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Abstract: In this paper, a hybrid control strategy is studied and implemented on an Inductive
Power Transfer (IPT) system to simultaneously realize zero-voltage switching (ZVS) and constant
current (CC) and constant voltage (CV) battery charging. A steady-state analysis of pulse frequency
modulation was conducted, based on the characteristic of voltage gain versus switching frequency,
and CC and CV charging modes were promised. The ZVS of the inverter was obtained by satisfying
the minimum requirement of full discharge of the junction capacitor on the MOSFETs using a
commutation current during the dead-time interval. Two control degrees of freedom are needed to
realize the two control targets. This hybrid control strategy adopts a self-oscillating (SO) control to
achieve ZVS and phase shift (PS) control and a constant output for the series–series (SS)-compensated
IPT system. To validate the hybrid control strategy, a 1.6 kW prototype with 360–440 V input voltage
and 250–400 V output voltage was built and the experimental results show that the peak efficiency
can reach 96.1%. Compared with the conventional variable frequency (VF) control, the hybrid control
method proves that an additional control variable can fulfill the control target in a more flexible
manner, which makes the switching frequency close to the resonant frequency during the charging
process, minimizing the reactive current in the resonant tank and improving system efficiency.

Keywords: constant current/voltage (CC/CV); hybrid control; inductive power transfer; optimal
ZVS tracking; self-oscillation

1. Introduction

Inductive power transfer (IPT) has attracted attention in recent years because of its
high reliability, safety, and convenience. It has been utilized in numerous applications, such
as medical implantable pacemakers, portable electronic devices, electric vehicles (EVs), and
railway transportation. EVs not only consume renewable energy but also act as a movable
power supply. IPT facilitates convenient interactions between EVs and power grids. The
IPT technology used for battery charging in EVs is one of the most promising applications,
and the employment of IPT will considerably alleviate range anxiety. Therefore, the IPT
battery-charging technique is of great importance in the development of the EVs in the
future [1–14].

In order to prevent degradation of battery life and improve the efficiency of the
charging system, some key issues remain to be addressed. For practical applications, a
constant current (CC) and constant voltage (CV) are always essential in the charging profile,
as the equivalent resistance of battery varies dynamically during the charging process [7].
Besides, it is crucial to minimize the reactive current within the charging process on the
premise of a zero-voltage switching (ZVS) operation [15,16], where ZVS can lead to reduced
switching loss and eliminate some of the sources of converter-generated electro-magnetic
interference (EMI) [17].
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According to a literature review, the variable compensation topology has been widely
utilized in battery-charging systems [18–20] and its basic principle involves changing the
resonant tank by using additional switches to implement a CC- and CV-mode charge
operation. As a result, the IPT battery-charging system can achieve a zero phase angle
(ZPA) operation and thereby reduce the reactive current. The adoption of additional
switches should be circumvented to the utmost as it may degrade the system efficiency.
In [21,22], double-sided LCC-compensated IPT charging systems are presented to realize
load-independent CC and CV outputs at two different switching frequencies.

The control strategy is an acceptable alternative to fulfill the charging profile using sim-
ple compensation topologies. They can be roughly categorized as pulse width modulation
(PWM), pulse density modulation (PDM), phase shift (PS), variable frequency (VF), and
self-oscillation (SO), etc. [23–27]. In [23], PS control is adopted to realize a constant current
or voltage output, but it has a serious deficiency: ZVS cannot be achieved throughout the
whole charging process. In [24], VF control is employed to regulate the output voltage with
ZVS for a series–series (SS)-compensated IPT system. Aside from the high reactive current
and component stresses caused by the switching frequency’s deviation from the resonant
frequency, frequency bifurcation may occur when multiple frequencies can satisfy ZVS
operation, resulting in system instability. In [25], a PDM ZVS full bridge converter for an
IPT system is proposed to eliminate the dependence on coupling and load conditions, but
this needs an LC branch to provide the ZVS current, resulting in additional power losses.
In [26,27], SO control is presented for an SS-compensated IPT converter. They mainly focus
on the frequency tuning and dynamic response instead of the regulation of output power.

At least two control degrees of freedom are needed to simultaneously realize the two
control targets, i.e., the constant output and ZVS. Therefore, the other potential solutions
to the above-mentioned issues fall on hybrid control strategies. In [28], the combination
of PWM and phase-locked loop (PLL) is proposed to realize a constant output voltage
and ZVS operation. A new SO-tuning loop for IPT systems with PS and PWM control is
proposed, while the characteristics of battery charging are not investigated [29]. In [30,31],
VF and PS hybrid control strategies are presented for battery-charging systems. Hybrid
control may suffer from hard switching, especially under light load conditions [32]. In [33],
a coordination control of PS and an auxiliary variable inductor (VI) installed in the primary
side are proposed to achieve stable output and extend the ZVS operation range. In [34],
a dynamic tuning method of ZVS angle using a variable capacitor is proposed, and PS is
implemented to achieve a constant output. In [35], it is proven that hybrid controllers can
serve a lot better than standalone controllers in precise control applications.

A hybrid control strategy for CC-CV battery charging and ZVS tracking is studied
and implemented in this paper. The main contributions of this paper are summarized
as follows.

The analysis of a series–series (SS)-compensated IPT system is conducted, looking
at the control target, steady-state analysis of pulse frequency modulation, ZVS tracking,
and limits on the degree of freedom for VF control. During implementation, using the
characteristics of the voltage gains versus switching frequency, the CC- and CV-charging
modes can be achieved. Meanwhile, ZVS tracking is analyzed in detail. This reveals that
the minimum requirement to realize ZVS is to discharge the junction capacitor on the
MOSFETs, which is highly related to the drain-source voltage, dead-time interval, and
commutation current. Two types of control strategies, i.e., VF and SO-PS, are discussed.
This shows that the VF control strategy will be further from the natural resonant frequency,
while the adoption of an additional control variable phase shift helps to complete the same
control target in a more flexible way.

The rest of the paper is organized as follows. Section 2 details the steady-state charac-
teristic of the SS-compensated IPT system. In Section 3, the implementation of a hybrid
control strategy is presented. In Section 4, an experimental prototype with 360–440 V input
voltage and 250–400 V output voltage is built to verify the hybrid control strategy. Finally,
the conclusion is given in Section 5.
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2. Analysis of SS-Compensated IPT System

Figure 1 shows the circuit architecture of the SS-compensated IPT charging system.
The high-frequency inverter has a full bridge consisting of four power MOSFETs (S1-S4). Vin
and vp denote the DC and AC voltages of the inverter, respectively. The rectifier comprises
four diodes (D1–D4) and a filter capacitor Co. vs is the output voltage before the rectifier.
Vo and Io are the output voltage and current of the IPT charging system. Lp and Ls are the
self-inductance of the primary and secondary coils. M is the mutual inductance between
two coils, and the coupling coefficient is k = M/(LpLs)1/2. Cp and Cs are resonant capacitors
that are used to compensate Lp and Ls.
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Figure 1. Circuit architecture of SS-compensated IPT charging system.

For simplicity, the resonant frequency between the primary side and secondary side
are set to be equal, which satisfies:

ωr =
1√

LpCp
=

1√
LsCs

(1)

The transferred power of the IPT system is mainly related to the fundamental com-
ponent while the high-order harmonics contribute little to the power transfer. To simplify
the analysis, the fundamental harmonic approximation (FHA) is used. The ac equivalent
circuit model is shown in Figure 2. ω denotes the switching angular frequency.
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The fundamental component of vp is derived as:

vp =
2
√

2
π

Vin (2)

According to Kirchhoff’s law, the ac equivalent circuit can be expressed by:vp = j
(

ωLp − 1
ωCp

)
ip − jωMis

vs = jωMip − j
(

ωLs − 1
ωCs

)
is

(3)
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2.1. System Specifications

In general, Li-ion battery cells are commonly used for high-voltage battery packs. As
indicated, the cell voltage exhibits a wide voltage range (1–4.2 V) throughout the whole
charging process. In this paper, the voltage range of the battery pack is 250–400 V. The
maximum charging current of the battery pack is 4 A. Figure 3 illustrates a simplified
battery charging profile. There are two sequential processes: CC mode and CV mode.
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Figure 3. The simplified battery charging profile.

From Figure 3, the battery pack appears to the IPT charger as a variable equivalent
resistance RL, which is defined as the ratio of charging voltage to current. During the CC
mode (between the time interval t0 and t1), the corresponding equivalent resistance of the
battery packs increased from RA (62.5 Ω) to RB (100 Ω). In the CV mode, the charging
current will decrease, and the maximum equivalent resistance is RC (800 Ω).

It should be noted that the nominal input voltage of the IPT charger from the front-end
AC/DC converter varies between 360 V and 440 V (400 V ± 10%). Table 1 shows the
electrical specification of the IPT charging system.

Table 1. Electrical specifications.

Parameters Symbol Value

Input voltage Vin Vin_min − Vin_max 360–440 V
Output voltage Vout Vout_min − Vout_max 250–400 V

Maximum output power Po_max 1.6 kW
Air gap d 10–15 cm

Maximum coil diameter Dout 30 cm
Load resistance RL 62.5–800 Ω

2.2. Steady-State Analysis of Pulse Frequency Modulation

Normalized parameters help to find the transfer function of the IPT system. These
equations are defined and explained as follows:

α =
Lp

Ls
γ =

ω

ωr
XLs = ωrLs Q =

π2XLs

8RL
(4)

where α is the inductance ratio of transmitter coil over receiver coil, γ is the normalized
switching frequency in terms of primary natural resonant frequency ωr = 1/

√
LpCp, XLs

stands for the impedance of Ls and Q stands for the load quality factor.
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From (3), the current of transmitter coil can be derived as

ip =

∣∣∣∣∣ vp

αXLs

jγ
(
γ2 − 1

)
Q + γ2

γ4k2Q− (γ2 − 1)2Q + jγ(γ2 − 1)

∣∣∣∣∣ (5)

Hence, the steady-state voltage gain Gv can be expressed as

Gv =

∣∣∣∣∣ jγ3k
√

α

γ4k2αQ− (γ2 − 1)2
αQ + jγ(γ2 − 1)α

∣∣∣∣∣ (6)

According to Figure 2, the input impedance angle ϕ can be calculated as

ϕ = arctan
γ
(
γ2 − 1

) 1
Q +

(
γ2 − 1

)2Q− γ3k2(γ2 − 1
)
Q

γ4k2 (7)

It is well-known that an SS-compensation topology can achieve both CC output and CV
output. To achieve the CC output, the system should be operated at the natural resonance
frequency, and the following equation should be satisfied according to Equation (6).

γ
(

γ2 − 1
)

α = 0 ⇒ γ = 1 (8)

When Equation (8) is satisfied, the voltage gain Gv is inversely proportional to the load
quality factor, which means that only CC output is achieved. However, the following stage
CV output is hard to realize because the system does not have a good voltage regulation
ability unless an additional converter is adopted [36]. Considering the specification listed
in Table 1, there are some constraints when the SS-compensated IPT converter operates
at the CC output condition, i.e., γ = 1. Several preliminary limitations can be drawn as
follows:

(1) The inductance of the primary and secondary coil must be quite large to achieve the
desired mutual inductance M. For instance, the output current at γ = 1 is approxi-
mately inversely proportional to M, i.e., Io = Vin/(ωM). Assuming that the operating
frequency is 85 kHz and k = 0.2, M = 187 µH and the inductance of Lp and Ls is about
0.94 mH. Accordingly, the ac resistance of Litz-wire is quite large, which significantly
degrades the overall efficiency.

(2) The current of primary coil ip turns out to be infinite in the absence of a secondary
coil, which may damage the switches.

Similarly, the value of Gv should have no relationship with the load resistance to
achieve the CV output, i.e.,

γ4k2α−
(

γ2 − 1
)2

α = 0 ⇒ γ =
1√

1 + k
or γ =

1√
1− k

(9)

According to (6) and (7), the voltage gain Gv and input impendence angle ϕ versus the
normalized switching frequency under different load resistances RL are depicted in Figure 4.
As previously stated, the desired output voltage gain window is [Gv,min Gv,max], where
Gv,min = Vo,min/Vin,max = 0.562, Gv,max = Vo,max/Vin,min = 1.111. The voltage controllability
is notably enhanced, and both CC and CV output can be realized within this range. For CC
output, the Gv value can be controlled to follow the curve of equivalent resistance RL and
keep their ratio constant during the charging process, so that CC output can be achieved.
For CV output, Gv remains still.
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As seen from Figure 4b, when γ = 1/
√

1 + k, the input impedance is capacitive and
the MOSFETs cannot achieve ZVS. However, the input impedance is inductive with when
γ = 1/

√
1− k, which contributes to ZVS operation.

2.3. Operation Principle of ZVS Tracking

In order to realize ZVS, the primary coil current ip must be large enough to fully
discharge the junction capacitors within the dead time before conducting the antiparallel
diode. The required charge for a single MOSFET can be represented by the following
expression:

Qr =
∫ Vin

0
Coss(Vds)dVds (10)

where Coss is the output capacitance and Vds is the drain-source voltage. It is difficult
to directly calculate the output capacitance because Coss is a nonlinear function of Vds.
However, according to the input voltage range listed in Table 1, it is justifiable to assume
that the required charge Qr is constant with the MOSFETs datasheet given by manufactures.

Since the dead-time is short enough compared with the switching period, the switching
current can be regarded as constant during the ZVS commutation time interval. Conse-
quently, the average commutation current during the dead-time interval can be derived as:

|Izvs| ≥
4CossVin, max

td
(11)

where td is the dead-time [37].
According to (11), Izvs is expected to be larger than the right side of (11) for the

realization of ZVS. However, a larger Izvs means that more energy is fed back to the input
supply by the resonant tank, posing a great challenge to the circuit components due to the
high current and voltage stresses. Therefore, a minimized IZVS is the best choice for ZVS
within the whole load range. In other words, when Izvs equals the right side of (11), despite
the variation in the coupling coefficient and load resistance, the minimum requirement of
ZVS would be satisfied. The minimum average commutation current during the dead-time
interval should be the reference value used to design the control loop.

2.4. Limitation in Degree of Freedom for VF Control

To adapt to the wide range of output voltage and load resistance, the switching
frequency must swing in a wide range for VF control. The typical operating waveforms of
VF control are depicted in Figure 5.
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Assuming ip(t) = Ipsin(ωt − ϕ), the power that is fed back to the input voltage in one
cycle period, T, can be expressed as

Pf =
Vin

T

[∫ ϕ
ω

0
ip(t)dt +

∫ (π+ϕ)
ω

π
ω

ip(t)dt

]
(12)

where Ip is the rms value of ip. Pf is represented by a light salmon color in the figure.
Similarly, the power transferred to the secondary side without considering the coil

loss, can be written as

Pt =
Vin

T

[∫ π
ω

ϕ
ω

ip(t)dt +
∫ 2π

ω

(π+ϕ)
ω

ip(t)dt

]
(13)

At t = 0, Izvs can be obtained

Izvs = Ip sin ϕ (14)

By combining and solving (12)–(14), it is easy to obtain

Pf = Pt tan2 ϕ

2
(15)

Izvs =
Pt

Vin
tan

ϕ

2
(16)

Figure 4a shows that when the switching frequency deviates from the natural resonant
frequency (γ = 1), the input impedance angle ϕ increases dramatically. According to (15)
and (16), when the power transferred from the primary side to secondary side Pt is constant,
both Pf and Izvs increase with the increase in ϕ, resulting in higher reactive power losses.

As indicated before, there are two main objectives (CC-CV charging and ZVS) that
should be achieved simultaneously to significantly improve the performance of the IPT
system. Apparently, the degree of freedom for VF control cannot satisfy the above two
objectives concurrently. Thus, an extra control variable should be introduced to increase
the degree of freedom of control.

3. Implementation of Hybrid Control Strategy

To make the switching frequency close to the natural resonant frequency within the
entire load range, in addition to the VF control, an extra PS control is used to regulate the
output voltage/current. The key operation waveforms of the VF-PS control are plotted
in Figure 6. G1–G4 represent the gate signals of power MOSFETs S1–S4, respectively, and
vp,1 is the fundamental waveform of vp. The phase-shift angle θ is defined as the phase
difference between the gate signals of switch pairs S2 and S4. It is worth noting that θ only
affects the rms value of vp,1, which can be calculated as

vp,1 =
2
√

2
π

Vin sin
θ

2
(17)
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Figure 6. The typical operating waveforms of VF-PS control.

Figure 6 illustrates that, at time t1, the gate signal G2 becomes zero. As the primary-
side current ip is constant during the dead time interval, the junction capacitor on S1 starts
to discharge, with a commutation current represented by iD1. The commutation current iD1
discharges the charge Qr during the dead time, preparing for the zero-voltage switch-on of
S1. iD1 equals iD2, and iD3 equals iD4. In addition, it is obvious that iD3 is larger than iD1,
which indicates that, if S1 can realize ZVS, all switches S1–S4 can realize ZVS.

From (6) and (17), the steady-state voltage gain G of VF-PS control can be rewritten as

G =

∣∣∣∣∣ jγ3k
√

α sin θ
2

γ4k2αQ− (γ2 − 1)2
αQ + jγ(γ2 − 1)α

∣∣∣∣∣ (18)

According to (18), the 3D gain surfaces G against γ and θ under different loads are
depicted in Figure 7. The red and blue curves are the contours of Gmax and Gmin. This
shows that, with a constant γ, G will decrease as θ decreases. When θ is fixed, G shows a
single-peak curve, as γ varies if the bifurcation phenomena do not exist [38]. Fortunately, G
is a monotone decreasing function in the inductive region, i.e., γ > 1, which is crucial to ZVS
operation. Theoretically, numerous combinations of γ and θ can fulfil the charging profile.
However, only one possible combination can fulfil the charging profile. From Figure 7a to
c, the load resistance ranges from 62.5 Ω to 800 Ω, which demonstrates that the analysis is
valid throughout the whole charging process.
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Self-Oscillating Phase Shift Control Strategy

On the basis of preceding analysis, there are two possible implementation schemes for
VF-PS control strategy, which can be classified into the following types:

Type-I: The VF control loop is in charge of CC-CV charging while the PS control loop
focuses on ZVS.

Type-II: The PS control loop is in charge of CC-CV charging while the VF control loop
focuses on ZVS.

In this work, type-II is adopted.
Inspired by [36], the self-oscillating (SO) control strategy is employed to handle the

ZVS operation. Unlike the traditional VF control, which externally imposes the switching
frequency, SO control can always maintain ip lagging after the rising edge of vp. The
stability of SO can be investigated using the extended Nyquist stability criterion [39,40]
and is not discussed here. SO control also tunes the operating frequency. Therefore, SO-PS
control is a kind of VF-PS control. Figure 8 illustrates the proposed SO-PS hybrid control
diagram of the SS-compensated IPT charging system, where the grey region is analog
circuit and light salmon region is MCU. It is known that the detection of a switching current
ip(t1), used to obtain its instantaneous value at t1, is unnecessary, since it is easily disturbed
by the circuit noise. In this implementation, the current ip is sampled by current sensing
circuits and filtered through the bandpass filter. To compensate for the phase delay caused
by the measurement circuits, a phase-delay compensation circuit is utilized, and its output
signal is represented by vct. Triggered by vct, the hysteresis comparator will produce the
driving signal Sa to drive the MOSFET S1 and S2, and the system frequency is determined
by Sa.
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Figure 8. The diagram of IPT charging system with SO-PS control.

Meanwhile, in the battery charging control loop, the smaller PI output between the CC
mode and the CV mode is selected to determine which charging mode should remain. To
be more specific, if the PI output of the CC loop is smaller than that of the CV loop, then CC
mode will be selected. The PI value is determined by the integral of past difference between
the reference value and the measured value. It is assumed that, initially, both the CC loop
and CV loop have the minimum PI output and the reference values are higher than the
initial values; this would mean that the differences are positive, which would result in an
increment in the respective PI output. The system will start with the CC mode because the
current will first reach its reference value and the difference between the reference current
and measured current is zero; then, its PI output stops increasing. However, the voltage is
far from its reference value at this stage, so the PI of the CV loop is saturated and remains at
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the maximum value, making it larger than that of the CC mode. Based on the principle that
a smaller PI output will be selected, the mode selection picks up the CC mode accordingly.
During the transition from a CC mode to a CV mode, as the system still operates at a CC
mode and the equivalent load resistance keeps growing, the actual voltage exceeds the
reference voltage, leading to a negative difference for the voltage control loop. Then, the
PI output of the CV loop will become desaturated and begin to decrease until it becomes
lower than that of the CC loop. From then on, the system switches to CV mode, and will
not return to CC mode. Figure 9 illustrates the flow chart of the hybrid control strategy.
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To show more details of the control circuit, Figure 10 illustrates the inner structure of
important control units. It can be observed that the self-oscillation is completed by an analog
circuit, and the phase shift is realized by a microprocessor. Each unit is analyzed as follows.
The primary current is sampled by the current sensing circuit and the sinusoidal signal vip
is first filtered by a bandpass filter to get rid of higher-order harmonics. Afterwards, to
implement accurate control on the system, phase delay should be considered; therefore, a
phase-delay compensation circuit is added, whose output is vct, as illustrated in Figure 11.
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Figure 11. Schematic diagrams of Bandpass filter and phase-delay compensation circuit.

In contrast with the ZVS realization method reported in [28,29], the drive signal of
the lagging leg is directly generated by a hysteresis comparator, and the corresponding
hysteresis band width is determined by the minimal commutation current Izvs,ref, which
can be calculated by

Izvs, ref =
4CossVinmax

td
(19)

The operation principle waveforms and hysteresis comparator circuit are shown in
Figure 12. Vct is the output voltage signal of the phase-delay compensation circuit and
input voltage signal of the hysteresis comparator, which satisfies vct = τip, where τ is
a coefficient.
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Figure 12. Schematic diagrams of hysteresis comparator circuit and waveform.
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From Figure 12, the hysteresis band width Vb can be calculated by

Vb =
VctR7

R8
=

4τCossVinmax

td
(20)

In this specific design, Sa would be used to switch on S1 at the crossing point of Vb
and vct. As vct represents ip, and Vb is proportional to Izvs,ref, the crossing point indicates
that the primary-side current ip at this time equals Izvs,ref. If S1 can be switched on at this
point, the commutation current at the rising edge of vp equals Izvs,ref, and can be used to
realize ZVS. The same is true for S2: at the falling edge of Sa, the primary-side current ip
equals Izvs,ref again, and can guarantee the ZVS of S2.

In order to achieve CC-CV charging, the falling edge of vp should be determined
as well. In other words, the gate signal of S3(S4) and Sa must be synchronized with a
controllable phase delay θ. The practical implementation waveforms are given in Figure 13.
The main idea of the synchronization method is to generate a constant-amplitude sawtooth
Sw according to the variations in switching frequency in a microprocessor. Hence, the PI
output of the CC/CV charging loop vt can be compared with Sw, resulting in a pulse Sp.
The pulse Sp is used to set and reset a flip-flop whose output is defined as Sb. Sb would be
used to control the turning on and off for S3 and S4. Consequently, both Sa and Sb input
the dead-time module to define the gate signals, which can avoid any probability of the
shoot-through of the MOSFETs.
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Figure 13. Practical implementation waveforms of synchronization.

Based on the implementation given above, the IPT system with a hybrid control
strategy can achieve ZVS and CC/CV output simultaneously.

4. Experimental Verifications

As shown in Figure 14, a 1.6-kW IPT battery charging system was designed and built
to validate the proposed hybrid control strategy. Two rectangular coils, separated by a
10–15 cm air gap, were used to couple the primary side with the secondary side. Both
coupled coils are formed of a 600-strand Litz wire, and the coils are 30 cm × 25 cm in size.
The thickness of the coils is about 10 mm, including the ferrite bars. The primary coil has
18 turns, and the secondary coil has 24 turns.
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The electrical parameters of the prototype system are listed in Table 2. The primary
coil current ip is measured using the current transducer LA-25P with galvanic separation.
A sampling circuit is employed on the primary side. A DC source (Chroma 62150H) is
employed, and an electric load (Chroma 63206E) serves as the adjustable load resistor.

Table 2. Electrical parameters of the prototype.

Parameters Symbol Value

Primary coil inductor Lp 239.7 µH
Primary compensation capacitor Cp 18.7 nF

Secondary coil inductor Ls 332.1 µH
Secondary compensation capacitor Cs 13.5 nF

Coupling coefficient k 0.2–0.3
Power MOSFETs S1–S4 FCH76N60NF
Rectifier diodes D1–D4 DSEI120-06A

Before the battery charger operation, the amplitude of the primary coil current is
zero, and no signal can be employed to start the oscillations. Hence, a starting process
should be applied to provide initial driving signals. Here, S2 and S3 switches are turned
on: vp = −Vin. Then, S1 and S4 are turned on, while S2 and S3 are turned off. The inverter
applies a step voltage to the resonant network with an amplitude of the input voltage. The
state of the switches is changed when the rising edge of Sa is detected, meaning that the
inverter is undergoing a self-oscillation operation.

4.1. Operation Waveforms

According to (25) and the datasheet of the adopted MOSFETs, the minimal commu-
tation current Izvs,ref can be determined as 3 A when considering some margins. The
steady-state operation waveforms of the IPT charging system at different k conditions are
shown in Figure 15. The charging current is 4 A in CC mode and the charging voltage is
400 V in CV mode, regardless of k. The critical coupling coefficient can be calculated as
kc = 0.25. As seen from Figure 15a,c, when k = 0.2, this means that bifurcation did not occur
and the communication current Izvs is approximately 3.10 A and 3.11 A. In Figure 15b,d,
k = 0.3 > kc, which means that bifurcation occurred, and the measured switching frequency
is 94.6 kHz, i.e., γ = 1.24. In addition, the communication current Izvs is about 2.95 A and
2.87 A.
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To verify the robust performance of the proposed hybrid control method, experi-
mental results were measured with a Vin that changed from 380 V to 420 V when k = 0.3. As 
shown in Figure 16a, Io can be maintained at a steady state of 4 A with a slight overshoot when 
the input voltage changes in CC mode. The communication currents Izvs are 2.9 A and 3.1 A. 
Similarly, the output voltage Vo is almost unchanged in CV mode, as shown in Figure 16b. 
The communication currents Izvs are 2.85 A and 3.07 A, respectively. The response time of 
the control system is around 40 ms. 
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in Figure 17. It should be emphasized that the equivalent resistance of the battery pack 
cannot abruptly change in practical applications. Here, the sudden change in the equiva-
lent resistance RL was only used to test the dynamic performance of the proposed control 
strategy. Figure 17 shows that the proposed IPT system can maintain a constant output 
current in CC mode and a constant output voltage in CV mode when the load changes. 
From the enlarged view of Figure 17a,b, it is clear that ZVS is achieved. The response time 
of RL changed in CC mode in the control system is around 320 ms, and the response time 
of RL changed in CV mode in the control system is around 20 ms. 

Figure 15. Experimental waveforms at Vin = 400 V condition. (a) CC mode, k = 0.2, (b) CC mode,
k = 0.3, (c) CV mode, k = 0.2, and (d) CV mode, k = 0.3.

To verify the robust performance of the proposed hybrid control method, experimental
results were measured with a Vin that changed from 380 V to 420 V when k = 0.3. As shown
in Figure 16a, Io can be maintained at a steady state of 4 A with a slight overshoot when the
input voltage changes in CC mode. The communication currents Izvs are 2.9 A and 3.1 A.
Similarly, the output voltage Vo is almost unchanged in CV mode, as shown in Figure 16b.
The communication currents Izvs are 2.85 A and 3.07 A, respectively. The response time of
the control system is around 40 ms.
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Figure 16. Experimental waveforms at k = 0.3 conditions when Vin changes from 380 V to 420 V.
(a) CC mode, (b) CV mode.

The experimental results were measured when the load suddenly changed, as shown
in Figure 17. It should be emphasized that the equivalent resistance of the battery pack
cannot abruptly change in practical applications. Here, the sudden change in the equivalent
resistance RL was only used to test the dynamic performance of the proposed control
strategy. Figure 17 shows that the proposed IPT system can maintain a constant output
current in CC mode and a constant output voltage in CV mode when the load changes.
From the enlarged view of Figure 17a,b, it is clear that ZVS is achieved. The response time
of RL changed in CC mode in the control system is around 320 ms, and the response time
of RL changed in CV mode in the control system is around 20 ms.
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Figure 17. Experimental waveforms at k = 0.3, Vin = 400 V condition. (a) In CC mode when the RL 
changes from 75 Ω to 95 Ω, (b) in CV mode when the RL changes from 105 Ω to 265 Ω. 

The CC mode will be switched to CV mode when the battery voltage is increased to 
400 V. Figure 18 shows that the CC mode can be smoothly changed to CV mode by com-
paring the corresponding PI values. Clearly, the ZVS is obtained with Izvs = 3.01 A and Izvs 
= 2.88 A. The response time of CC mode changing to CV mode in the control system is 
around 160 ms. 
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To testify the control accuracy of ZVS, the communication current errors ΔIzvs (ΔIzvs = 
Izvs − Izvsref) were measured under various conditions, maintaining CC/CV battery charg-
ing, as shown in Figure 19. The maximum current error is about 0.2 A in comparison with 
the preset value.  
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The measured normalized switching angle frequency γ of the proposed hybrid con-
trol and VF control for different coupling coefficient k and input voltage Vin are plotted in 
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Figure 17. Experimental waveforms at k = 0.3, Vin = 400 V condition. (a) In CC mode when the RL

changes from 75 Ω to 95 Ω, (b) in CV mode when the RL changes from 105 Ω to 265 Ω.

The CC mode will be switched to CV mode when the battery voltage is increased
to 400 V. Figure 18 shows that the CC mode can be smoothly changed to CV mode by
comparing the corresponding PI values. Clearly, the ZVS is obtained with Izvs = 3.01 A and
Izvs = 2.88 A. The response time of CC mode changing to CV mode in the control system is
around 160 ms.
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To testify the control accuracy of ZVS, the communication current errors ∆Izvs
(∆Izvs = Izvs − Izvsref) were measured under various conditions, maintaining CC/CV battery
charging, as shown in Figure 19. The maximum current error is about 0.2 A in comparison with
the preset value.
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The measured normalized switching angle frequency γ of the proposed hybrid control
and VF control for different coupling coefficient k and input voltage Vin are plotted in
Figure 20. For VF control, γ decreases gradually in CC mode while it remains approximately
constant in CV mode, in accordance with the theoretical analysis in Section 2. For the
proposed hybrid control, γ decreases over the whole charging process and moves towards
γ = 1. It is easy to see that the switching frequency of the proposed hybrid control is much
closer to the natural resonant frequency than that of VF control, which reduces the reactive
power loss. The triangles and diamonds are sampling points.
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Figure 20. The measured switching frequency of proposed hybrid control and VF control. (a) k = 0.2,
(b) k = 0.3.

4.2. System Efficiency

The measured system efficiency of the proposed hybrid control and the conventional
VF control are shown in Figure 21. The experimental results show that the maximum
efficiency of the proposed control is 96.7% when Vin = 360 V, k = 0.3, and Po = 1. reaches
6 kW in CC mode. Compared with conventional VF control, the maximum efficiency
improvement in the proposed hybrid control is approximately 2.9% in CC mode, while it is
4.1% in CV mode. The results show that the adoption of phase shift control can provide a
more flexible way to achieve the constant output control target. The triangles and diamonds
are sampling points.
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5. Discussion

The hybrid control strategy has been widely used in the SS-compensated IPT charging
system since, compared with a single-variable control strategy such as VF control, an
additional control variable can provide more degrees of freedom, which contributes to
achieving the control target. For example, in this work, with the help of phase shift control,
the operating frequency is closer to the natural resonant frequency, reducing the reactive
power. Some of the existing literature applied their hybrid control model to the full-
bridge inverter to tune the operating frequency, whereas some used additional components,
such as a variable inductor or capacitor, to change the parameters of the compensation
network with a constant operating frequency. The control strategies mentioned above
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adjust the phase angle between the primary inverter voltage and current. The advantage
of the frequency-tuning method is the elimination of power loss produced by additional
components, and the advantage of the variable inductor or capacitor methods is to the
avoid potential instability caused by bifurcation issues. Table 3 provides a comparison to
other control strategies.

Table 3. Comparison with other relevant control techniques.

Control
Strategy

Input
Voltage

Maximum
Power

Battery
Voltage

System
Efficiency

Output
Type

[28] PWM-PLL 30–60 V 60 W 24 V 87.8% CV

[29] SOS PS-PWM 50 V 220 W 50 V 88% CV

[31] VF-PS 80 V 288 W 32–72 V 94.9% CC-CV

[33] VI-PS 100 V 170 W 72 V 92% CV

[34] SC-PS 30 V 10 W 26 V 87% CC-CV

This work SO-PS 360–440 V 1.6 kW 250–400 V 96.7% CC-CV

For the future scope and an insight into the further developments, in this work, a hy-
brid control strategy is studied and implemented. However, there is not adequate research
on the modelling of the control system and parameter design. In order to optimize the sys-
tem parameter, reduce the response time, and increase the system efficiency, it is necessary
to build up the system modelling to improve the system performance and corresponding
experiments should be conducted to demonstrate the effectiveness of the modelling.

6. Conclusions

An SO-PS hybrid control strategy for an SS-compensated IPT system is studied and
implemented in this paper to realize CC-CV battery charging and ZVS simultaneously. The
hybrid control makes the switching frequency close to the resonant frequency throughout
the whole charging process. The commutation current for ZVS always remains constant,
regardless of the variation in the coupling coefficient and the load. Hardware implementa-
tion was carried out, and the effectiveness of the proposed control strategy was verified by
an experimental prototype. The maximum efficiency is 96.7%, with Vin = 360 V, k = 0.3, and
Po = 1.6 kW.
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The following abbreviations are used in this manuscript:
IPT Inductive power transfer
ZVS Zero voltage switching
CC Constant current
CV Constant voltage
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SO Self-oscillating
PS Phase shift
SS Series-series
VF Variable frequency
EV Electric vehicle
EMI Electromagnetic interference
ZPA Zero phase angle
PWM Pulse width modulation
PDM Pulse density modulation
PLL Phase-locked loop
VI Variable inductor
FHA Fundamental harmonic approximation
Vin DC input voltage
Si ith MOSFET in the inverter
Cp Primary-side capacitor
Lp Transmitter coil
Ls Receiver coil
Cs Secondary-side capacitor
Di ith diode in the rectifier
Co Output filter capacitor
Vo Charging voltage
Io Charging current
vp Inverter output voltage
ip Inverter output current
vs Rectifier input voltage
is Rectifier input current
Rac Equivalent load resistance
M Mutual Inductance
ω Switching angular frequency of the system
Izvs Commutation current
α Inductance ratio of transmitter coil over receiver coil
γ Normalized switching frequency
XLs Impedance of receiver coil
Q Load quality factor
Gv Steady-state voltage gain
ϕ Input impedance angle
k Coupling coefficient
d Air gap
Dout Maximum coil diameter
RL Load resistance
Qr Charge on the parasitic capacitor of the MOSFET
Coss Capacitance of parasitic capacitor of the MOSFET
Vds Drain-source voltage of the parasitic capacitor of the MOSFET
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