each operation hour is also assessed for
each charging station independently. For each scenario, the two robustness indicators are
quantified, and the impact of each charging station on the system’s robustness is assessed.

A methodological flowchart summarizing the methods used in this research is shown
in Figure 4.
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4. Case Study

The Guelph bus transit network is selected as the case study. Located in Guelph City,
Ontario, Canada, this medium-size multi-hubs network operates a fleet of 55 buses that
travel 5,144,238 km (478,120 trips) annually while transporting around 110,000 passengers
daily.

The network dataset is collected for weekday operation from the REMIX platform [50]
and timetable data [51]. Both are based on the general transit feed specification (GTFS) data
of Guelph. A brief description of Guelph’s operation data is illustrated in Table 4.

Guelph network consists of 23 bus routes operating through 506 bus stops/stations (see
Figure 5a). Using the longitude and latitude data for each bus stop/station, we estimated
the distances between each pair of stops/stations; then, we estimated the consumed energy
for each bus trip using the calibrated model [5,9]. Stations that serve more than one
route (e.g., transfer and end stations) are identified as candidate locations for charging
stations “candidate charging stations”. This follows previous research, such as the work
of [12,16,37,52]. As a result, we obtained 19 candidate locations for charging stations, as
shown in Figure 5b.
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Table 4. Timetable data for each bus route in the Guelph bus transit network.

Route ID Tstart
r Tend

r Ttrip
r (min) *

Av. Headway
Time (min)

l(r)
(km) Ntrips,r (#)

1A-College Edinburgh 5:45 24:15 14 30 18.016 76
2A-West Loop Clockwise 5:45 24:15 26 30 35.354 76
3A-East Loop Clockwise 6:00 22:30 43 13 24.528 148
1B- College Edinburgh 5:45 24:15 15 30 18.910 76

3B-East Loop 5:45 24:15 24 30 35.856 64
4-York 5:45 24:15 26 30 10.453 38

5-South Gordon 5:45 24:15 55 30 30.124 76
6-Harvard Ironwood 5:45 24:15 26 30 14.589 76
7-Kortright Downe 5:45 24:15 26 30 19.065 76
8-Stone Road Mall 5:45 24:15 26 30 9.504 38

9-West End Community Centre 5:45 24:15 26 30 11.189 38
10-Imperia 5:45 24:15 28 30 10.500 38

11-Willow West 5:45 24:15 28 30 10.130 38
12-General Hospital 5:45 24:15 26 30 10.289 38

14-Grange 5:45 24:15 25 30 9.755 38
15-College Ave W 5:45 24:15 26 30 13.951 76

16-Route 16 5:45 24:15 54 30 32.117 76
20-Northwest Industrial 5:45 24:15 51 30 29.748 76

50-Route 50 8:00 21:40 13 20 5.178 42
56-Route 56 7:45 21:45 7 30 11.440 58
57-Route 57 7:45 22:25 15 20 8.305 90
58-Route 58 7:45 21:50 15 45 8.523 82

Gordon Corridor 7:45 19:00 24 36 14.913 36

* The data represent inbound and outbound trips. For each route (r): Tstart
r is the beginning of the operation time;

Tend
r is the end of the operation time; Ttrip

r is the time duration for each bus trip; l(r) is the total distance, and Ntrips,r
is the total number of daily trips for route r.
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5. Results
5.1. Optimal BEB System Configuration

The model is coded in MATLAB and solved using the GUROBI solver. The model
runs on a personal computer with Intel® Core i5, 16 GB Ram, and a 4.20 GHz CPU. Overall,
there are 67,011 variables and 82,703 constraints in the study. The optimal solution was
reached in 4 min and 26.17 s.

The results indicate that BEBs could be implemented for Guelph transit. The system
configuration includes 55 BEBs, each with a battery of 100 kWh (homogonous BEB fleet),
with a total energy demand of 28,853.33 kWh/day. In addition, out of the 19 candidate
charging stations, seven charging stations are required for the system with varying rated
power and number of chargers (Table 5). The total annual system cost is $4,840,277.81,
distributed as detailed in Figure 6.

The optimization model allocated seven charging stations out of the 19 candidate
stations (Table 5). Charging station #1 includes two chargers, and charging station #4
contains four chargers. Therefore, the total number of chargers in the network is 11 chargers.
The spatial distribution of the charging stations is depicted in Figure 7. Given that a
homogonous charger power is assumed, all chargers have a rated power of 400 kW.

In particular, Table 5 details the locations of the charging stations, the number of
chargers at each station, and the routes served by each charging station. It is observable
from the data that Charging station #12, located at the depot, is shared between all the
buses; hence it serves all routes at night. In comparison, Charging stations #13 and #15
serve fewer bus routes.
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Table 5. Configuration of the charging stations and the corresponding bus routes.

Charging
Station ID Station Name Number of Chargers per

Station (#) Bus Routes

1 UC South Loop 2 (1-1, 1-2) 1A, 1B, 5, 6, 7, 15, 57

4 GCS East 4 (4-1, 4-2, 4-3, 4-4) 2A, 3B, 4, 5, 8, 9, 10, 11, 12, 14, 16, 20

7 Gordon St. at Harvard Rd. 1 3A, 6, 7

12 Depot 1 1A, 1B, 2A, 3A, 3B, 4, 5, 6, 7, 8, 9, 10, 11,
12, 14, 15, 16, 20, 50, 56, 57, 58, GC

13 Goodwin Dr. at Ray Cres. 1 2A, 5

15 Woodlawn at Wal-Mart 1 3B

19 University 1 50, 56, 57, 58, GCSustainability 2023, 15, x FOR PEER REVIEW 14 of 26 
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Collectively, the BEB fleet utilizes the charging infrastructure for 2656 min (Table 6—the
sum of column 4), and the maximum charging duration for a bus is 37 min/hour. While
the total number of charging events is 1104 events/day (Table 6—the sum of column 7),
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and the maximum number of hourly charging events per charger is seven events/hour
(Table 6—column 9).

Table 6. The hourly charging utilization.

Hour
Number of Utilized
Charging Stations

(#)

Charging
Stations

IDs

Charging Duration
(Minute)

Number of Charging
Events (#)

Number of Buses at
Each Charging

Station (#)Sum. Min. Max. Sum. Min. Max.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

5:00 AM 1 12 44 44 44 7 1 1 7

6:00 AM 6 1, 4, 7, 12,
13, 15 180 8 34 57 1 6 40

7:00 AM 5 1, 4, 7, 13,
15 130 4 26 38 1 5 32

8:00 AM 6 1, 4, 7, 13,
15, 19 176 6 34 51 1 6 37

9:00 AM 6 1, 4, 7, 13,
15, 19 160 2 38 46 1 6 36

10:00
AM 6 1, 4, 7, 13,

15, 19 164 6 32 51 1 6 36

11:00
AM 6 1, 4, 7, 13,

15, 19 292 12 42 68 1 6 44

12:00
PM 6 1, 4, 7, 13,

15, 19 256 6 38 61 1 6 44

1:00 PM 6 1, 4, 7, 13,
15, 19 228 12 40 57 1 7 40

2:00 PM 6 1, 4, 7, 13,
15, 19 258 12 42 59 1 6 42

3:00 PM 6 1, 4, 7, 13,
15, 19 260 12 46 67 1 6 45

4:00 PM 6 1, 4, 7, 13,
15, 19 284 12 42 75 1 6 46

5:00 PM 5 1, 4, 7, 13,
15 118 2 28 32 1 5 26

6:00 PM 5 1, 4, 7, 13,
15 120 2 24 37 1 6 28

7:00 PM 7 1, 4, 7, 12,
13, 15, 19 270 12 40 75 1 7 46

8:00 PM 7 1, 4, 7, 12,
13, 15, 19 296 12 40 71 2 7 45

9:00 PM 7 1, 4, 7, 12,
13, 15, 19 276 12 46 65 1 6 43

10:00
PM 7 1, 4, 7, 12,

13, 15, 19 220 10 44 58 1 6 36

11:00
PM 6 1, 4, 7, 12,

13, 15 210 12 42 47 1 6 36

12:00
AM 6 1, 4, 7, 12,

13, 15 202 8 42 51 1 6 34

1:00 AM 3 1, 4, 12 66 2 44 13 1 3 11
2:00 AM 1 12 36 36 36 6 1 2 6
3:00 AM 1 12 28 28 28 6 1 2 6
4:00 AM 1 12 46 46 46 6 1 1 6

The seven charging stations satisfy the charging demands of 23 bus routes (55 buses).
We listed the hourly charging flow for each operation hour in Table 6. The results also
indicate a significant variation in the utilization rates of the charging stations. This is
attributed to the varying spatiotemporal energy demand induced by the transit operation
timetable and the varied BEB energy consumption. The two energy demand peaks could
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be observed (shaded cells in Table 6) from 11:00 AM to 4:00 PM and from 7:00 PM to 9:00
PM.

Furthermore, the charging utilization rates (number of charging events) per route
are depicted in Table 7. As seen in the last column, the number of charging events varies
significantly per route. This is attributed to the route features, including length, headway,
and energy consumption.

Table 7. Hourly chagrining events per route.

Route
Name 1A 1B 2A 3A 3B 4 5 6 7 8 9 10 11 12 14 15 16 20 50 56 57 58 GC Total

Fleet Size 3 2 4 11 3 1 4 2 2 1 1 2 1 1 1 1 3 3 1 2 2 2 2 55
5:00 AM 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 7
6:00 AM 3 4 3 3 5 2 5 4 6 2 2 2 2 2 2 1 3 3 0 0 1 1 1 57
7:00 AM 2 2 3 5 4 1 5 1 3 1 1 0 1 1 2 0 4 2 0 0 0 0 0 38
8:00 AM 2 2 4 4 5 2 5 4 6 1 1 1 1 1 1 0 4 3 0 0 0 2 2 51
9:00 AM 2 1 4 5 6 1 6 2 4 2 1 1 1 1 1 2 2 3 1 0 0 0 0 46
10:00 AM 2 3 4 4 5 2 6 2 4 2 2 0 2 2 1 1 4 2 0 0 0 2 1 51
11:00 AM 2 3 4 4 5 1 6 3 5 1 2 3 2 2 2 3 4 2 3 2 3 5 1 68
12:00 PM 2 4 4 4 4 2 6 2 4 2 2 1 2 2 1 2 4 3 1 2 4 2 1 61
1:00 PM 2 3 4 4 6 2 7 2 3 2 1 1 2 1 2 3 4 2 1 1 1 2 1 57
2:00 PM 2 3 4 4 6 2 5 3 4 2 2 1 2 1 2 1 4 2 1 2 1 3 2 59
3:00 PM 2 2 4 5 6 1 6 5 6 1 2 2 2 2 2 1 4 2 2 1 2 5 2 67
4:00 PM 1 4 4 6 6 2 6 4 6 2 1 1 2 2 2 5 4 3 2 2 4 2 4 75
5:00 PM 0 2 4 5 5 0 3 0 5 0 1 0 1 0 0 0 3 3 0 0 0 0 0 32
6:00 PM 2 1 4 3 6 2 2 1 4 1 2 0 0 1 1 0 4 2 0 0 0 0 1 37
7:00 PM 3 3 4 4 6 2 7 4 7 2 2 3 2 1 2 2 4 3 1 2 5 4 2 75
8:00 PM 2 4 4 7 6 2 6 3 4 2 2 2 2 2 2 3 4 3 3 2 2 4 0 71
9:00 PM 2 4 4 4 6 1 5 2 4 2 2 2 2 1 2 2 4 3 1 3 4 5 0 65
10:00 PM 2 4 4 2 6 2 6 4 5 1 2 0 2 2 2 2 4 2 0 1 3 2 0 58
11:00 PM 2 2 3 3 6 2 5 3 3 2 1 2 2 1 1 2 3 2 1 1 0 0 0 47
12:00 AM 2 3 4 2 5 2 6 4 5 1 2 2 1 1 1 3 5 2 0 0 0 0 0 51
1:00 AM 0 1 2 0 2 0 3 0 0 1 0 0 0 0 0 1 2 0 0 0 1 0 0 13
2:00 AM 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 6
3:00 AM 0 0 2 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 6
4:00 AM 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 6

Total 38 56 79 79 107 32 10855 90 30 32 26 33 27 29 34 75 50 17 19 31 39 18 1104

Values in the color-coded cells represent the number of hourly charging events for each route, and the last column
and row represent the total.

Along the same lines, the utilization rate (time of use) per charging station varies
significantly, as depicted in Table 8. The number of buses operating at each hour and the
BEBs’ energy demand overtime for each charging station is shown in Appendix A.

Table 8. Hourly chagrining duration (minutes) per charger.

Charger ID 1-1 1-2 4-1 4-2 4-3 4-4 7 12 13 15 19 Total
5:00 AM 0 0 0 0 0 0 0 44 0 0 0 44
6:00 AM 28 20 30 16 10 8 16 34 8 10 0 180
7:00 AM 22 4 24 12 10 10 26 0 12 10 0 130
8:00 AM 24 16 34 18 14 6 30 0 14 12 8 176
9:00 AM 24 8 38 18 8 10 20 0 20 12 2 160

10:00 AM 32 8 22 16 18 16 22 0 16 8 6 164
11:00 AM 42 36 42 28 18 20 40 0 22 12 32 292
12:00 PM 36 22 34 18 18 20 36 0 28 6 38 256
1:00 PM 40 16 32 14 16 22 40 0 22 12 14 228
2:00 PM 42 12 36 28 18 16 42 0 28 12 24 258
3:00 PM 36 16 36 22 18 16 36 0 22 12 46 260



Sustainability 2023, 15, 3642 17 of 25

Table 8. Cont.

Charger ID 1-1 1-2 4-1 4-2 4-3 4-4 7 12 13 15 19 Total
4:00 PM 42 34 30 26 18 18 40 0 28 12 36 284
5:00 PM 12 2 28 16 14 0 28 0 6 12 0 118
6:00 PM 24 0 24 16 10 4 18 0 14 8 2 120
7:00 PM 40 28 40 22 16 22 20 22 22 12 26 270
8:00 PM 40 24 38 16 26 18 38 28 26 12 30 296
9:00 PM 38 20 46 16 18 16 30 24 22 12 34 276
10:00 PM 44 18 24 14 16 18 28 10 26 12 10 220
11:00 PM 28 12 42 16 16 12 20 34 18 12 0 210
12:00 AM 36 18 24 22 14 14 8 42 12 12 0 202
1:00 AM 2 0 10 6 4 0 0 44 0 0 0 66
2:00 AM 0 0 0 0 0 0 0 36 0 0 0 36
3:00 AM 0 0 0 0 0 0 0 28 0 0 0 28
4:00 AM 0 0 0 0 0 0 0 46 0 0 0 46

Total 632 314 634 360 300 266 538 392 366 210 308 4320

Values in the color-coded cells represent the duration (min) of charging events at each charger, and the last column
and row represent the total.

5.2. BEB System Robustness

The results of the service frequency robustness indicator (R f req
t ) due to the hourly

and daily disruption scenarios reported in Figures 8 and 9, and the numerical results are
available in Appendix B. Each line in the graphs should be interpreted as the impact of the
disruption to a charging station on the entire network. Please note that the operation ends
at 1:00 AM; however, Charging Station # 12 (Depot) operates overnight. Hence the x-axis is
fixed to 24 h.

The hourly disruption results (Figure 8) show a relatively small fluctuation in the
service frequency robustness indicator associated with the disruption of each charging
station. The trend is almost similar over time. In other words, an hourly disruption to any
charging station would have the same impact on the service. The service is likely to operate
at 97–100% of its original frequency, indicating a robust operation.

In comparison, for multi-charger stations (i.e., charging stations #1 and #4), the results
show that the impact of an hourly electricity outage (disruption to all chargers) is signifi-
cant compared to equipment malfunction (disruption to single chargers). However, the
magnitude of impact is still marginal, with robustness values between 97.9% and 97.1% for
chargers #1 and #4, respectively.

A daily disruption (Figure 9) to any charging station will reduce the frequency of the
service significantly (up to 57%). Like the hourly disruption, multi-charger stations severely
impact the service in the case of an electricity outage. It should be noted that each dot in
Figure 9 represents the daily impact on the service frequency due to the disruption to the
charger at the given time. It also assumes that the disruption will last until the end of the
operation day. In other words, each dot is one disruption scenario.

5.3. Sensitivity of BEB Robustness: A Discussion

A Sensitivity Analysis is performed to ascertain how the hourly frequency robustness
of the BEB transit system is affected by the BEB charging schedule parameters. These
parameters include (a) the number of BEBs charging at each charging station during each
hour; (b) the number of charging events during each hour per station; (c) the charging
duration, which represents the time that each BEB requires to charge its batteries at each
hour; and (d) energy demand represents the total energy demanded at each charging
station during each hour.
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This study uses a global variance-based sensitivity analysis method, Sobol Indices [53].
Sobol Indices consider the entire input domain and provide a means of gauging the
interactions between the parameters. It calculates the robustness variance and decomposes
it into input parameter contributions. Two Sobol indices are studied: the first-order effect
index Si, which represents the effect of Xi alone, and the total-order effect index STi,
considers the interactions of Xi with other parameters as follows:

Si =
V
[

E
(

Y
Xi

)]
V(Y)

(30)

STi = 1− V[E(Y/X∼i)]

V(Y)
(31)

where V[.] and E(.) are the variance and expected values, respectively. The Sobol sam-
pling [54] and Saltelli estimator [55] are utilized to estimate these two indices (Figure 10).
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Figure 10. Sensitivity analysis results (first- and total-order effects).

The sensitivity results (Figure 10) show that the number of BEBs charging at each
station has the greatest impact on the robustness of the BEB transit system for both first-
order and total effects. The number of charging events and their duration have the second
and third highest impacts on the BEB system hourly frequency robustness, respectively. In
contrast, the energy demand has the lowest influence on robustness.

These results indicate that: First, the charger’s power is less impactful, from a service
robustness perspective, compared to the number of charging events. In other words,
optimizing the charging process to reduce the number of charging events is critical. Second,
allocating multiple chargers at the same location severely impacts service robustness. We
recommend spatially spreading the charging infrastructure to distribute the risk of having
multiple chargers at the same location. This is critical to the depot charging concept.

6. Conclusions

Current BEB infrastructure optimization models adopted in the literature rely on
a minimization function of the total system cost, utility impact, and component sizing.
However, a minimization function is not optimal for BEB system configuration, particularly
when challenged with disruptive events. Furthermore, the cascading impacts of disruptions
on the BEB network are still unidentified [28]. As such, there is a clear gap in understanding
and assessing the behavior of the BEB transit system during disruption.
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This paper answers two primary research questions: First, what is the robustness of
the BEB transit system during disruptive events such as electricity outages or equipment
malfunction? Second, which charging process parameters significantly affect the robustness
of the BEB transit system?

To address these questions, we developed a BEB system configurations optimization
model applied to a Guelph bus transit network as a case study. The resultant BEB system
configuration is extracted, including the battery size, chargers’ spatial distribution, chargers’
power, and charging schedule. The extracted results are used as input in a complex network,
modeled as a directed weighted graph. The resultant charging stations are subjected to
disruptive events representing hourly and daily (discrete events) electricity outages and/or
equipment malfunction. The cascading impacts on the BEB transit system are evaluated to
quantify the robustness of the bus transit network through a service frequency indicator.
Furthermore, the sensitivity of the BEB transit system robustness towards the charging
schedule parameters is analyzed.

The results show that the hourly disruption slightly impacts the BEB service frequency
robustness. Still, the service can operate with more than 97% of its original frequency, which
indicates a robust operation. In contrast, the daily disruption will diminish the service
frequency by up to 57% of the total service frequency.

The sensitivity results show that the charging schedule has a noticeable impact on
the robustness of the BEB system. The number of charging events and their duration
significantly affect the BEB system’s robustness. Therefore, reducing the number of charging
events is critical to attaining a robust operation. Besides, the multiple chargers assigned to
a single location have a deleterious effect on the robustness of the BEB service.

Overall, we recommend transit operators reduce the number of charging events per
charger. This could be addressed by selecting a larger battery size for BEBs or increasing the
number/location of charging stations. Risk disruption is equally critical, which could be
achieved by spreading the charging infrastructure to distribute the risk of having multiple
chargers at the same location.

For scholars, it is worth noting that we presented a reactive robustness assessment of
the BEB transit system. Although valid, it would be more beneficial to proactively address
the BEB robustness in the optimization process by integrating robustness thresholds in the
problem formulation. This item should be addressed in future research studies.
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Appendix A. BEB System Configuration

Table A1. Number of buses operating each hour.

Route
Name 1A 1B 2A 3A 3B 4 5 6 7 8 9 10 11 12 14 15 16 20 50 56 57 58 GC Total

Fleet Size 3 2 4 11 3 1 4 2 2 1 1 2 1 1 1 1 3 3 1 2 2 2 2 55
5:00 AM 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 7
6:00 AM 3 2 3 3 3 1 4 2 2 1 1 2 1 1 1 1 3 3 0 0 1 1 1 40
7:00 AM 2 2 3 5 3 1 3 1 2 1 1 0 1 1 1 0 3 2 0 0 0 0 0 32
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Table A1. Cont.

Route
Name 1A 1B 2A 3A 3B 4 5 6 7 8 9 10 11 12 14 15 16 20 50 56 57 58 GC Total

8:00 AM 2 2 3 4 3 1 3 1 2 1 1 1 1 1 1 0 3 3 0 0 0 2 2 37
9:00 AM 2 1 3 5 3 1 4 2 2 1 1 1 1 1 1 1 2 3 1 0 0 0 0 36

10:00 AM 2 2 3 4 3 1 4 1 2 1 1 0 1 1 1 1 3 2 0 0 0 2 1 36
11:00 AM 2 2 3 4 3 1 4 2 2 1 1 2 1 1 1 1 3 2 1 2 2 2 1 44
12:00 PM 2 2 3 4 3 1 4 2 2 1 1 1 1 1 1 1 3 3 1 2 2 2 1 44
1:00 PM 2 2 3 4 3 1 4 2 2 1 1 1 1 1 1 1 3 2 1 1 1 1 1 40
2:00 PM 2 2 3 4 3 1 4 2 2 1 1 1 1 1 1 1 3 2 1 2 1 2 1 42
3:00 PM 2 2 3 5 3 1 4 2 2 1 1 2 1 1 1 1 3 2 1 1 2 2 2 45
4:00 PM 1 2 3 6 3 1 4 2 2 1 1 1 1 1 1 1 3 3 1 2 2 2 2 46
5:00 PM 0 2 3 5 3 0 3 0 2 0 1 0 1 0 0 0 3 3 0 0 0 0 0 26
6:00 PM 2 1 3 3 3 1 2 1 2 1 1 0 0 1 1 0 3 2 0 0 0 0 1 28
7:00 PM 3 2 3 4 3 1 4 2 2 1 1 2 1 1 1 1 3 3 1 2 2 2 1 46
8:00 PM 2 2 3 6 3 1 4 2 2 1 1 2 1 1 1 1 3 3 1 2 1 2 0 45
9:00 PM 2 2 3 4 3 1 4 1 2 1 1 2 1 1 1 1 3 3 1 2 2 2 0 43

10:00 PM 2 2 3 2 3 1 4 2 2 1 1 0 1 1 1 1 3 2 0 1 2 1 0 36
11:00 PM 2 2 3 3 3 1 4 2 2 1 1 2 1 1 1 1 2 2 1 1 0 0 0 36
12:00 AM 2 2 3 2 3 1 4 2 2 1 1 2 1 1 1 1 3 2 0 0 0 0 0 34
1:00 AM 0 1 2 0 2 0 2 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 11
2:00 AM 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 6
3:00 AM 0 0 2 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 6
4:00 AM 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 6

Total 38 38 63 78 60 19 75 33 40 19 20 24 20 19 18 16 57 50 11 18 19 23 14 772

Table A2. BEBs energy demand overtime for each charging station (kW at each hour).

Charging Station 1 4 7 12 13 15 19 Minimum Maximum Total
5:00 AM 293 293 147 147 147 147 587 147 587 3227
6:00 AM 1213 1213 527 527 527 527 1680 527 1680 11,600
7:00 AM 867 867 390 390 390 390 1187 390 1187 8307
8:00 AM 1173 1173 520 520 520 520 1600 520 1600 11,360
9:00 AM 1080 1080 487 487 487 487 1453 487 1453 10,440
10:00 AM 1093 1093 480 480 480 480 1440 480 1440 10,453
11:00 AM 1947 1947 843 843 843 843 2653 843 2653 19,093
12:00 PM 1707 1707 757 757 757 757 2427 757 2427 17,200
1:00 PM 1520 1520 667 667 667 667 2107 667 2107 14,800
2:00 PM 1720 1720 770 770 770 770 2427 770 2427 17,080
3:00 PM 1733 1733 780 780 780 780 2507 780 2507 17,787
4:00 PM 1893 1893 820 820 820 820 2667 820 2667 18,880
5:00 PM 787 787 370 370 370 370 1093 370 1093 7613
6:00 PM 800 800 360 360 360 360 1080 360 1080 7720
7:00 PM 1800 1800 787 787 787 787 2480 787 2480 17,800
8:00 PM 1973 1973 880 880 880 880 2867 880 2867 19,800
9:00 PM 1840 1840 823 823 823 823 2653 823 2653 18,587
10:00 PM 1493 1493 643 643 643 643 2067 643 2067 14,520
11:00 PM 1400 1400 633 633 633 633 1960 633 1960 13,600
12:00 AM 1347 1347 583 583 583 583 1840 583 1840 12,933
1:00 AM 440 440 217 217 217 217 733 217 733 4533
2:00 AM 240 240 120 120 120 120 480 120 480 2640
3:00 AM 187 187 93 93 93 93 373 93 373 2053
4:00 AM 307 307 153 153 153 153 613 153 613 3373

Minimum 187 187 93 93 93 93 373 93
Maximum 1973 1973 880 880 880 880 2867 2867

Total 28,853 28,853 12,850 12,850 12,850 12,850 40,973 285,400
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Appendix B. BEB Robustness

Table A3. Service frequency under charging station hourly disruption.

Station ID
1 1-1 1-2 4 4-1 4-2 4-3 4-4 7 12 13 15 19

Time of Disruption

5:00 AM 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
6:00 AM 98.64% 99.46% 99.18% 97.68% 99.05% 99.32% 99.59% 99.73% 99.25% 99.86% 99.73% 99.73% 100.00%
7:00 AM 99.18% 99.32% 99.86% 97.82% 98.77% 99.86% 99.46% 99.73% 99.39% 100.00% 99.73% 99.86% 100.00%
8:00 AM 99.05% 99.46% 99.59% 97.89% 98.84% 99.46% 99.73% 99.86% 99.39% 100.00% 99.86% 99.86% 99.32%
9:00 AM 99.05% 99.46% 99.59% 97.75% 99.11% 99.32% 99.59% 99.73% 99.46% 100.00% 99.73% 99.73% 99.80%

10:00 AM 98.77% 99.05% 99.73% 97.28% 99.18% 99.18% 99.32% 99.59% 99.52% 100.00% 99.86% 99.86% 99.52%
11:00 AM 98.09% 98.98% 99.11% 97.82% 99.18% 99.46% 99.59% 99.59% 99.32% 100.00% 99.73% 99.86% 98.84%
12:00 PM 98.09% 98.77% 99.32% 98.02% 99.39% 99.46% 99.46% 99.73% 99.52% 100.00% 99.73% 99.86% 98.64%
1:00 PM 98.77% 99.18% 99.59% 97.21% 98.98% 99.46% 99.32% 99.46% 99.46% 100.00% 99.73% 99.86% 99.39%
2:00 PM 98.57% 98.98% 99.59% 98.02% 99.39% 99.32% 99.46% 99.86% 99.39% 100.00% 99.73% 99.86% 99.05%
3:00 PM 98.43% 99.18% 99.25% 97.41% 99.25% 99.11% 99.46% 99.59% 99.11% 100.00% 99.73% 99.73% 98.98%
4:00 PM 97.96% 98.84% 99.11% 97.14% 99.25% 99.18% 99.39% 99.32% 99.25% 100.00% 99.73% 99.86% 98.77%
5:00 PM 99.18% 99.32% 99.86% 98.57% 99.11% 99.66% 99.80% 100.00% 99.46% 100.00% 99.86% 99.73% 100.00%
6:00 PM 99.32% 99.32% 100.00% 98.23% 99.32% 99.59% 99.46% 99.86% 99.59% 100.00% 99.86% 99.86% 99.86%
7:00 PM 97.89% 98.77% 99.11% 97.41% 99.18% 99.32% 99.46% 99.46% 99.32% 99.73% 99.86% 99.86% 98.57%
8:00 PM 98.16% 98.91% 99.25% 97.28% 98.91% 99.46% 99.18% 99.73% 99.66% 99.86% 99.73% 99.73% 98.91%
9:00 PM 98.16% 98.77% 99.39% 97.68% 99.05% 99.73% 99.46% 99.46% 99.52% 99.93% 99.73% 99.86% 98.91%
10:00 PM 98.30% 98.84% 99.46% 97.41% 99.05% 99.32% 99.46% 99.59% 99.39% 100.00% 99.86% 99.86% 99.59%
11:00 PM 98.64% 99.05% 99.59% 97.96% 98.77% 99.86% 99.59% 99.73% 99.52% 99.93% 99.86% 99.73% 100.00%
12:00 AM 99.18% 99.52% 99.66% 98.84% 99.52% 99.80% 99.66% 99.86% 99.86% 99.66% 99.93% 99.93% 100.00%
1:00 AM 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
2:00 AM NA NA NA NA NA NA NA NA NA NA NA NA NA
3:00 AM NA NA NA NA NA NA NA NA NA NA NA NA NA
4:00 AM NA NA NA NA NA NA NA NA NA NA NA NA NA

5:00 AM–next day NA NA NA NA NA NA NA NA NA NA NA NA NA
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