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Abstract: Telepresence robots have become popular during the COVID-19 era due to the quarantine
measures and the requirement to interact less with other humans. Telepresence robots are helpful in
different scenarios, such as healthcare, academia, or the exploration of certain unreachable territories.
IoT provides a sensor-based environment wherein robots acquire more precise information about
their surroundings. Remote telepresence robots are enabled with more efficient data from IoT
sensors, which helps them to compute the data effectively. While navigating in a distant IoT-enabled
healthcare environment, there is a possibility of delayed control signals from a teleoperator. We
propose a human cooperative telecontrol robotics system in an IoT-sensed healthcare environment.
The deep reinforcement learning (DRL)-based deep deterministic policy gradient (DDPG) offered
improved control of the telepresence robot to provide assistance to the teleoperator during the
delayed communication control signals. The proposed approach can stabilize the system in aid of the
teleoperator by taking the delayed signal term out of the main controlling framework, along with
the sensed IOT infrastructure. In a dynamic IoT-enabled healthcare context, our suggested approach
to operating the telepresence robot can effectively manage the 30 s delayed signal. Simulations and
physical experiments in a real-time healthcare environment with human teleoperators demonstrate
the implementation of the proposed method.

Keywords: telepresence robot; IoT; healthcare environment; remote management

1. Introduction

Telepresence robots are becoming an increasingly popular technology as they allow
for remote communication and collaboration in various settings. They are often used in the
healthcare, education, and business industries and are designed to promote sustainability
by reducing the need for travel. By utilizing the Internet of Things (IoT), telepresence robots
can be controlled remotely and integrated with other devices to enhance their capabilities.
In particular, the use of telepresence robots helps to reduce carbon emissions and other
environmental impacts related to travel, making it a more sustainable solution.

Recent improvements in the computer system with significant advancements in
robotics have assisted individuals by providing agility and increased global awareness of
the respective field. Autonomous unmanned robots were previously considered luxurious
and had a small marketplace. General industrial robots were utilized extensively in the
production field to improve manufacturing productivity. Recently, the importance of robots
in our society has come to light. The use of telepresence technology in the community can
enhance and improve social and cultural interchange. In particular, telepresence robots can
connect individuals and create the impression that they are all collaborating in the same
room, regardless of where they are located physically [1].

In developing nations such as Pakistan, the distribution of doctors is frequently an
issue. This issue has impacted rural residents’ access to quality healthcare. In 2021, the
government disclosed that 21.2% of deaths in rural Pakistan were reported due to a lack of
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medical attention by the skilled healthcare workforce. The “Doctor to the Rural” program
is only one of the government initiatives devised to address the issue. Along with this
program, the creation of a telepresence system is another workable alternative optimized
intelligent framework for cyber-physical systems [2]. This research intends to create a
cooperative control and navigation system for remote telepresence mobile robots.

The most important aspect of controlling a telepresence robot in an IoT-sensed envi-
ronment is the connection cost for each IoT sensor while interacting with other resources.
For telepresence robots to be able to carry out their respective jobs, a system design with
sensory data gathering is necessary. The characteristics of sensors in IoT-enabled healthcare
contexts include heterogeneity, many types of sensory data, and several average values.
Data acquisition from IoT sensors and the telepresence robot’s control platform is separated
logically from that of other IoT sensors. Repeated sensors’ connections with the components
of software platforms can delay the process routines and the telepresence robot’s activities.

The initial navigation system depends on the cooperation of human operational
commands and the telepresence robot’s independent movements [3]. The system’s human
operator chooses the system’s ultimate goal. The telepresence robot determines the shortest
route to its destination and proceeds independently. In the case of the human operator’s
control, the operating mode is changed to “manual mode” to direct the telepresence robot
along paths that differ from those that the robot generates. In manual functionality mode,
the telepresence robot is solely controlled, whereas autonomous robotic movements are not
activated. The interaction of telepresence robots and human teleoperators in this framework
is not fully realized.

In the case of the known time delay, the past state can be used for the backward
prediction of the present state. Bar-Shalom [4] developed this idea with an imperfect
algorithm. In [5], the authors describe the Energy-Aware Cluster-Based Routing Scheme
for IoT-Assisted Networks, as well as challenges in the technical setup.

A non-linear system requires adjustments to estimate its state. A technique based
on extrapolating a delayed measurement to the present utilizing a Kalman filter for past
and present estimates was introduced by Larsen et al. [6]. In [7], an extension approach is
described: interpolating a delayed measurement minimizes the computing time, even for
considerable time delays.

In this study, we propose a novel DDPG-based framework to estimate the time delay
by using DRL approaches while aiding the non-linear telepresence robot’s navigation.
However, a crucial communication time delay occurs when a filtering processor is linked to
a sensor through a network. Additionally, extra post-processing time is needed when raw
data from the sensor are processed after being acquired to update the dynamical system’s
states. This causes a delay between the measurement’s acquisition and its availability to
the filter. In such cases, general control approach methods cannot achieve telepresence
robot state control. As a result, we suggest a novel method that uses DDPG to enhance
prior states that consider the delays. However, the proposed method is to implement the
deep deterministic policy-based control algorithm. This study first develops a telepresence
robot state space along with the action space, which complies with the Markov model to
create a separate reward function under the classification of different parameters. Then, the
replay buffer is optimized by incorporating weighted training samples to control signal
fluctuation in the low-speed sections.

This article also explains the telepresence robot tests using the anticipated midpoint
curve. The outcomes demonstrate that the suggested algorithm performs better than
traditional control techniques such as PID in effectively tracking the expected speed incor-
porated with human teleoperators. The telepresence robot only requires five or six episodes
of fully automatic training before the network can be updated without expert tuning. In
the proposed approach, human operators can choose the robot’s control and navigation
courses while viewing the robot’s surroundings online. Additionally, the method offers
the simultaneous integration of steady robot motion based on autonomous navigation
using maps.
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The rest of this paper is organized as follows. The literature review is described in
Section 2. The telepresence robot proposed in this study is described in Section 3. The
experimental setup and results are discussed in Section 4. The conclusions are explained in
Section 5.

2. Literature Review

In this section, we analyze the previous research on the controllability and manage-
ment of telepresence robots in IoT-sensed environments.

A system architecture based on the context-aware robot as a service (RAAS) [8] and
sensory data and signals must be preoccupied and transformed into information that the
robot can understand in order to manage the robot’s action based on these data [9]. The
processing of sensory data to address issues such as various IoT devices and value formats
has been the subject of numerous studies. The methods used to transform the data into in-
formation include acquiring values, sensor access, and converting situational information.

Practical bandwidth usage and appropriate compression algorithms are crucial for
real-time visual communication. The user experience with this gadget is more ergonomic
and natural. The teleoperator’s head movement enables biological stereoscopic control of
the camera mounted on the robot, creating a three-dimensional vision [10]. Haptic feedback
is also required to provide the teleoperator with a true-to-life experience. This can be
accomplished by fusing the robotic perception of the external environment and transmitting
it to the human user through external sensory input. Additionally, gesture control will
enhance the social telepresence operation’s remote motion control [11]. A telepresence
robot with haptic feedback-enabled features can assist visually impaired patients [12].

In a virtual reality environment, Vlahovic et al. [13] compared four locomotion meth-
ods: controller movement, controller movement with tunnelling, teleportation, and a
human joystick. For controller movement and the human joystick, which also caused the
testers more physical discomfort, the overall quality of the experience was scored lower.
Compared to perceived immersion, the authors discovered that comfort might significantly
affect the quality of experience (QoE) for navigation in virtual reality environments.

Numerous telepresence robots have been developed recently for a variety of uses,
including telemedicine [13], tele-education [14], and senior home care [15]. There are also
several commercial telepresence robots available on the market with various applications,
including impromptu talks at work, patient care in healthcare facilities, and remote edu-
cation in schools. These robots include the Texal and PR2 from Willow Garage [16], the
QB from Anybots [17], the VGo from VGo Communications [18], the RP-7i from InTouch
Health [19], the MantaroBot from Vasteras Giraff [20,21], the Ava and RP-VITA from iRobot,
and others. However, the widespread use of these telepresence robots remains to be
achieved, and it faces numerous problems that require further research. It is critical to
create telepresence robots compatible with new mobile devices, such as smartphones and
tablets, so as to be used with them. Some telepresence robots, including the WU robots [22],
can enable interactions with tablets. An IoT platform that uses a Modified Self-Adaptive
Bayesian Algorithm (MSABA) to provide more precise assessments of HD [23] describes
the IOT prediction system.

Research has been conducted to determine LQI, a channel prediction model, and RSSI
in an outdoor setting concerning signaling [24]. The new intelligent mutation operator
improves the security, privacy, integrity, and authenticity of the information system by
identifying harmful requests and responses and helping to defend the system against
assault [25]. Single-chip nodes for autonomous node programming over a USB model
design were covered in another article [26]. Medical sensor networks (MSN), which took
into account trust management in TelosB nodes, were used to collect tree protocols that
were used and created for e-healthcare systems [27]. In [28], test case experiments were
used to implement an experimental study on the ZigBee frequency agile (FA) scheme on
the TelosB testbed. An accuracy-aware diffusion process mapping scheme using TelosB
nodes, mobile Telos nodes, was developed in [29].
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This study develops a trust-aware multi objective metaheuristic optimization-based
secure clustering with route planning (TAMOMO-SCRP) technique for a cluster-based IIoT
environment [30]. This is a feature-based approach, in which camera movement is detected
using the inconsistency of image features in sequential image streams, as in PTAM [31] and
ORB-SLAM [32]. The most recent approach, ORB-SLAM, has a reported 1% inaccuracy
in the dimensions of the maps. DTAM [33] and CNN-RNN-LSTM [34] propose a direct
method that uses all images as a single entity as a second option. Applications that leverage
smart devices benefit significantly from the SLAM techniques. ORB-SLAM and LSD-SLAM
need CPU, and DTAM needs GPU to become real-time. If the map is not too large, PTAM
might perform in real time on smartphones [35].

The data amount has dramatically expanded with the development of IoT technologies,
and data processing and transmission have become increasingly complex. Less delay, more
throughput, and high confidentiality can be achieved by computing at the edges and
storing data locally [36]. Wi-Fi routers are viewed as edge nodes in Para-Drop [37] that
speak directly to users. Despite extensive research, very few edge computing applications
regarding big social media data have been documented [38].

The objective of [39] was to create a controlled robot with only two wheels. The authors
presented a detailed discussion on the use of Lego Mindstorm NXT [40] to design and test a
robotic chassis that an AVR ATMega16 microprocessor would run. Their test demonstrated
the need for a robot chassis to address mechanical and stability difficulties. Segway, a
well-known robot that can balance itself while a person is standing on its platform, was
created by [41]. To remain upright, it uses brushless DC electric motors with encoders and
gyroscopic sensors in the wheels that are powered by lithium-ion batteries.

In [42], a new database approach is introduced using a hybrid meta-heuristic of the
intrusion in robot communication with a teleoperator. However, a planner is still used
to guide navigation. As in [43,44] selects an action toward either a defined or predicted
objective while making a forecast about the map based on the RGB image. A planner is
still employed to design a path towards the destination on the uncertain map. However,
instantaneous actions are received from the neural network to follow the path. In [45],
a robot is trained to travel in a novel area while free space in the environment is anticipated
in a static virtual grid world. Meanwhile, [46] presents exploratory navigation using deep
Q-learning, where a robot learns to avoid obstacles in unknown environments.

To solve the partial observation Markov decision process (POMDP), Ref. [47] treated
the exploration as a direct policy search. Meanwhile, Ref. [48] demonstrated the develop-
ment of the CSRO algorithm for route optimization, which was developed in-house. Due to
DL’s excellent perception capabilities, it has been widely used to create effective techniques
in learning the mapping from sensor data to robot control. A perception network with
RGB-D image inputs and a control network trained by the DQN was proposed by Tai
and Liu in 2016 [49]. It should be noted that this technique guarantees that the robot will
wander without colliding. A supervised learning problem was created by Bai et al. [50] to
lower the map’s Shannon entropy.

In [51], author describes the Bacteria for Aging Optimization Algorithm (BFOA),
which finds the ideal hops in advancing the routing, and is utilized to offer trust-based,
protected, and energy-efficient navigation in MANETs using a trust-based, protected, and
energy-efficient navigation algorithm. Marroquin et al. offered a low-cost alternative for a
mobile explorer robot with a camera and temperature/air humidity sensors. These sensors
use open hardware and software, whose design is intended to allow inspection of the
environment, in addition to being controlled remotely using the technology of the Internet
of Things through a graphical user interface [52].

The IoT-based robot system proposed by Srividhya et al. is utilized for vigilante
activities. This robot can walk in any direction and uses a Raspberry Pi to send live video
to an Android device. The Raspberry Pi receives the signals produced by the Android
application. The commands process the signals that have been received, and the robot is
guided by the employed direction [53]. An IoT-based context-aware system presented by
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Park, Choi, and Choi J. collects sensor data from the outside world and converts it to sensory
data, and [54] proposes the Energy-Aware Cluster-based Routing (EACR-LEACH) protocol
in WSN-based IoT. The Cluster Head (CH) selection is crucial in the clustering protocol.
Wang et al. introduced an intelligent housekeeper, an Internet of Things (IoT)-based indoor
mobility robot utilized for housekeeping services [55].

“Prabuwono et al. analysis depends on creating a visual methodology to control the
semi-autonomous convoy [56]. Meanwhile, an intelligent adaptive method for IoT-enabled
environments, and [57] presented a detailed review of multipath transport protocols to
enhance communication.

3. The Proposed Model

Deep reinforcement learning (DRL) is chosen as the control method in this study be-
cause it offers a strong and adaptable framework for decision-making in complex, dynamic
environments. In DRL, the agent discovers through trial and error how to act in a way
that maximizes a reward signal. This makes it ideal for telepresence robots operating in
a healthcare environment supported by the Internet of Things. The robot must navigate
challenging environments and adjust to changing conditions while waiting for teleoperator
communications to arrive. DDPG is an actor–critic method, meaning that it uses two
neural networks: an actor network that outputs actions and a critic network that evaluates
the actions. DDPG can handle continuous action spaces, essential in a telepresence robot
control task, where the actions may involve continuous values such as velocity or direction.

The proposed algorithm seeks to increase the cumulative future reward Rt, which is
defined as in Equation (1):

Rt = rt + Y.rt+1 + Y2.rt+2 + . . . =
∞

∑
k=0

Ykrt+k (1)

with gamma within the range of [0–1]. Under the state st and action at, the estimation of Rt
is defined as the value function in Equation (2):

Qπ(st, at) = Eπ[Rt|st, at] = Eπ[
∞

∑
k=0

Ykrt+k|st, at] (2)

To find the best action value Q∗(st, at), it is usually the majority of all policies π.
Afterwards, the optimal policy selects the action as in Equation (3) to train the optimal
action value comprehensively.

a∗t = π∗(st) = argmaxa[Q
∗(st, a )] (3)

The proposed algorithm structure to control the telepresence robot with DRL-assisted
delay compensation in an IoT-enabled sustainable healthcare environment is depicted in
Figure 1. Network X produces the action αX after receiving the state s. Following the
Gaussian distribution and action constraint, the telepresence robot performs the action a to
control the telepresence robot. The action value represented by network Q is used to assess
the effectiveness of the action choice.

In network Q, there are also two hidden layers with 60 nodes, respectively. The output
layer is linearly activated, while the hidden layers’ activation functions are both ReLU.
Table 1 displays more specific parameters regarding the scenario.

Figure 2 depicts the formation of networks X and Q. In network X, there are two
hidden layers with 40 nodes in each of them, respectively. ReLU is used as the activation
function for hidden layers, and Tanh is used for the output layer [58].

Repetitive parameter updating and training are required for network X to identify the
best course of action accurately. Since network Q will be established first, network X will
be updated in a manner closely associated with network Q.
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Table 1. List of parameters.

Symbol Description Value

ε Soft assign rate 0.007
Υ Discounting factor of reward 0.85
ξ Decay rate 0.9996
σ2 Initial variance of the exploration space 40

Unlike the Deep Q Network (DQN) and SPID, our network Q is unique. Instead of
only state s, the state s and the action a are significant components of the input for network
Q. Network Q produces a single-dimensional value Q rather than a multidimensional
vector Q(a). Network X should be set up because it is challenging to acquire the action
value entirely through network Q and the algorithm’s freedom from the action space
capacity is one of its benefits.
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The proposed method mainly considers the DDPG algorithm and consists of the following:

1. Convolutional neural networks (CNN) are used to approximate networks Q and X,
and they are updated to improve the algorithm’s convergence.

2. To prevent the issue of sample correlation-related overfitting in neural networks, we
use a replay buffer.

3. To enhance network convergence and stabilize the learning process, we develop the
eval network and the target network.

The current action value y can be understood as the cumulative sum of the predicted
future action value multiplied by the discount factor and the current reward value, accord-
ing to the definition of the action value. As a result, the value of the current action y can be
written as in Equation (4):

y = rt + Y.Qtarget (s t+1, át+1|θQtarget) |át+1 = Xtarget(st+1) (4)

Significantly, the current action value y is more precise than the expected value by
network Q with a calculated and actual reward constituent. The network parameters have
been updated by the following formula Equation (5), whereas τ is the updating step, which
is also called the learning rate.

ς.θQeval = τ . ∇.Loss
(
θQeval

)
(5)

Let us return to the X network: X(st) is also divided into Xeval(st) and the previous
Xtarget(st), with Xeval(st) being used for network updating and action output and Utarget(st)
is used to calculate a′t+1. The updating equation for Xeval(st) is established on the action
value, which can be maximized by Equation (6):

ς.θXeval = τ.∇Qeval

(
st, at |θXeval

)
(6)

= τ.∇θXeval(st). ∇aQeval

(
st, at |θXeval

)∣∣∣
a= Xeval (st)

The actual target network parameter θ̂target can be stated as in Equation (7):
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θ̂
target

= (1− ε) . θtarget + ε . θeval (7)

We add Gaussian noise to the network output at, to control the network exploration
rate, where the rate of ε is in the range of [0,1]. Thus, the actual modified network output
ât is as in Equation (8):

ât =̃
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In each training step, the decay rate ξ is decreased by the variance σ2, as in Equation (9):

σt+1 = ξ . σt (9)

Due to the high requirements for the tele-control of the telepresence robots’ testing
efficiency, dual networks and replay buffers have already strengthened their reliability.
However, it is still necessary for such telepresence robot development to reduce the training
time as much as feasible.

A typical technique to optimize the network is adding Gaussian noise to the output
actions. However, the entire output from the neural network is typically selected when
choosing an action. The proposed method can be used during the delay in the control-
ling signal from the teleoperator, considering that humans and neural networks excel in
different areas.

The DRL-based techniques have a better capacity for self-adaptation during the lag
of controlling signals from the teleoperator and will only require further training during
lag compensation. A replay buffer is optimized to collect training samples to decrease
the overall training time. Weighted training samples are added to the buffer to ensure
the training concentration during a lack of signal. For each training step, the number of
samples is as defined in Equation (10):

mt =

√
125

vt + 10
(10)

Algorithm 1 elaborates on the essential training algorithm. Based on the input current
telepresence robot status st, the DRL-based process will be utilized to compute the output
action at.

Algorithm 1. Training of Telepresence Robot Control Agent

1: Initialize : telepresence robot state, teleoperator command state.
2: Initialize : network Qeval , Xeval , Qtarget, Xtarget with random values
3: Initialize : replay bufferR
4: for each episode, do
5: observe the current state of the telepresence robot st
6: for each step in the environment, do
7: select action at from Xeval the network, according to the (st)
8: wait 1 s to observe the telepresence robot’s status st+1
9: observe reward rt = R(st, at)

10: update current state mt = f loor
(

sqrt
(

175
vt+12

))
11: store (st, at, st+1, rt) in replay bufferR
12: Update : Xeval and Qeval
13: Assign : θ̂target = (1− ε) . θtarget + ε . θeval

14: end for
15: end for

4. Results and Discussion

Several trials on physically manufactured telepresence robots are carried out to vali-
date the proposed method. The telepresence robot prototype is trained using the real-time
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practical implementation of the telepresence robot. The parameters are then fine-tuned
using several experiments. Third, comparison experiments are used to validate the effects
of network exploration intervention and replay buffer adjustment. In the end, various
experiments are conducted for comparison with the prior autonomous technique.

The 3D model of our physically manufactured telepresence robot and the prototype
that we developed for this study is shown in Figure 3. The telepresence robot is composed
of two DC geared motors, one LCD screen, one high-resolution camera, and another circuit
to control the kinematics of the telepresence robot. The experimental environment for the
training and testing of the proposed method is shown in Figure 4. The location is a cardi-
ology ward in Ghulam Muhammad Abad, the Faisalabad government’s general hospital.
A telepresence robot must travel 95 m to move from the starting point (a doctor’s office) to
the destination (an admitted patient ward). We reconstruct the hospital environment using
Lidar. In a hospital setting, the main entrance of the reception area is where the telepresence
robot begins its journey from point A. It travels through the main lobby, avoiding various
static obstructions until it reaches destination point B, the patient admission ward. As
illustrated in the figure, the multiple experiments follow a specific path according to the
teleoperator-simulated natural control profiles, which will load data from the healthcare
environment experiments for reproduction.
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Teleoperators can efficiently complete the telepresence robot’s training and testing by
implementing the DDPG algorithm. The DDPG installed on the telepresence robot performs
a number of functions, including providing a controlling signal to the telepresence robot,
receiving a control signal from the teleoperator, and retrieving the telepresence robot’s
current status.

The average difference equation Mean|diff| in Equation (11), the average action value,
and the average reward will make up the evaluation indices, as well as the variance in the
control difference Stddiff in Equation (12), and the average number of control errors Nerror
in Equation (13).

Mean|diff| =
∑3600

i=0 ∇v(0.5 x i)
3600

(11)

Std|diff| =
∑3600

i=0 ∇v(0.5 x i)− Mean|diff|)
2

3600
(12)

Nerror =
∑

Nexp
i=1 Ni

error

Nexp
(13)

The entire training curve, defined by each episode, consists of 80 cycles, because
the control cycle of the algorithm lasts 1.25 s and the midway rule curve is 45 s. The
results demonstrate that the telepresence robot can successfully control it after 60 to 80
training episodes. However, after 20 episodes, the network has progressively begun to
grasp the control strategy of the controlling phases. According to the statistics, there were
still variances in the controllability of the telepresence robot, even though the network
could control it more precisely in episodes 40 and 50. The actual controlling behavior very
closely resembled the desired controlling behavior after 80 to 100 episodes. The results
of the experiments show that the target controllability will have less errors after more
training sessions.

Figure 5 displays the midpoint curves considering the action values and average
reward over time. After some training, the Q value and the average reward tend to stabilize
when experiencing considerable initial fluctuations. They are discovered to vibrate more
intensely in the midpoint rule curves. This is due to the similarity of each episode in the
midpoint curves, as shown in Figure 6.
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Figure 6. Average value of Q per episode.

Gaussian noise is attached to the actions of the network’s output to fully understand
the environment of the model during training. The size of the exploration space σ2 is
determined by the variance of the Gaussian noise. The network eventually picks up the
environment model as the training continues. The decay rate influences the network’s
stability, and convergence will occur more slowly as it rises. When the decay rate ξ is more
significant than 0.9999, the network cannot converge in four training cycles. The network
has good stability when ξ is between 0.999 and 0.9999, as shown in Figure 7.
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Figure 7. Telepresence robot state response.

The proposed method’s most crucial assessment metric for the telepresence robot’s
control is the average number of controlling errors Nerror. The results show that Nerror may
be more than five and usually emerges in low-speed parts after four training sessions using
the current technique.

The target speed curve can be changed to enhance the replay buffer so as to increase the
number of training samples added to the low-speed parts. A few comparative experiments
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are carried out to confirm the effect of the optimization. Nerror, Meandiff, and Stddiff in the
low-speed parts are decreased following optimization, whereas those in the high-speed
sections are not significantly impacted, as shown in Table 2.

Table 2. Effect of optimization.

Parameters Non-Optimized Mean Optimized Mean

Nexp 2 15
Nerror, v≤30 6.500 0.867
Nerror, v>30 0.500 0.200

Mean|diff|, v≤30 0.684 0.730
Mean|diff|, v>30 0.544 0.602

Std|diff|, v≤30 0.852 0.839
Std|diff|, v>30 0.830 0.910

Instead of using DDPG, many studies have used the segment proportion integration
differentiation (SPID) approach. The fundamental concept of SPID is to categorize the
environmental conditions into many cases and then to use PID with various proportional,
integral, and differential parameters to regulate the speed in each situation. DDPG outper-
formed SPID when more training samples were added at the start or stop phases. While
DDPG employs the current and the following three-second goal speeds, SPID uses the
current target speed. After training, DDPG performs better than SPID in fully utilizing the
environmental data. Tables 3 and 4 display the SPID and DDPG experimental findings for
fifteen different trials. The outcomes demonstrate that DDPG moves faster and with fewer
speed mistakes. The Nerror average speed error count has dropped from 9.467 to 1.067.

Table 3. Comparison of mean value of DDPG with other algorithms.

Parameters SPID Mean DDPG Mean SPID Best DDPG Best

Nexp 15 15 - -
Nerror 9.467 1.067 3 0

Mean|diff| 0.790 0.679 0.639 0.470
Std|diff| 1.091 0.897 0.845 0.650

Table 4. Comparison of DDPG error, mean, and standard deviation with other algorithms.

SPID DDPG SPID DDPG SPID DDPG

Nerror Nerror Mean|diff| Mean|diff| Std|diff| Std|diff|

21 2 0.872 0.734 1.200 1.015
10 1 0.806 0.676 1.136 0.950
8 0 0.800 0.615 1.072 0.736

10 2 0.774 0.898 1.069 1.146
6 0 0.838 0.877 1.190 0.964
9 1 0.683 0.819 0.918 1.020
7 2 0.813 0.631 1.118 0.794
3 0 0.794 0.585 1.084 0.858
3 3 0.639 0.674 0.845 0.956
5 1 0.794 0.470 1.084 0.650
9 0 0.792 0.626 1.072 0.854
9 0 0.806 0.601 1.103 0.820

14 1 0.737 0.839 1.041 1.130
19 1 0.890 0.509 1.265 0.659
9 2 0.807 0.631 1.164 0.904

Average 9.467 1.067 0.790 0.679 1.091 0.897
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5. Conclusions

This paper proposes a DRL-based collaborative control framework for remote telepres-
ence robots to compensate for delayed control signals. The DDPG algorithm optimizes the
relationship between telepresence robot control and the teleoperator’s delayed command
signal, which could significantly reduce the total training time and improve the teleoperator
control behavior in IoT-enabled healthcare environments. The replay buffer is expanded
with the weighted training samples to improve and minimize the control instability. The
suggested approach can reduce the control tracking errors and increase the training efficacy
so as to better control the telepresence robot in the scenario of delayed signals. Compared
to the other approaches, the DDPG-based method cooperates with the teleoperator. It
allows smoother control in the case of 30-s delayed reception of the controlling signal from
the teleoperator, with fewer control faults.

Moreover, this paper proposes a suitable method to control the telepresence robot
in a more appropriate way in a dynamic unknown environment. Future work may be
to develop a swarm-based approach to telepresence robots that will enable cooperation
between different telepresence robots. The method can be designed so that multiple
telepresence robots can work together in a coordinated and synchronized manner to
achieve a common goal during a communication delay.
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