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Abstract: The primary contributor to global warming has been the careless usage of fossil fuels.
Urbanization’s threat to the depletion of these resources has made it necessary to find alternatives
due to the rising demand. Four different forms of biofuels are now available and constitute a
possible replacement for fossil fuels. The first generation of biofuels is generated from the edible
portion of biomass, the second generation is made from the non-edible portion of biomass, the third
generation is made from algal biomass, and the fourth generation is made using molecular biology
to improve the algal strain. Second-generation biofuels are extremely important because they are
derived from non-edible biomass, such as agricultural and agro-industrial wastes rich in cellulose,
hemicellulose, pectin, and starch impregnated with lignin, and are hydrolyzed after delignification by
physio-chemical or biological pretreatments using ligninases. The enzymes involved in the hydrolysis
of feedstocks for the production of second-generation bioethanol, a highly acceptable biofuel, are
discussed in this article. Furthermore, the article discusses various fermentation technologies as well
as significant developments in second-generation biofuel production by combining various microbial
enzyme systems.
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1. Introduction

Society’s advancement has raised the standard of living and made jobs easier, but it has
also resulted in environmental issues as a result of excessive use of automobiles, machines,
and other items, which has contributed to the depletion of fossil fuel sources. Urban areas
house 52.5% of the world’s population, with that figure expected to rise to 70% by 2050 [1].
This urbanization is causing excessive use of fossil fuels in the transportation sector. Cities
contribute significantly to CO2 emissions and the indiscriminate use of fossil fuels has put
their reserves at risk [2]. Annual global carbon dioxide emissions are increasing and are
expected to reach 38,836.98 MT (Metric Ton) in 2025. China’s expected CO2 emissions in
2025 are 11,521.21 MT, the United States’ is 11,521.21 MT, India’s is 3158.37 MT, Canada’s is
699.65 MT, Brazil’s is 605.61 MT, Argentina’s is 207.44 MT, Germany’s is 738.77 MT, Turkey’s
is 374.40 MT, Iran’s is 822.46 MT, Saudi Arabia’s is 714.08 MT, South Africa’s is 338.17 MT
and Japan’s is 1091.78 MT [3]. This has prompted researchers all over the world to focus on
environmentally friendly alternatives to fossil fuels. Biofuels are one type of such fuel that
emits fewer GHGs over their entire life cycle [4]. A biofuel is any fuel that is made from
plant biomass and can generate energy for use in a variety of ways [5]. For the production
of biofuels and energy, biomass that primarily consists of starchy crops, such as cereals,
and root tubers, sugary crops, such as sugar cane and beet, agricultural residues, such as
grasses, straws, bagasse, and brans, forestry crops, wood processing residues, dedicated
energy crops, and biodegradable municipal solid waste, can be used [6]. Solid, liquid, or
gaseous biofuels are all possible. Wood, and refuse-derived fuel (RDF), are some examples
of solid biofuels. Biodiesel, biomethanol, bioethanol, biobutanol, etc are examples of liquid
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biofuels, while biohydrogen and biomethane are examples of gaseous biofuels. Given the
increasing global biofuel consumption trend, major research attention has been directed
toward feasible and low-cost biofuel resources, as reported by research publications in the
last 20 years around the world, particularly in Asia, Europe, and the United States [7].

According to the proposed sustainable development scenario, biofuels must meet 9%
of total transportation fuel demand by 2030, up from 3% in 2018. Between 2010 and 2021,
the use of modern bioenergy increased by about 7% per year on average, and it is on the
rise. More efforts are required to accelerate modern bioenergy deployment to meet the Net
Zero Scenario. Biofuel production is not increasing at a rate sufficient to meet this demand,
and it grew 6% year on year in 2019, with an average of 3% growth expected over the next
five years, leaving total production short of 10% by 2030 to meet the pace required for
sustainable development [8]. Food crops account for the majority of biofuels produced. For
better sustainability, advanced biofuel production using non-food feedstocks must improve
and gain a significant share of total biofuel production. Scaling up the production of these
biofuels to a commercial level will require a great deal of effort and innovative research.
Bioethanol and biomass-to-liquid synthetic fuels are among the most important advanced
biofuels because they can be produced using low-cost, abundantly available feedstocks
such as agricultural and agro-industrial residues [9,10].

Traditional biofuels are made from edible feedstocks such as sugar cane juice, molasses,
sugar beet juice, molasses, cereals such as corn, rice, barley, wheat, sorghum, and oils such as
soybean oil and palm oil. These are known as first-generation biofuels. Advanced biofuels
are made from non-edible parts of biomass and are classified into three types based on
the type of substrate used in the production process: second, third, and fourth-generation
biofuels. Waste biomass resources such as agricultural, agro-industrial, municipal solid
waste, and forest residue are used in second-generation biofuels. Third-generation biofuels
are primarily made from algal biomass, which can be used to produce a wide range of
biofuels and other value-added products [11]. The fourth generation of biofuels is a newer
type that uses synthetic biology tools to create electro fuels and photobiological solar fuels
by converting solar energy directly into fuels [12,13]. Recent concerns about the production
of first-generation biofuels caused by the conflict between food and fuel have prompted
experts to investigate alternative biofuel production routes [14]. According to numerous
reports, the cost of food ingredients has risen due to the production of first-generation
bioethanol [15]. The primary reason for preferring second-generation biofuels over first-
generation biofuels is the use of waste and inedible agricultural biomass as a substrate
for fuel generation. Because of its abundance and underutilization in comparison to other
natural resources, lignocellulosic, agro-industrial, and biodegradable municipal solid waste
biomass is a promising feedstock for the production of biofuels.

Due to the extensive food versus fuel debate associated with first-generation biofuels,
the emphasis has shifted to the production of second-generation biofuels because the feed-
stock is easily accessible and has a less significant impact on the food web, water resources,
and ecosystem [16–18]. The current methods for producing second-generation bioethanol
are neither cost-effective nor eco-friendly [19]. As a result, the entire manufacturing process
must be improved to be environmentally friendly and to make the cost of the fuel produced
competitive with other fuels already on the market [20,21]. Biologically mediated lignocel-
lulosic biomass conversion into biofuels appears to be more promising. The primary goal of
this article is to review the environmentally friendly approaches used in biofuel production,
with a focus on the enzymes used in the production of second-generation bioethanol, a
highly acceptable liquid biofuel.

2. Composition of Agricultural and Agro-Industrial Waste Biomass, the Feedstocks for
Second Generation Bioethanol

The majority of plant waste biomass, also known as lignocellulosics, consists primarily
of carbohydrates in the form of cellulose, hemicellulose, and phenolic polymers such as
lignin. Starch, pectin, proteins, acids, salts, and minerals are also present in varying amounts
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in some agro-industrial and biodegradable municipal solid waste biomass residues [18].
The structural composition of some common lignocellulosic biomass residues with the
potential to be used as feedstocks in the production of second-generation ethanol, also
known as cellulosic ethanol, is shown in Table 1 and discussed along with the structural
architecture of pectin and starch, commonly found in agro-industrial wastes such as brans,
spent grains and kitchen waste residues, etc.

Table 1. Lignocellulosic composition (%) of various agricultural wastes on a dry basis of the substrate.

Substrate Cellulose (%) Hemicellulose (%) Lignin (%) Reference

Rice straw 32–47 19–27 5–24 [21]
Rice husk 34.40 29.30 19.20 [22]

Wheat straw 35–45 20–30 8–15 [21]
Corn straw 42.60 21.30 8.20 [21]
Corn cobs 45.00 35.00 15.00 [21]

Corn stover 38.00 26.00 19.00 [23]
Wheat bran 25.30 14.60 3.20 [24]

Sugarcane bagasse 42.00 25–36 19–20 [16]
Sweet sorghum 48–49 20–26 19–20 [25]
Coconut fiber 36–43 0.15–0.25 41–45 [21]

Cocoa pods husk 35 10 14 [26]
Soft wood 40–44 25–29 25–31 [21]

Banana fiber 60–65 6–8 5–10 [21]
Switch grass 36–38 27 17–19 [27]

De-oiled rice bran 9.80 20.60 3.90 [28]
Barley straw 31–45 27–38 14–19 [21]

2.1. Cellulose (C6H10O5)n

One of the major constituents of plant cell walls which is abundantly available on
earth is cellulose which exists as a fibrous structure. It is an unbranched long-chain polymer
consisting of several repeated units of cellobiose which are linked to each other by β-1,4-
glycosidic bonds [29]. These long chains of cellulose are linked together by Van der Waals
and hydrogen bonds packing the cellulose into microfibrils which further bundle together
to build cellulose fibers. The straightness of the chain is determined by the hydrogen bonds
within these microfibrils. The crystalline and amorphous structures within the cellulose
are introduced by interchain hydrogen bonding which imparts order or disorder to the
cellulose structure [18].

2.2. Hemicellulose (C5H8O4)n

Hemicellulose is the second notable and prevalent polymer in plant waste. Being
chemically heterogeneous sets it apart from cellulose. These pentoses (xylose, rhamnose,
and arabinose), hexoses (glucose, mannose, and galactose), and uronic acids (4-o-methyl-
glucuronic, D-glucuronic acids) are branching, heterogeneous polymers [29]. In various
materials, hemicelluloses have varying proportions. For instance, conifers and hardwoods
have widely different proportions and types of xylans and mannan. In conifers, galactoglu-
comananas (5–8%), arabinoglucouronoxilanes (7–15%), and glucomannan (10–15%) are
the primary components, whereas glucomannans (2–5%) and glycoronoxilanes (15–35%)
predominate in hardwoods. The primary hemicellulosic components of grass and cereal
cell walls are arabinoxylans [18]. The general structure of hemicellulose is depicted in
Figure 1.
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Figure 1. Generalized structure of hemicellulose (Xylan type) (Modified from [18]).

2.3. Lignin

Lignin is the third polymer that is widely distributed in nature (Figure 2). This polymer,
which is found in plant cell walls, gives the cell wall of the plant a strong defense against
any microbial invasion. The major three forms of phenyl propane units found in lignin
are guaiacyl propanol also known as coniferyl alcohol, syringyl alcohols also known as
sinapyl alcohol, and p-hydroxyphenyl propanol also known as coumaryl alcohol. Lignin
is primarily viewed as the glue that binds the various parts of lignocellulosic biomass
together, making it water-insoluble. It is extremely challenging to hydrolyze biomass
using enzymatic or microbiological processes because of how tightly lignin is bound to the
cellulose structure [18,30].
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2.4. Pectin

Only a limited amount of pectin can be found in plant cell walls. Pectins are het-
eropolysaccharides comprised of 1,4-linked units of α-D-galactosyluronic acid residues.
Rhamnogalacturonan-I, homogalacturonan, and substituted galacturonans are the three
main pectins that have been identified from plant cell walls [31]. The general structure of
pectin is shown in Figure 3.
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2.5. Starch

Glucose units in starch are connected by glycosidic linkages. Figure 4 shows the archi-
tecture of the two types of polymeric units that make it up: amylose and amylopectin. By
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α-1,4 glycosidic linkages, amylose is made up of linearly linked glucose units. Amylopectin
is made up of linear glucose chains with an α-1,4 linkage that is joined to the side chains by
α-1,6 linkage [32,33].
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The preceding section summarised the various carbohydrates in the form of cellulose,
hemicellulose, phenolic polymer, and other ingredients in lesser amounts such as pectin
and starch that comprise the overall skeleton of agricultural and agro-industrial waste
biomass used in the production of second-generation biofuels. Following the hydrolysis
of polysaccharides into simpler sugar molecules to be converted into bioethanol, the
phenolic polymers are disintegrated first for conversion into various value-added products.
Many developed countries are investing heavily in microbial fermentation and product
regeneration from lignocellulosic feedstock, which necessitates complete exploitation of
the lignocellulosic biomass. Knowing the lignocellulosic biomass composition allows
industries, researchers, and biorefineries to invest in and exploit microorganisms and their
enzyme systems for the development of second-generation bioethanol.

3. Conversion of Agricultural and Agro-Industrial Residues into Bioethanol

The development of a biorefinery for the production of numerous value-added prod-
ucts, including second-generation biofuels from plant biomass waste, has been the subject
of extensive research. Effective cellulose utilization is crucial for making use of lignocellu-
losic biomass because it produces sugars that can be fermented further. But because lignin
acts as a significant barrier to the existing carbohydrates, pretreatment is an extremely
important step in the processing of biomass to disrupt lignin and hemicellulose for efficient
hydrolysis of cellulose in the following stage. Pretreatment, enzymatic hydrolysis, and
fermentation are the three primary processes in the bioconversion of lignocellulosic biomass
into bioethanol [33–35].

3.1. Pretreatment

The fundamental obstacle to the generation of biofuels seems to be the resistant and
crystalline structure of plant biomass [36]. Enzyme interaction with cellulose is necessary
for enzymatic hydrolysis, however, cellulose’s crystalline structure makes enzymatic attacks
difficult. The lignin and hemicellulose matrices are another obstacle because they operate
as physical barriers that reduce the accessibility of activated cellulose to enzymes. Addi-
tionally, lignin reduces the effectiveness of enzymes by binding cellulase [37]. Therefore, a
pretreatment technique is needed to soften the crystalline structure of plant biomass before
enzymatic hydrolysis [38]. The pretreatment process alters the structure and composition
of the biomass and increases the surface area of the cellulose, making it more porous and
more accessible for enzymatic hydrolysis [39–41].
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3.1.1. Goal of Pretreatment

Different pretreatment techniques have been proposed and put into practice for the
maximum release of fermentable sugars from lignocellulosic biomass to improve the
enzymatic hydrolysis of biomass and fermentation yields [42,43].

Pretreatment must have the following qualities to be effective: (i) it must be econom-
ical and environmentally friendly, (ii) the most lignin can be eliminated, (iii) minimum
production of phenols, furans, and furfurals, which prevents fermentation, (iv) recovering
lignin to create other products with extra value, (v) minimal energy required, (vi) pretreat-
ment chemicals must be recovered for future use, (vii) minimum costs of operation and
minimum labor needs.

3.1.2. Factors Affecting the Choice of Pretreatment

Several considerations need to be taken into account when choosing a pretreatment
method for a certain feedstock. These variables primarily comprise the biomass’s total
hemicellulose and lignin contents, cellulose’s degree of crystallization, polymerization, and
permeability [44–46].

3.1.3. Types of Pretreatments

Different types of pretreatment technologies have been studied so far and basically,
four types of strategies have been categorized including (i) mechanical or physical involving
mechanical milling and exposure to high temperature using steam (ii) chemical involving
the use of acids, bases, oxidizing agents or ionic liquids alone or in combination with steam
and are energy intensive (iii) physicochemical involving acid or ammonia explosion which
are also energy intensive, (iv) biological involving the microorganisms or microbial enzyme
systems for disrupting lignin and hemicellulose. Table 2 summarises different pretreatment
methodologies and their effects on biomass. Because this manuscript is about enzyme
systems for the production of second-generation biofuels, biological pretreatment is more
relevant here and will be discussed in detail hereafter.

Table 2. Various methods, processes, and their impact on lignocellulosic biomass during the pretreatment.

Nature of
Pretreatment Method Process Impact Reference

Mechanical or
physical

Milling Roll, ball, hammer, disk, and colloid
milling

Decreases polymerization
and crystalline structure of
cellulose, increases specific

surface area

[47]

Extrusion Mixing, heating, and shearing of
biomass

Alterations in the physical
and chemical structure.
Defibrillation and fiber

shortening

[48]

Pulse electric field A sudden burst of high voltage between
5.0–20.0 kV/cm for nano to milliseconds

Disruption of the cell wall
and electroporation [49]

Microwave Irradiation with 2450 MHz microwaves
(170–200 ◦C)

Alterations in the
ultra-structure of cellulose,

partially removes
hemicelluloses and lignin

[50,51]

Chemical
Acidic

Treatment with dilute HCl, H3PO4,
HNO3, H2SO4, acetic acid, citric acid,

oxalic acid, maleic acid, fumaric acid, etc
Hydrolysis of hemicellulose [9]

Alkaline Treatment with dilute NaOH, KOH,
Ca(OH)2, NH4OH Efficient removal of lignin [9]
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Table 2. Cont.

Nature of
Pretreatment Method Process Impact Reference

Physicochemical

Wet Oxidation
Treatment with oxidative agents such as
peracetic acid, sodium chlorite, KMnO4,

and H2O2 at high temperatures

Higher lignin and
hemicelluloses solubilization [52]

Organosolv

Treatment with organic or
aqueous–organic solvent systems with

or without added catalysts in the
temperature range of 100–250 ◦C

Hydrolysis of lignin and
hemicellulose [53]

Ammonia Fibre
Expansion treatment

(AFEX)

Treatment with anhydrous or liquid
ammonia at a temperature ranging from

90 to 100 ◦C followed by a successive
lowering of pressure

Lignin removal [54]

Steam Explosion
Exposure to saturated steam under high
pressure followed by a sudden lowering

of pressure

Lignin removal and
hemicellulose solubilization [55]

Liquid hot water Use of high temperature of 170◦–230 ◦C
and pressure more than 5 MPa Removal of hemicelluloses [56]

Biological Enzymes or
microorganisms

Acton of lignin-degrading enzymes
such as peroxidases and laccases Lignin degradation [46,57]

Biological Pretreatment

Biological pretreatment uses less energy and is less harmful to the environment than
chemical and physical procedures. Natural diversity includes a variety of ligninolytic and
hemicellulolytic microorganisms that can be used for the pretreatment of biomass [38].
Because they destroy lignin and hemicellulose with only a small amount of cellulose, a
variety of white, brown, and soft rot fungi have been employed for biological pretreat-
ment [57]. White-rot fungi degrade lignin due to the presence of lignin-degrading enzymes
including peroxidases and laccases. With the aid of mediators, laccase can directly tar-
get the nonphenolic and phenolic subunits of lignocellulosic biomass, causing structural
changes [58].

Some of the white-rot fungal species that have been investigated for the biological
pretreatment of biomass include Pycnoporus cinnarbarinus. Phanerochaete chrysosporium,
Cyathus stercolerus, Ceriporia lacerata, Ceriporiopsis subvermispora, Pleurotus ostreaus.
Other basidiomycetes used for biological pretreatment include Fomes fomentarius, Gan-
oderma resinaceum, Lepista nuda, Irpex lacteus, Trametes versicolor, and Pycnoporus
sanguineus [59–64]. The biological pretreatment of the biomass can be accomplished in
three different ways, which include the use of enzymes, a consortium of microorganisms, or
fungi that can degrade lignin [22]. Ma and Ruan [65] explored simultaneous delignification
and hydrolysis of corn stover by co-culturing Coprinus comatus and Trichoderma reesei. A
range of white-rot fungi was investigated in a study to discover the optimum biological
pretreatment for corn stover, and Cyathus stercoreus NRRL-6573 produced the highest
carbohydrate conversion [62]. Although biological pretreatment has advantages, it is not
favored on an industrial scale because it is too sluggish [66]. Therefore, for biological
pretreatment to be applied at the industrial level, it is necessary to discover more fungi
that can delignify biomass but at faster rates. Rastogi et al. [67] observed that Pyrenophora
phaeocomes S-1 cultivation on rice straw led to 63 and 51% lignin and hemicellulose break-
down, respectively. Further extraction of these components using a mild alkali revealed that
the overall losses for lignin and hemicellulose were 78 and 60%, respectively. An increase
in hydrolytic efficiency was seen in a study by Yan et al. [68] by using the Cupriavidus
basilensis B-8 strain of bacteria in conjunction with diluted acid pretreatment. By forming
pores in the biomass and removing the lignin droplets created by the acid treatment, the
bacteria increased the surface area available for enzymatic action.
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3.2. Hydrolysis to Release Free Sugars for Fermentation into Ethanol

Pretreatment is followed by hydrolysis of the pretreated substrate to saccharify it
leading to the release of monomeric sugars. Hydrolysis can be performed by acid or
enzymatic treatments.

3.2.1. Acid Hydrolysis

For a remarkably long time, diverse substrates have been hydrolyzed using acid. The
two most frequently used acids are H2SO4 and HCl, which can be utilized in both diluted
and concentrated forms and at varied concentrations. Dilute acid hydrolysis involves
two processes. The first step in the process is the saccharification of carbohydrates, and if
the reaction persists, sugars will then be converted to furfurals. Because cellulose breaks
down more slowly than hemicellulose, a two-stage process is necessary to prevent the
formation of furfurals from the sugars released from hemicellulose. The first stage of the
process recovers the sugars from the hemicellulose under mild conditions, and stage two
recovers the sugars from the cellulose under harsher conditions. The effective enzyme
from Penicillium consortium and acid hydrolysis of poplar were also compared by Liang
et al. [69], who concluded that the sugar yield from enzymatic hydrolysis is superior.

3.2.2. Enzymatic Hydrolysis

Since it does not result in the production of inhibitors, enzymatic hydrolysis of the
pretreated substrate is preferred to acid hydrolysis. Furthermore, the enzymes contain no
secondary reactions and work in a highly precise manner. By pretreating the substrate,
cellulose and hemicellulose’s crystalline structure is broken down, allowing the enzymes
to attack them and liberate sugars (Figure 5). Cellulases and hemicellulases are needed to
break down cellulose and hemicellulose, which are the two main carbohydrates found in
the cell wall structure [70]. The pretreated substrate must also include starch and pectin for
amylases and pectinases, the corresponding enzymes, to fully saccharify the substrate.
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Enzymatic hydrolysis has several benefits, such as high specificity, a higher sugar
yield, milder reaction conditions, and a reduced formation of undesirable products [71]. Ad-
ditionally, enzymatic saccharification offers a more cost-effective, environmentally friendly
method for releasing sugars from lignocellulosic biomass.

Microbial Enzymes Involved in the Hydrolysis of Feedstocks for the Production of
Second-Generation Bioethanol

Rice straw, wheat straw, corn stover, corn cobs, barley straw, sugarcane bagasse,
rice husk, switchgrass, cotton stalks, and poplar biomass, among others, contain 30–48%
cellulose and 15–30% hemicellulosic carbohydrates [72]. Cellulases and hemicellulases
are thus essential for the efficient saccharification of these residues and the production
of free sugars from them. Other agro-industrial residues, such as wheat bran, fruit peels,
vegetable waste, rice bran, maize bran, and apple pomace, contain starch and pectin in
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addition to cellulose and hemicellulose [28,73,74]. As a result, amylases and pectinases are
required for the hydrolysis of these biomass residues. Enzyme systems containing cocktails
of various hydrolytic enzymes are required for complete and simultaneous hydrolysis of
all carbohydrates in various feedstocks for the production of second-generation bioethanol.
The following sections discuss the individual enzymes of various systems, along with
their modes of action, required for the efficient hydrolysis of various polysaccharides in
feedstocks for the generation of second-generation bioethanol.

Cellulases

The majority of the time, lignocellulosic biomass requires a combination of numerous
enzymes, the most crucial of which are cellulases. Cellulases are classified structurally
as glycosyl hydrolases, which hydrolyze cellulose’s β-1,4-D-glucan connections to create
cellobiose and glucose [75]. To completely dissolve the cellulose framework, three enzymes
must act together as depicted in Figure 6 and the role of various enzymes is as follows:

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 28 
 

 

Cellulose is the primary growth medium needed by the microbes that make cellu-
lases, while they can also use other carbohydrates. Cellulase-producing microorganisms 
include fungi such as Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus 
oryzae, Fusarium oxysporum, Trichoderma viride [60–65]. 

 
Figure 6. Mode of action of enzymes involved in the breakdown of cellulose (Modified from [21]). 

Hemicellulases 
The second most abundant polymer in nature is hemicellulose which comprises 

xylan, mannan, arabinan, and galactan. It is soluble in aqueous alkali but not in water or 
any chelating agent [76]. The enzyme market for hemicellulases is expanding quickly 
because these enzymes are used in a variety of industrial processes. The second-most 
prevalent carbohydrate in lignocellulosic is called xylan, which is a het-
ero-polysaccharide made up of 1,4-β-D-xylose monomers with different substituents [77]. 
Figure 7 shows the mode of action of xylanase for the breakdown of xylan [18]. When 
xylan is hydrolyzed by xylanase, oligosaccharides are produced, which are then hydro-
lyzed by 1,4-β-xylosidase to produce xylose [78]. For complete hydrolysis of xylans, other 
enzymes such as ferulic and p-coumaric esterases, xylan esterases, α-4-O-methyl gluco-
ronosidases, and α-1-arabinofuranosidases work in concert [57]. 

 
Figure 7. Mode of action of enzymes involved in the breakdown of xylan (Modified from [18]). 

In addition to xylanase, mannans, and heteromannanas are additional polysaccha-
rides that are found in the hemicellulose of plant cell walls. D-mannose, a six-carbon 

Figure 6. Mode of action of enzymes involved in the breakdown of cellulose (Modified from [21]).

Endoglucanase or Endo-β-1,4-glucanase (EC 3.2.1.4): It makes short-chain oligomers
containing non-reducing and reducing tails by randomly cutting the amorphous area
of cellulose.

Cellobiohydrolase or Exo-β-1,4-glucanase (EC 3.2.1.91): Endoglucanase’s catalytic
activity produces non-reducing endings that are hydrolyzed to produce cellobiose, a
repetitive unit containing two glucose molecules.

Cellobiase or β-glucosidase (BG) (EC 3.2.1.21): To generate monomeric glucose units,
it hydrolyzes cellobiose units.

Cellulose is the primary growth medium needed by the microbes that make cellulases,
while they can also use other carbohydrates. Cellulase-producing microorganisms include
fungi such as Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus oryzae,
Fusarium oxysporum, Trichoderma viride [60–65].

Hemicellulases

The second most abundant polymer in nature is hemicellulose which comprises xylan,
mannan, arabinan, and galactan. It is soluble in aqueous alkali but not in water or any
chelating agent [76]. The enzyme market for hemicellulases is expanding quickly because
these enzymes are used in a variety of industrial processes. The second-most prevalent
carbohydrate in lignocellulosic is called xylan, which is a hetero-polysaccharide made up
of 1,4-β-D-xylose monomers with different substituents [77]. Figure 7 shows the mode
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of action of xylanase for the breakdown of xylan [18]. When xylan is hydrolyzed by xy-
lanase, oligosaccharides are produced, which are then hydrolyzed by 1,4-β-xylosidase
to produce xylose [78]. For complete hydrolysis of xylans, other enzymes such as fer-
ulic and p-coumaric esterases, xylan esterases, α-4-O-methyl glucoronosidases, and α-1-
arabinofuranosidases work in concert [57].
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In addition to xylanase, mannans, and heteromannanas are additional polysaccharides
that are found in the hemicellulose of plant cell walls. D-mannose, a six-carbon sugar, makes
up the majority of mannan, but because plant mannans have a complex and heterogeneous
structure, it takes a combination of endo-1,4-β-mannanases, exo-mannosidases, and other
enzymes to completely break them down [79]. These enzymes can also remove the side
chain sugars that are present at various locations on mannans. The following enzymes
are involved in the hydrolysis of different hemicellulosic structures. Xylan degradation is
carried out by three different types of xylanases [80].

Endo-β-1,4-xylanase (EC 3.2.1.8): By hydrolyzing glycosidic linkages to release linear
and branching oligosaccharides, it randomly splits the xylan chain.

Exo-β-1,4-xylanase or β -1,4-xylan xylohydrolase: It eliminates monomeric xylose
units from the xylan polymer’s non-reducing terminus.

β-1,4-xylosidase or Xylobiase. (EC 3.2.1.37): This enzyme hydrolyzes disaccharides
such as xylobiose and the higher xylooligosaccharides that have a lower specific affinity.

The following enzymes, whose modes of action are also shown in Figure 8, are
considered to be involved in the hydrolysis of mannan and galactomannans by Moreira
and Filho [81].
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its degradation and the oligosaccharides released.

Endo-β-1,4-mannanase (EC 3.2.1.78): It generates new chain endpoints by randomly
cleaving the mannan’s β-1,4-linkage internal links.

Exo-β-mannosidase (EC 3.2.1.25): It releases mannose sugar moieties by cleaving β-
1,4-linked mannosides from the non-reducing ends of mannan and mannooligosaccharides.

β-glucosidase (EC 3.2.1.21): This enzyme hydrolyzes the 1,4-β-D-glucopyranose found
at the non-reducing ends of the oligosaccharides produced from glucomannan and galac-
toglucomannan.
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α-galactosidase (EC 3.2.1.22): It is a debranching enzyme that breaks down the α-1,6-
linked D-galactopyranosyl side chains of galactomannan and galactoglucomannan.

Acetyl mannan esterase: It is a debranching enzyme that causes galactoglucomannan
to release its acetyl groups.

Agaricus [82], Aspergillus [83,84], Fusarium [84,85], and Trichoderma [86–89] are fungi
that have been discovered to break down hemicellulose. Hemicellulases are produced
mostly by gram-positive bacteria, such as Bacillus species [90,91] and Clostridia species [92,93].
Among the actinomycetes, some species of Streptomycetes group [94].

Pectinases

Pectinases are the enzymes that hydrolyze pectic polysaccharides into monomers such
as galacturonic acids. Pectin is a major component of plant cell walls, so to completely break
down the lignocellulosic biomass, pectinases are required to completely hydrolyze the
pectic materials. This lowers the viscosity of the medium and creates an ideal environment
for the other enzymes to act on different polysaccharides. The following are the primary
enzymes [95] involved in the hydrolysis of pectic substances:

Protopectinases: To liberate soluble form polymerized pectin, they dissolve pro-
topectin. These are divided into two types: type A, which acts with protopectin at the
polygalacturonic acid chain area, and type B, which acts with the polysaccharide chains
tying the polygalacturonic acid chain to the components of the cell wall.

Pectin Methyl Esterases (PME) (EC 3.1.1.11): Pectin methyl esterases de-esterify the
methyl group of pectin, releasing pectic acid and methanol in the process. Before pectate
lyases and polygalacturonases, which require non-esterified substrates, it catalyzes de-
esterification.

Pectin Acetyl Esterases (PAE): To liberate pectic acid and acetate, it catalyzes the
hydrolysis of the acetyl esters found in pectin.

Polymethylgalacturonases (PMG): The pectin backbone’s α-1,4-glycosidic linkages are
broken down, resulting in the formation of 6-methyl-D-galacturonate. It has both endo
and exo modes of action. Exo-PMG catalyzes a reaction at the non-reducing end of the
substrate while endo-PMG randomly cleaves the substrate.

Polygalacturonases (PG): To create D-galacturonate, it cleaves the polygalacturonic
acid’s α-1,4-glycosidic linkages. It can act in both endo and exo modes, just as PMG. Exo-PG
(EC 3.2.1.67) catalyzes the reaction at the non-reducing end of the substrate while endo-PG
(EC 3.2.1.15) randomly cleaves the substrate.

Pectate Lyases (PGL): To release α-4,5-D-galacturonate from the glycosidic bonds
in polygalacturonic acid, it performs a trans-elimination reaction. Exo-PGL (EC 4.2.2.9)
cleaves the substrate at the nonreducing end, whereas endo-PGL (EC 4.2.2.2) operates on
the substrate at random.

Pectin Lyases (PL): It performs trans elimination of glycosidic connections to randomly
break the esterified pectin and create unsaturated methyloligogalacturonates.

Numerous bacteria and fungi that cause plant disease produce pectinolytic enzymes
to aid in host invasion. Additionally, they aid in the recycling of carbon ponds in na-
ture by decomposing dead plant materials. Numerous organisms have been shown to
generate pectinolytic enzymes, including Aspergillus [96], Fusarium [97], Penicillium [98],
Trichoderma [99], Bacillus, Erwinia, and actinomycetes such as Streptomycetes [100].

Amylases

The three main categories of amylases, also known as glycosyl hydrolases (GH),
according to the International Union of Biochemistry and Molecular Biology (UIBMB), are
endo-amylases, exo-amylases, and debranching enzymes. Figure 9 shows how all of these
enzymes work to break down starch. The various types of starch-degrading enzymes are
as follows [101].
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Endoamylases or α-amylase (EC 3.2.1.1): It cleaves the α-1,4-bonds present in the
inner regions of amylose and amylopectin to break into oligosaccharides and dextrins,
decreasing the solution’s viscosity.

Exoamylase or β-amylase (EC 3.2.1.2): Only the α-1,4-bonds at the non-reducing ends
are broken, releasing limit dextrins and β-maltose.
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decreasing the solution’s viscosity.
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-amylase or Amyloglucosidase or Glucoamylase (EC 3.2.1.3): It functions as a de-
branching enzyme by cleaving the final α-1,4 links at the non-reducing end of amylase and
amylopectin, which releases glucose.

Many fungi, bacteria, and actinomycetes have been found to produce amylases. Sev-
eral species of the genera Aspergillus and Penicillium are effective fungal amylase producers.
Aspergillus flavus, Aspergillus fumigatus, and Aspergillus niger are among the fungi that pro-
duce amylases [102–104]. Bacillus species are the most common types of the many bacteria
that produce amylases. Rhodothermus, Corynebacterium, Geobacillus, Lactobacillus, and Pseu-
domonas are some more species. Streptomyces and Thermonospora have been discovered to
make amylase among the actinomycetes [105].

Enzyme technology is typically regarded as the most environmentally friendly method
of saccharification in any biorefinery. Using additional enzymes to allow for more exten-
sive exploitation of plant biomass could result in processing that uses less energy and
chemicals while recovering more fermentable sugar. Table 3 depicts the use of multiple
hydrolytic enzymes produced by fungi and bacteria to aid in the process of polysaccha-
ride bioconversions in various biomass residues for the production of second-generation
bioethanol.

To completely hydrolyze biomass residues and produce second-generation bioethanol,
a large number of enzymes are required. These enzymes are required for hydrolyzing
a specific linkage at a specific phase in any biorefinery. Furthermore, the method of
action provides any biorefinery with critical information for overcoming any flaws in the
hydrolysis of any type of sugar or linkage between them. A microorganism with the ability
to release a variety of enzymes involved in the hydrolysis of lignocellulosic biomass could
be a candidate for use in a biorefinery producing second-generation biofuel.
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Table 3. Application of various hydrolytic enzymes in the degradation of polysaccharides in various
biomass residues.

Hydrolytic
Enzyme Classification Mode of Action

Common
Lignocellulosic

Biomass
References

Cellulases

Endoglucanase or
Endo-β-1,4-glucanase

Random hydrolysis of the interior
glycosidic bonds in cellulolytic

biomass
Wheat straw, rice
straw, corn cobs,
wheat bran, oat
bran, Arundo

donax, Populus
tremuloides,

deoiled rice bran,
kitchen waste

[9,73,75,106]

Cellobiohydrolase or
Exo-β-1,4-glucanase

Hydrolysis of beta-D-glucosidic
linkages by releasing mainly

cellobiose
Cellobiase or β-glucosidase

(BG) Cleavage of cellobiose

Hemicellulases

Endo-β-1,4-xylanase
Release of xylose from xylan by

Endohydrolysis of (1→
4)-beta-D-xylosidic linkages Wheat bran, kitchen

waste, Banana
peels, Peanut oil
cake, Brewer’s

spent grain

[9,80,81,84,106–108]

Exo-β-1,4-xylanase or
β-1,4-xylan xylohydrolase

Release monomeric xylose from the
non-reducing end of xylan

β-1,4-xylosidase or
Xylobiase

hydrolyzes disaccharides such as
xylobiose and the higher

xylooligosaccharides

Endo-β-1,4-mannanase Randomly cleaving the mannan’s
β-1,4-linkage internal links

Exo-β-mannosidase

Releases mannose sugar moieties by
cleaving β-1,4-linked mannosides

from the non-reducing ends of
mannan

β-glucosidase

Hydrolyzes the
1,4-β-D-glucopyranose found at the

non-reducing ends of the
oligosaccharides

α-galactosidase
breaks down the α-1,6-linked

D-galactopyranosyl side chains of
the oligosaccharides

Acetyl mannan esterase The debranching enzyme releases
acetyl groups.

Pectinases

Protopectinases Liberate soluble form polymerized
pectin Wheat bran, mango

peel, banana peel,
kitchen waste,
Orange peels,

exhausted sugar
beet cassettes

[84,85,109,110]
Pectin Methyl Esterases

Deesterify the methyl group of
pectin, releasing pectic acid and

methanol

Pectin Acetyl Esterases Hydrolysis of the acetyl esters found
in pectin

Polymethylgalacturonases Breaks α-1,4-glycosidic linkages in
pectin

Polygalacturonases Cleaves the polygalacturonic acid’s
α-1,4-glycosidic linkages

Pectate Lyases
Release α-4,5-D-galacturonate from

the glycosidic bonds in
polygalacturonic acid

Pectin Lyases
randomly break the esterified pectin

and create unsaturated
methyloligogalacturonates.

Amylase

Endoamylases or
α-amylase

Cleaves the α-1,4-bonds present in
the inner regions of amylose and

amylopectin
Rice bran, wheat
bran, black gram

bran, Soybean husk,
flour mill waste

[101,105,111]
Exoamylase or β-amylase Release limit dextrins and β-maltose
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4. Production of Microbial Enzymes for Use in the Generation of
Second-Generation Bioethanol

Two different fermentation procedures can be used to produce enzymes at the indus-
trial level while taking production costs and using natural substrates into account. There
are two types of fermentation: liquid-state fermentation and solid-state fermentation.

4.1. Solid-State Fermentation (SSF)

For the growth of microorganisms, this type of fermentation often uses a moist solid
substrate. SSF is a fermentation procedure that uses either a natural or inert solid substrate
in the absence of freely flowing water [112,113]. A key component of SSF is the choice
of solid material, which must be insoluble and serve as both a physical support and a
source of nutrition for the bacteria. This imitates their natural environment and promotes
the synthesis of enzymes and other useful metabolites for industry [114,115]. Due to the
utilization of lignocellulosic as a medium or substrate for the development of microor-
ganisms to create cellulases, hemicellulases, pectinases, and amylases, this fermentation
is cost-effective. SSF cultures were discovered to produce more enzymes as compared to
liquid cultures. SSF might be viewed as a superior method for the industrial synthesis of
enzymes while taking into account production costs and employing natural substrates.
Higher fermentation productivities, higher product stability, higher product concentration,
decreased chances of contamination due to lower water activity need, and development
of microorganisms specialized for water-insoluble substrates are all benefits of SSF [116].
Other benefits include the use of straightforward instrumentation, compactness of the
fermenter due to a smaller volume of water, lack of foam formation, higher fermentation
capacity, decreased catabolic repression, cost-effectiveness, and a reduced need for solvents
in the product recovery process [117,118].

Various researchers have used different lignocellulosic, agro-industrial, and biodegrad-
able municipal solid waste feedstocks to produce various hydrolytic enzyme systems im-
portant in the industries working in the field of second-generation biofuels using bacterial
and fungal cultures. In an attempt to investigate the potential of Aspergillus niger CECT2088
on brewer’s spent grain for the production of cellulases and xylanases, Leite et al. [108]
used brewer’s spent grain. Kaur et al. [119] used a natural variant of Aspergillus niger P-19
to produce a cellulase-hemicellulase consortium on rice straw for efficient and low-cost
saccharification, whereas Chugh et al. [9] produced multiple carbohydrases including cellu-
lases, hemicellulases, pectinases, and amylases through solid-state fermentation of de-oiled
rice bran. Recently, our group developed an enzyme cocktail comprised of 19 hydrolytic
enzymes for the generation of bioethanol from various lignocellulosic and agro-industrial
waste biomass residues in solid, surface, and submerged state fermentation using a stan-
dardized kitchen waste-based medium [120]. More studies on optimizing various physical
and cultural factors, as well as enzyme characterization, have been published in the lit-
erature to achieve the highest enzyme productivity and activity. Table 4 compiles some
examples of solid-state fermentations for the production of various hydrolytic enzymes
important in second-generation biofuels with significant breakthroughs.

Table 4. Examples of the production of hydrolytic enzyme systems by solid-state fermentations using
various substrates and breakthroughs.

Substrate Microorganism Enzymes Major Breakthrough References

Wheat straw, rice straw,
corn cobs, wheat bran,

oat bran, Arundo donax,
Populus tremuloides

Thermoascus aurantiacus Cellulases Thermostable cellulolytic
components production [121]

Wheat bran Aspergillus awamori
Nakazawa (MTCC 6652) Glucoamylase Optimization of extraction and

purification of glucoamylase [122]
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Table 4. Cont.

Substrate Microorganism Enzymes Major Breakthrough References

Wheat bran Aspergillus niger NS-2
Cellulases xylanase,

mannanase,
pectinase, amylases

Co-production of multiple enzymes
for Bioethanol Production [123]

Deoiled rice bran
Aspergillus niger,

Aspergillus oryzae,
Trichoderma reesei

Cellulase, amylase
Co-production of the thermostable
multi-enzyme system for ethanol

production
[9,124]

Kitchen waste Aspergillus niger CJ-5
Cellulases, xylanase,

mannanase,
pectinase, amylases

Co-production of multiple enzymes
for Bioethanol Production from

kitchen waste residues
[73]

Brewer’s spent grain Fusarium oxysporum
SS-25 Cellulases

Production of cellulases for the
production of ethanol from brewer’s

spent grain
[125]

wheat straw, paddy
straw, sugarcane waste,

maize straw
Bacillus licheniformis α-amylase

Production of amylase from the
mixture of agricultural residue

waste
[126]

Rice bran, wheat bran,
black gram bran

Achromobacter
xylosoxidans

Amylase, cellulase,
xylanase

Co-production of multiple enzymes
from various agro waste [127]

Peanut oil cake Aspergillus oryzae Cellulase, xylanase,
amylase

Enhancement in various functional
properties during fermentation in

addition to enzyme activities
[107]

Brewer’s spent grain Aspergillus niger
CECT2088 Cellulase, xylanase Simultaneous production of

lignocellulolytic enzymes [108]

Orange peel, apple
pomace, and rice fiber

Compost from
Municipal Solid Waste

as inoculum
Cellulases

Development of a framework for a
zero-waste enzyme production

process
[128]

Coffee husk and wood
chips

Compost from MSW as
inoculum Cellulases Enhanced cellulase production [129]

Orange peels and
exhausted sugar beet

cassettes

Aspergillus awamori
2B.361 U2/1

Cellulase, xylanase,
pectinase Enhanced sugar production [109]

Sugarcane bagasse
Penicillium sp.,
Rhizomucor sp.,
Trichoderma sp.

Cellulases Use of sugarcane bagasse as an
inducer for cellulase [130]

Grape pomace with
wheat bran Aspergillus niger 3T5B8 Cellulase, xylanase

Production of a cocktail of
hydrolytic enzymes using Grape

pomace with wheat bran
[131]

Wheat bran, banana peel,
orange peel, rice bran,

pine apple peel
Bacillus subtilis D19 Amylase Enhanced amylase production on

various agro-waste residues [132]

Mango peels Aspergillus tamarii Pectinase Enhanced polygalacturonase and
pectin lyase [110]

Wheat chaff Trichoderma reesei QM
9414

Cellulases and
xylanase

Simultaneous production of
cellulase and xylanase [133]

Rice straw Aspergillus niger P-19 Cellulases,
hemicellulases

Enhanced sugars and ethanol from
rice straw [119]

Rice straw Penicillium spp. Cellulase Potent cellulase cocktail production
for lignocellulosic degradation [69]

Soybean husk and flour
mill waste Aspergillus oryzae Amylase Production and purification of

alpha-amylase [111]

Wheat bran Bacillus sp. TC-DT13 Xylanase Optimized production of
extracellular xylanase [134]

Wheat bran Trichoderma reesei,
Neurospora crassa Cellulases

Optimization and standardization of
various factors for cellulase

production
[24]

Banana peels Aspergillus fumigatus Pectinase and
xylanase

Coproduction of pectinase and
xylanase [84]

Kitchen waste Aspergillus niger S-30
Cellulases,

Hemicellulases,
Pectinases, Amylases

19 hydrolytic enzymes from a single
substrate and organism [120]
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4.2. Liquid State Fermentation (Submerged and Surface)

Under stationary or shaking circumstances, liquid-state fermentation involves the
development of microorganisms in a liquid medium that contains the necessary nutrients.
This type of fermentation is appealing for the development of microbes and the creation of
products with added value due to several factors, including (a) homogenous distribution of
nutrients for the proliferation of microorganisms; (b) simplicity of monitoring of variables
such as moisture, temperature, pH, agitation, oxygen, and nutrient levels; (c) powerful
technology that has already been best adapted with automatic grade and equipment
availability. Cellulolytic enzymes, ligninolytic enzymes, and other beneficial metabolites
can all be produced through liquid-state fermentation [135].

Liquid-state fermentation is divided into submerged and surface culture fermenta-
tion depending primarily on whether the incubation is being carried out in stationary or
rocking circumstances. In surface culture, fermentation microorganisms develop on the
shallow nutritional media’s surface, consume the nutrients necessary for their growth, and
simultaneously release products into the medium. Since fungi are filamentous in nature
and agitation might break their mycelia, segregating biomass from the liquid medium, this
mode of fermentation does not call for agitation in the case of fungi [136].

However, surface culture fermentation has a lower bio-reaction rate and longer fer-
mentation periods as compared to submerged fermentation, which involves robust aeration
and agitation [137]. Submerged fermentation is preferred over surface culture fermentation
as a result of this drawback. Through submerged cultivation, many strains of bacteria,
yeast, fungus, and algae have been employed for fermentation. These methods of fer-
mentation can use either synthetically manufactured or lignocellulosic biomass-produced
fermentation media.

The fungal hyphae are not desiccated as a result of the continual immersion in a
liquid medium during liquid-state fermentation, which is also the most effective, easiest to
sterilize, and most cost-effective approach for producing bioagents in large quantities [138].
Except for high-density cultures, microorganisms are exposed to a fixed temperature
throughout their life cycle. Additionally, oxygen availability to biomass can be regulated
at a specific level of medium saturation. When compared to solid substrates, submerged
culture has various benefits, including easier control of fermentation parameters such
as pH and temperature, improved contamination control, and a lower labor and space
demand. The nature and amplitude of forces in a bioreactor are studied using fermenters
that offer the organism a low-shear environment. Surface culture fermentation is preferred
to submerged fermentation for several reasons, including equipment expense, energy usage,
aeration breakdown, improved productivity, and yield [139].

Elegbede et al. [140] synthesized in-house xylanases in submerged fermentation con-
ditions using corn cob as the substrate. Irfan et al. [141] used a peanut shell to produce
cellulases in a submerged fermentation process. Recent studies investigated the much-
needed potential of the submerged fermentation process in the production of various
hydrolytic enzymes involved in the production of second-generation biofuels. Table 5
depicts a few examples of liquid-state fermentation producing hydrolytic enzymes on
various substrates, as well as a significant breakthrough in their production.
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Table 5. Examples of the production of hydrolytic enzyme systems by liquid-state fermentations
using various substrates and breakthroughs.

Substrate Microorganism Enzymes Major Breakthrough References

Rice bran Aspergillus niger Pectinase Enhanced Polygalacturonase and
Pectinmethylesterase activity [142]

Solka-Floc cellulose Penicillium brasilianum
IBT 20888 Cellulases, xylanase Coinduction of cellulolytic and

xylanolytic [143]

Mandarin peels and
tree leaves Pleurotus dryinus

Cellulases, xylanase,
laccase, manganese

peroxidase

Enhanced activity of cellulases,
xylanase, laccase, manganese

peroxidase
[144]

Starch Bacillus sp. Amylase Optimization of enhanced amylase
production [145]

Partially delignified
cellulignin

Trichoderma harzianum
IOC-4038 Cellulases

Simultaneous saccharification and
fermentation process development

using partially delignified cellulignin
[146]

Sugarcane bagasse,
corn stover Acremonium sp. Cellulases, xylanase Enhanced reducing sugar conversion [147]

Wheat bran Aspergillus tamarii
MTCC5152 Amylase Production of a cellulase-free and

alkali-stable xylanase [148]

Corn cob Aspergillus fumigatus
SD5A xylanase Use of eight fungal strains in xylanase

production [140]

Pineapple stem Bacillus subtilis BKDS1 Pectinase
Economical production of the enzyme,
pectinase using pineapple stem extract

(PSE) medium
[149]

Coffee waste Penicillium humicola Mannanase Statistical experimental designs to
enhance the β-mannanase production [150]

Wheat bran and
citrus peel waste Bacillus pumilus Xylanase and pectinase

Maximum production of xylanase and
pectinase in a short submerged

fermentation cycle
[151]

Banana peels
Bacillus subtilis TYg4-3

and Bacillus
amyloliquefaciens SW106

Pectinase Optimization of bacterial pectinsae [152]

Coffee residue
powder, date seeds

powder, prickly pear
seeds

Bacillus subtilis US191 Mannanase
Statistical experimental designs to

enhance the bacterial β-mannanase
production

[90]

Peanut shells Bacillus paralichniformis Cellulases
Utilization of peanut shells for
cellulase production through

Box-Behnken Design
[141]

Wheat chaff Trichoderma reesei QM
9414 Cellulases and xylanase Simultaneous production of cellulase

and xylanase [133]

Wheat bran, rice husk Aspergillus niger Amylase
Production and purification of

amylase using an aqueous two-phase
system

[153]

Corn stover Phanerochaete
chrysosporium PC2

Cellulases and
hemicellulases

Revealed the importance of
carbohydrate-binding module in the
hydrolysis process of lignocellulose

[154]

Corn bran Aspergillus niger Xylanase Use of UV- rays for enhanced xylanase [155]

Wheat bran and
citrus peel waste

Bacillus safensis M35,
Bacillus altitudinis J208 Xylanase and pectinase

Concentration values for wheat bran
and citrus peel substrates are to be
amended in one single production

medium for enhanced xylanase and
pectinase

[156]

Banana peels Aspergillus fumigatus Pectinase and xylanase Coproduction of pectinase and
xylanase [84]

Kitchen waste Aspergillus niger S-30
Cellulases,

Hemicellulases,
Pectinases, Amylases

19 hydrolytic enzymes from a single
substrate and organism [120]
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Enzymatic saccharification of lignocellulosic feedstock is followed by fermentation of
the hydrolysate by suitable fermentative microorganisms for ethanol production. The
hydrolysate produced by enzymes after saccharification of pretreated lignocellulosic
feedstock contains a mixture of hexoses and pentoses, including glucose, mannose, xy-
lose, arabinose, galactose, and some oligosaccharides. Saccharomyces cerevisiae, Pachysolen
tannophilus, Escherichia coli, Zymomonas mobilis, Candida brassicae, Candida shehatae, Bacillus
macerans, Clostridium sp., etc. are used to ferment these monomeric sugars to produce
ethanol [157,158]. However, for an effective ethanol production method, the fermentative
microorganism should be able to use a wide range of substrates, including pentoses and
hexoses, and have high ethanol productivities, tolerance for high ethanol concentrations
and inhibitors present in the hydrolysate [159,160]. So far, four types of fermentation have
been studied: (i) separate hydrolysis and fermentation (SHF), (ii) simultaneous saccharifica-
tion and fermentation (SSF), (iii) simultaneous saccharification and co-fermentation (SSCF),
and (iv) Consolidated bioprocessing (CBP), and the key features of each are summarised in
Table 6.

Table 6. Salient features of various types of fermentation technology involved in second-generation
bioethanol production.

Fermentation
Technology Steps Involved Advantages Disadvantages Reference

Separate hydrolysis
and fermentation

(SHF)

1. Pretreatment
2. Saccharification
3. Fermentation

The conditions can be optimized
separately for each step

End product
inhibitionRequire separate

reactors for each step
High energy and time

consumption

[161]

Simultaneous
saccharification and
fermentation (SSF)

1. Pretreatment
2. Saccharification and

Fermentation

• Elimination of end-product
inhibition

• Removes the need for
separate reactors

• Cost-effective
• Reduction in time

Differences in the optimum
condition for hydrolytic
enzymes and fermenting

microorganisms

[162]

Simultaneous
Saccharification and

Co-Fermentation
(SSCF)

1. Pretreatment
2. Saccharification and

Co-Fermentation

• Saccharification of both
hexose and pentose sugars

• High sugar and ethanol
yield

Differences in the optimum
condition for hydrolytic
enzymes and fermenting

microorganisms

[163]

Consolidated
Bio-Processing

(CBP)

Pretreatment, enzyme
production,
Saccharification, and
Fermentation

• All the steps are carried out
in a single reactor

• Elimination of cost
involved in the purchase or
production of enzymes

Differences in the optimal
conditions for enzymes or
microorganisms involved

in the process

[164]

Many reports from around the world suggested that the use of enzymes in the conver-
sion of lignocellulosic and other waste biomass residues to second-generation bioethanol
provides a much-needed boost to this sector. Roberto et al. [162] reported SSF using a
vertical ball mill reactor with a high loading of rice straw. The study concluded that feeding
the substrate gradually at an initial load of 16% with 4% additions after 10 and 24 h using
an inoculum level of 3 g/L resulted in a high ethanol concentration of 52.3 g/L. As a result,
the findings demonstrated that a suitable fed-batch feeding strategy of biomass aids in
overcoming the limitations of SSF in batch mode. Zhu et al. [163] used SSCF to ferment
ethylenediamine-treated corn stover with Saccharomyces cerevisiae and xylose utilizing yeast,
yielding 59.8 g/L ethanol at 42 ◦C. In a study by da Silva et al. [165], pretreatment used alka-
line hydrogen peroxide, which efficiently removed lignin and hemicellulose from carnauba
waste, yielding 57.49% and 56.13%, respectively. Chen et al. [166] obtained 72.3% ethanol
yield on total sugar by co-fermenting with S. cerevisiae IPE005 in corn stover hydrolysate. In
another study, using a statistical approach significantly increased sugar yields and the tool
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was successful in designing simple conditions of pre-treatment and hydrolysis of deoiled
rice bran for maximum saccharification of all carbohydrates present in the substrate [9].

Recently, our group investigated the potential of biodegradable solid waste, primarily
kitchen waste, as a feedstock for the production of second-generation biofuel. A multiple
hydrolytic enzyme cocktail was created using 19 concentrated enzyme components with
an enzymatic yield of 150–250 IU/mL of CMCase. 30–40 IU/mL of FPase, 25–35 IU/mL of
Avicelase, 30–40 IU/mL of β-glucosidase, 135–145 IU/mL of cellobiase, 160–175 IU/mL
of salicinase, 800–900 IU/mL of xylanase, 50–70 IU/mL of xylosidase, 260–275 IU/mL of
mannanase, 25–35 IU/mL of mannosidase, 25–35 IU/mL of pectin-lyase, 25–35 IU/mL
of polygalacturonase, 12,500–15,000 U/mL of α-amylase, 50–75 IU/mL of pullulanase,
400–500 IU/mL of glucoamylase, 140–165 IU/mL of α-glucosidase, 2100–2300 U/mL
of protease, 190–210 U/mL of lipase and 190–210 U/mL of alginate lyase [120]. This
breakthrough has paved the way for biodegradable solid waste to be used as a substrate
for enzymes in second-generation biofuels.

Different countries use different feedstocks for bioethanol production based on re-
gional availability, local climate, and economic drivers. Sugars and starches are the primary
feedstocks for commercial bioethanol production. The ethanol produced in the United
States and Brazil accounts for 85% of all bioethanol produced globally [167]. The United
States, the world’s largest bioethanol producer, primarily uses corn as a feedstock, which is
also used in China and Slovakia whereas Brazil, the world’s second-largest bioethanol pro-
ducer, primarily uses sugarcane juice and molasses as a feedstock which are also employed
in India, Indonesia, Brazil, China, Thailand, and Colombia. Wheat is generally used in Den-
mark, Austria, Germany, Canada, Belgium, France, and Russia [75]. Because most of these
feedstocks compete with human feed, lignocellulosic biomass, as well as agro-industrial
and biodegradable municipal solid waste residues, which are abundant and the most
untapped natural reservoir on the planet, are promising feedstocks for second-generation
bioethanol generation.

5. Conclusions and Future Outlook

The world’s increasing energy requirements as a result of urbanization, excessive use
of fossil fuels, and the issue of disposing of agricultural waste residues are all scenarios that
make the use of biofuels made from waste biomass an essential solution that can solve all
of these problems. Second-generation ethanol production is significantly more expensive
than first-generation ethanol, which uses existing technology for converting biomass to
bioethanol, and it is difficult to predict when its cost will approach that of corn/sugarcane
ethanol. Cellulosic ethanol’s superior environmental benefits require drastic cost reductions
at all levels. The cost of pretreatment, enzymes for hydrolysis, fermentation of all sugars,
and distillation, all significantly increase the final cost of producing cellulosic ethanol.
Many countries around the world have launched Ethanol Blending Programmes to reduce
their reliance on crude oil imports, reduce carbon emissions, and increase farmer income.
Because of the coordinated efforts of the Public Sector Oil Marketing Companies, the
program’s target of 10% blending has been met much ahead of the November 2022 deadline
in India. The Government of India announced its ‘National Policy on Biofuels’ in 2018,
with an indicative target of 20% ethanol blending in gasoline by 2030. However, given the
encouraging performance and various interventions implemented by the government since
2014, the target of 20% ethanol blending has been pushed back from 2030 to 2025–26. In
this context cellulosic ethanol and enzyme systems especially cellulases and hemicellulases
are emerging as the stronger contenders to increase the indigenous production of second-
generation bioethanol. Globally, research at all levels is currently being conducted to reduce
the overall cost of the process. Furthermore, government-level incentives for second-
generation ethanol and mandated ethanol blending into gasoline in several countries may
pave the way for future bioethanol production from waste biomass.

The scientific community has switched to biofuels that are made from a variety of
biomass residues, including municipal and agricultural waste, as a result of the rising cost of
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fossil fuels, the global warming caused by the careless use of these fuels, and the unscientific
disposal of agricultural and agro-industrial waste residues. The commercial manufacture
of bioethanol, which is now the highest-volume industrial fermentation product, generally
uses sweet and starchy substrates. However, specialists are careful about their utilization
due to the utility of such starchy residues as human nourishment. Even yet, many nations
have established limitations on their permissible usage. Scientists are working to use
agricultural, agroindustrial, and municipal solid waste as second-generation bioethanol
feedstocks as the biofuel industry develops as a result of the rise in ethanol demand.
These feedstocks are used by a small number of companies that pretreat and hydrolyze
materials using chemical processes, which results in increased costs and significant chemical
loading that eventually enters our life and environment. Enzymatic hydrolysis is advised,
even though it adds between 30 and 50% to the overall cost of producing ethanol from
lignocellulosic wastes. Enzymes with higher substrate specificity, lower dose requirements,
and improved cost-effectiveness are required. The process economy as a whole can gain
from the creation of innovative enzymes that can hydrolyze a variety of substrates, high-titer
production of such enzymes, further development using genetic and molecular methods,
and lower costs associated with the enzyme production process. Technologies that reuse
the enzyme that washed away during hydrolysis can help address the issue of enzyme
cost. The development of effective and environmentally friendly process technology for
converting lignocellulosic residues to bioethanol may be made possible by advancements
in enzyme technology and commercialization. This technology may prove to be a panacea
for pressing global issues such as the depletion of fossil fuels and the improper disposal of
these priceless resources.
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