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Abstract: As a sustainable means of public transport, the safety of the urban rail transit is a significant
section of public safety and is highly important in urban sustainable development. Research on the
importance of urban rail stations plays an important role in improving the reliability of urban rail
networks. This paper proposed an improved method for evaluating the importance of urban rail
stations in a topology network, which was used to identify the key stations that affect the urban rail
network performance. This method was based on complex network theory, considering the traffic
characteristics of the urban rail network that runs on specific lines and integrating the structural
characteristics and interrelationship of the lines where the stations are located. Hereafter, this method
will be abbreviated as CLI. In order to verify that the high importance stations evaluated by this
method were the key stations that had a great impact on the urban rail network performance, this
paper designed a comparative attack experiment of betweenness centrality and CLI. The experiment
was carried out by taking the Suzhou Rail Transit (SZRT) network as an example and the largest con-
nected subgraph as well as the network efficiency as indicators to measure the network performance.
The results showed that CLI had a greater impact on network performance and could better evaluate
the key stations in the urban rail network than node degree and betweenness centrality.

Keywords: urban rail network; complex network; topological structure; node importance; network
performance

1. Introduction

As a component of urban infrastructure, urban rail transit is increasingly used due to
its energy-saving, environmentally friendly, high-efficiency, and other characteristics. In
China, more and more cities are building urban rail networks. According to the statistics of
the Ministry of Transport, by 2022, a total of 281 urban rail lines and 9246 km of running
mileage were opened in 51 cities in China, of which 31 cities had more than three urban
rail lines. Moreover, the number of unban rail construction is still growing at a high speed.
In 2021, 35 new urban rail lines and 1168 km of new running mileage were built, which
was an increase of about 15% over 2020. At present, China not only has many cities with
rail transit networks and a rapid pace of construction, but also an increasing number of
passengers. In 2021, the annual passenger volume increased by 6.12 billion person–time,
about 35%, compared with 2020, reaching 99.2% in 2019 [1]. These data demonstrate that
urban rail transit is gradually becoming one of the most important public transport tools in
cities, and more and more passengers rely on the travel mode by urban rail transit.

Due to the large traffic volume and high passenger density of urban rail transit, once a
dangerous situation occurs, it will cause huge economic losses, pose a huge threat to the
life safety of passengers, and affect the service level. Therefore, it is necessary to ensure
the safe operation of urban rail transit, improve its network performance, and ensure that
it has enough reliability to not collapse in the face of threats. With the expansion of the
urban rail transit network, it will be more seriously affected when faced with interference,
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such as terrorist attacks, extreme weather events, congestion, cybersecurity attacks, and
electricity shut offs, which will not only damage the structure of the urban rail network
but also reduce the service level of the urban rail transit. On 2 August 2021, two urban rail
trains collided in Boston, USA, causing 25 people to be injured, and the station and section
were closed for maintenance for a long time [2]. On 20 July 2021, Zhengzhou was hit by
extreme torrential rain, and Line 5 of urban rail transit was seriously flooded, resulting in
the death of 14 passengers and the shutdown of the whole network [3]. It can be found
from these events that although the interference occurs in individual stations or sections, it
will affect the operation of a line and even the entire rail network.

With the network operation of urban rail transit, the connection between stations
is closer, and the interaction between lines is more significant. From the perspective of
network structure, the failure of any station in the network will reduce the network connec-
tivity and network efficiency, thereby reducing the service level of urban rail transit, making
passengers crowded and stranded, and even affecting the safety of passengers. There are
some stations in the network that will have a greater impact on the network structure when
they are disturbed [4,5]. If we can find these key stations, we will focus on their mainte-
nance and recovery, which will improve the anti-interference ability and stability of the
structural network and reduce the impact of interference events on the network structure.
This article will determine how to find these key stations. In complex network theory, the
importance of nodes is described by the index of node importance [6–8]. The higher the
node importance, the greater the impact of the node on the network performance. The
nodes with the highest node importance ranking are the key nodes [9,10]. This paper aims
to build a more accurate evaluation method of node importance and carry out simulation
experiments to prove that this method is more suitable for urban rail transit networks than
other methods.

The paper is organized as follows: Section 2 reviews the literature on the evaluation of
the node importance of complex networks and urban rail networks. Section 3 introduces
the topology analysis of the urban rail network, typical indicators of complex networks,
and an index considering the characteristic of specific lines in urban rail networks. Section 4
gives the improved evaluation method for the node importance of urban rail networks and
verifies it. Section 5 takes the SZRT network as a case for study. Section 6 summarizes the
study conclusions and suggests future areas of study.

2. Literature Review

In recent years, using complex network theory to solve real network problems has
been a research hotspot, and the evaluation of node importance is a very popular research
topic in complex networks [11–15]. The application of complex network theory to the
urban rail network has promoted our understanding and control of the urban rail network.
Research on the evaluation of the node importance of urban rail networks is the basis for
maintaining the safety of rail transit networks and ensuring the service level of network
operation. In this section, we review relevant literature and introduce relevant techniques
from the following two aspects.

2.1. Evaluation of Node Importance of Complex Networks

Research on the node importance of complex networks can be defined as research
on the influence of nodes on the complex networks. The higher the node importance, the
greater the influence of nodes on the network. The evaluation of node importance refers to
the process of measuring and ranking the influence of nodes on complex networks. The
evaluation methods for node importance can be divided into local methods and global
methods. Node degree [11] is one of the simplest and classic indicators in the evaluation
of node importance, which is simple to calculate and only considers local information.
Kitsak et al. [16] proposed k-shell decomposition to find nodes at the core of the network,
which is an extended algorithm based on the node degree. The granularity of indicators
based on node degree is coarse, and there may be many nodes in the same importance
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degree. Lü et al. [17] introduced the H-index algorithm to further divide node importance,
and the H-index was initially used to evaluate academic influence. The node importance
evaluation methods considering the global attributes of nodes mainly include betweenness
centrality, closeness centrality, etc. The betweenness centrality refers to the proportion of
the shortest path through a node to all the shortest paths in the network, which reflects the
node’s control over the entire network of information dissemination [18]. The closeness
centrality considers that the node closest to all nodes in the network is important, that is,
the shorter the distance between the nodes, the faster the propagation rate [19]. In view
of the defects of a single index, some scholars improved the evaluation method for node
importance via multi-index fusion. Li et al. [20] proposed an evaluation method for node
importance by combining the node degree, relative entropy, and TOPSIS comprehensive
evaluation method.

2.2. Evaluation of Node Importance of Urban Rail Networks

The famous Königsberg’s Bridge Problem, solved by Euler in 1735, is considered to
be a simplified and the earliest transportation optimization problem. It not only laid the
foundation for graph theory, but also creatively proposes the use of network topology
to solve traffic problems. With the development of graph theory, network analysis has
gradually become the most effective method for traffic research [21,22]. Furthermore, the
emergence of complex networks provides a systematic theoretical method for solving traffic
network problems. Lin et al. [23] comprehensively introduced the application of complex
network theory in the field of transportation. As a part of the transportation system, the
URTN has obvious complex network characteristics such as small-world property, scale free
property, etc. [24,25]. Therefore, using complex network theory to study urban rail networks
has become a mainstream method and hotspot. Many studies on the vulnerability and
robustness of subway systems are based on complex network theory [26]. Zhang et al. [27]
studied the networked characteristics of the Shanghai urban rail network and analyzed its
robustness and reliability based on complex network theory. On this basis, Zhang et al. [28]
studied the topological characteristics, found many similar characteristics among urban
rail networks around the world, and discussed the failures to discuss the vulnerability of
the urban rail network. Therefore, it has been proved that the network performance of
URTNs can be studied with complex network theory.

Research on network performance found that there are some nodes that play a vital
role in the network performance [29–31]. The early methods used to screen these key nodes
included node degree and the betweenness centrality. It was found that intentional attacks
based on node degree and the betweenness centrality can cause network collapse faster
than random attacks [32–34]. Sun et al. [32] proved that compared with being attracted
randomly, urban rail networks are more vulnerable when attacked by the highest node
degree and betweenness centrality stations, and the stations with the largest node degree
have a greater impact on the network scale, while the stations with the highest betweenness
centrality have a greater impact on the network efficiency. It is concluded that different node
importance evaluation indicators have different effects on the rail network performance.

Some scholars try to apply and compare the existing complex network importance
evaluation methods to the URTNs [35,36]. Lai et al. [36] established urban rail topology
models of multiple cities, the toke network efficiency, and the largest connected subgraph
as indicators to measure the network performance, and they found that the KSD identifi-
cation method was superior to the node degree, neighbor node degree, DKS, and DKSN
identification methods. Some scholars realized that there are differences in node impor-
tance in different application environments, and they tried to improve and even build
new evaluation methods to more accurately obtain the key nodes that have the greatest
impact on the urban rail network performance [37–39]. Liu et al. [37] defined the topology
of urban rail networks using the idea of Space P and Space L and a new parameter to
evaluate the node importance and found that urban rail networks are more vulnerable to
intentional attacks than random network attacks based on this node importance method.
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Xia et al. [39] proposed a node importance evaluation method (SIRank) and compared
SIRank with traditional methods by using the experiment of attacking nodes with the
highest importance. For the directed weighted network and the undirected unweighted
network, the results obtained by using the same node importance evaluation method
were different. Du et al. [40] offered a new method of node importance, which was the
Improved Topological Potential model considering Entropy (ITPE), and found that the
node importance evaluation methods applicable to the directed and weighted networks
was not applicable to the unweighted and undirected topological networks.

From the perspective of the development of evaluation methods for the node impor-
tance of complex networks, it is a development trend to integrate local and global indicators
and build comprehensive indicators with comprehensive attributes, which can more com-
prehensively evaluate the impact of nodes on network performance [41]. However, few
evaluation methods for node importance applied to urban rail networks consider the global
and local attributes of indicators. For different analysis needs, new evaluation methods
for node importance are constantly emerging, and the application accuracy of evaluation
methods for node importance in urban rail networks still has room for improvement [42,43].
The urban rail transit network is different from other networks in that it runs on specific
lines [44]. Although researchers have realized that urban rail networks are different from
other complex networks, they have not integrated the characteristics of urban rail transit
that runs on specific lines into the evaluation of the node importance of urban rail transit
networks.

In order to solve the above problems, this paper fully considers the traffic attributes of
urban rail networks and will construct an evaluation method for node importance suitable
for structural networks of urban rail transit. On the basis of traditional node importance
indicators of complex networks, we integrate indicators with local and global attributes
to make the impact of this method on network performance more comprehensive. First,
we used Space L to build the structure network of urban rail transit. Then, considering the
characteristics of the urban rail network running on specific lines, we used Space Syntax to
obtain the operation accessibility of the nodes. Finally, we obtained the evaluation method
for node importance that integrated global and local attributes and traffic attributes. The
biggest difference between this evaluation method for node importance and other methods
is that it considers the characteristics of the urban rail network that runs on specific lines,
so it is named with the abbreviation CLI, meaning “considering line importance”. Taking
the SZRT network as an example, the effectiveness and accuracy of CLI was verified.

3. Methodology

In order to build an evaluation method for node importance with higher accuracy and
that is more suitable for urban rail networks, this paper improved the typical evaluation
method for the node importance of complex networks and fully considered the global and
local attributes of the indicators. In addition, in order to make the evaluation method for
node importance more applicable to the urban rail network, this paper considered the
characteristics of the urban rail transit that runs on specific lines, and the results obtained
conformed to the operation status of the urban rail networks. The methodology herein is
shown in Figure 1 and consists of the following steps:

(1) Constructing the urban rail network with the Space L model;
(2) Calculating the node degree and betweenness centrality of the nodes in the Space L

network, based on complex network theory;
(3) Analyzing the relationship between the lines where the stations are located with Space

Syntax and obtaining the operation accessibility of the nodes;
(4) Building a CLI node importance method that considers the node degree, betweenness

centrality, and operation accessibility of the nodes;
(5) Ranking the stations according to the calculation results of the node degree, between-

ness centrality, and CLI, and comparing the stations with high importance under
each method;
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(6) Attacking high-betweenness-centrality and high-CLI nodes in turn, comparing the
network performance degradation under different node failure scenarios and giving
the best method.
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4. Urban Rail Complex Networks
4.1. Topology Analysis of Urban Rail Networks

There are four main methods to construct the topology structure of transport networks
based on complex network theory, namely Space L, Space P, Space B, and Space C, which
were introduced in detail in the literature [42,45]. Space L and Space P models are commonly
used in urban rail networks. Figure 2 shows the results of constructs of the same simple
urban rail network with these two models. In the Space L model, the stations are regarded
as nodes, and the link between two nodes indicates that there is at least one route that
services the two consecutive stations and no other intermediate stations between them. In
the Space P model, the stations are regarded as nodes, and if any two stations are serviced
by at least one common route, there is a link between the two stations. The Space L model
is the most intuitive expression of the urban rail network, which is mainly used to study the
topology structure characteristics and vulnerability of the rail transit network; in the Space
P model, the neighbors of a node are all stations that can be reached without changing the
lines, so the Space P model is usually used to study the transfer characteristics of the urban
rail network.
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It can be seen from Figure 2 that the topology network constructed by Space L was
more similar to the urban rail network in reality. This paper studies the topological feature
of node importance in the urban rail network. Stations correspond to nodes in the topology
network. Whether the stations are directly connected indicates the nodes’ connection
relationship in the topology network. Therefore, Space L is more suitable for constructing a
topology network of urban rail transit. According to complex network theory, the urban
rail network can be represented as a matrix Aij, which is a square matrix used to represent
a finite network. A network with n nodes can be represented as an adjacency matrix table
with n× n elements, and element aij represents the connection between node i and node j:

ai,j =

{
1, i f there is a link between node i and node j,
0, otherwise.

(1)

4.2. Typical Indicators of Complex Networks

In an urban rail topological network constructed by the Space L model, the typical
indicators representing node importance are node degree (D), betweenness centrality (BC),
closeness centrality (CC), and eigenvector centrality (EC). The definitions and calculation
formulas for the indicators are showed in Table 1 [22].

Table 1. The definitions and calculations of typical node importance indicators.

Index Definition Formula

D D measures the number of other nodes
directly connected to a node.

Di =
n

∑
j=1

aij

n is the total number of network nodes.

BC BC measures shortest number of paths
through a node.

BCi = ∑
s,j∈V

σ(s,j|i)
σ(s,j)

σ(s, j|i) represents the number of all the shortest paths through
node i in the shortest path from node s to node j.

CC CC measures the ability of a station to
affect another node through the network.

CCi =

 n

∑
j

dij

−1

dij represents the shortest distance between node i and node j.

EC EC measures the shortest number of
paths through a node.

ECi =
1
λ

n

∑
jεΓ(i)

aijxj

Γ(i) is the set of neighbor nodes of node i, where λ is a constant.

D directly reflects the position of a node in the network or the relationship with
adjacent nodes, taking into account the local attributes of the node. BC gives the number
of shortest paths that pass through a node in the network, which can best measure the
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connectivity potential of the station in the urban rail network. The larger the BC, the
more times the station passes through the shortest path in the network. CC underlines the
position of a node in the network, and CC is closer to the geometric center of the network.
BC and CC reflect the global characteristics of the nodes in complex networks.

4.3. Index Considering the Characteristic of Specific Lines in Urban Rail Networks

When analyzing the urban rail topological network, in addition to fully considering
the complex network characteristics, it is also necessary to combine the urban rail network
operation characteristics. In actual operation, urban rail transit trains operate on dedicated
lines. Trains on different lines generally do not participate in the operation of other lines,
so the relationship between the lines should not be ignored.

As shown in Figure 2, station 1 to 3 and station 1 to 8 had the same convenience in
complex networks structured by Space L. However, when actually taking urban rail transit,
passengers need to get off at station 2 and transfer from Line 1 to Line 3 before arriving
at station 8. Therefore, when studying the station importance in urban rail networks, on
the basis of typical methods for the node importance of complex network, the relationship
between the lines where the stations are located should be considered. This paper proposes
the operation accessibility of stations, which is equal to the accessibility value of the line
where the station is located, as shown in Formula (2).

SAi = LAp (2)

where SAi is the operation accessibility of station i and LAp is the accessibility value of
line p.

Space Syntax [46] focuses on the organizational structure, arrangement, and connection
order between spaces. We used the configuration relationship to analyze the elements
in the space (field of view, point, line, convex space), and Figure 3 takes a room plan as
an example:
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We analyzed the line accessibility with Space Syntax, abstracted the urban rail line
into points, and calculated the line accessibility LAp as follows:

LAp =
Dl

RAp
(3)

Dl =
2
{

l
[
log2

(
l+2

3 − 1
)
+ 1
]}

(l − 1)(l − 2)
(4)

RAp =
2
(

MDp − 1
)

l − 2
(5)

The links between adjacent lines were weighted. If the number of intersections of
two intersecting lines is k, the distance weight between the intersecting lines is 1/k. After
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the traditional distance value of the mean depth value MDp is improved to the distance
weight value, the MDp and the shortest distance dpq are calculated as follows:

MDp =
∑l

q=1 dpq

l − 2
(6)

dpq =

g

∑
1

1
kg

(7)

where p, q are nodes in the Space Syntax network, representing two lines in the orbital
topology network; g is the link segment connected between nodes p and q, representing
the transfer station in the urban rail network; 1/kg is the weight of the g-th link between
nodes p and q; l is the number of nodes in the Space Syntax network, representing the
number of lines in the urban rail network; and Dl is the value to eliminate the influence of
the topology connection.

5. Node Importance of Urban Rail Networks
5.1. Improved Evaluation Method for Node Importance

Section 4.2 introduces the typical indicators used for the node importance analysis of
complex networks and divides these indicators into local indicators and global indicators.
In order to give consideration to the two attributes, the node importance evaluation method
in this paper considered the use of both the node degree and betweenness centrality. On
this basis, considering the traffic characteristics of the urban rail network that runs on
specific lines, the node importance index CLI of the urban rail topological network is
constructed as:

CLIi = w1D̃l + w2B̃Cl + w3S̃Al (8)

where D̃l is the standardized node degree; B̃Cl is the standardized betweenness centrality;
S̃Al is the standardized station accessibility; w1, w2, w3 are weight coefficients of the node
degree, betweenness centrality, and station accessibility, respectively.

The standardized formula of node degree is as follows:

D̃l =
Di − Dmin

Dmax − Dmin
(9)

where Dmin is the minimum value of the node degree without 0–1 standardization and Dmax
is the maximum value of the node degree without 0–1 standardization. The standardized
formula of BC and SA are the same as above.

w1, w2, w3 are calculated by the Entropy Method, and the Entropy Method will not be
introduced here in detail.

5.2. Method Validation

The node importance evaluation method was used to find the station that had the
greatest impact on the urban rail network, while the process and degree of the urban rail
network affected cannot be directly judged, so this paper measured the impact of node
failure under attack on the network performance. Here, for the attack strategies, we selected
the typical index betweenness centrality and the CLI index proposed in this paper as the
basis for comparison, and for the network performance, we selected the largest connected
subgraph and network efficiency. The stations of the urban rail network were sorted from
large to small according to the value of BC and CLI, and the stations under the two sorts
were attacked, respectively, to obtain the decline in the largest connected subgraph and
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network efficiency of the network, so as to verify the applicability of the importance index
CLI proposed in this paper. The largest connected subgraph is shown in Formula (10).

M =
Ni
N0

(10)

where N0 is the number of nodes in the initial network and Ni is the number of nodes in
the largest connected subgraph after the failure of station i. The largest connected subgraph
reflects the transport functional integrity of the remaining network after the failure of
individual nodes. The smaller the largest connected subgraph, the greater the impact of the
failed node on the network performance, and the more important the node is.

The formula for calculating network efficiency is as follows:

E =
1

C2
N

N

∑
i>j

1
dij

(11)

where dij is the shortest path length between nodes i and j. The network efficiency reflects
the connectivity between nodes in the network. The smaller the network efficiency is,
the greater the impact of the failed node on the network performance is, and the more
important the node is.

6. Experimental Analysis and Discussion
6.1. Typical Characteristic Indicators of Suzhou Railway Network

This paper takes the Suzhou Rail Transit (SZRT) network in 2022 as an example. All
the data are from Suzhou Rail Transit Group Co., Ltd. The SZRT network consists of
six operation lines, with 154 stations in total. The numbers of stations are shown in Table 2,
and the connection relationships between the stations are shown in Table 3. We input the
information in Tables 2 and 3 in Gephi to obtain the topological structure of the network of
SZRT, as shown in Figure 4.

Table 2. Node data.

ID Label Line ID Label Line ID Label Line

1 140 1 59 340 3 120 764 4F

2 141 1 60 341 3 121 765 4F

3 142 1 61 342 3 122 766 4F

. . . . . . . . . . . . . . . . . . . . . . . . . . .

25 238 2 93 440 4 127 521 5

26 239 2 94 441 4 128 522 5

27 240 2 95 442 4 129 523 5

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Link data.

Source Target Weight Source Target Weight

1 2 1 . . . . . . . . .

2 1 1 90 153 1

2 3 1 90 154 1

. . . . . . . . . 154 90 1
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Figure 4. SZRT topology network.

The basic parameters of the SZRT topology network constructed by the Space L model
are shown in Table 4. It can be seen that the average node degree of the SZRT network was
2.117, which is consistent with the structural characteristics of the urban rail network. In
the SZRT network, except for the transfer nodes, most nodes had a degree of two, and a few
edge stations had a degree of one. The network diameter represents the maximum distance
of all node pairs in the network, and the maximum distance between two stations of the
SZRT network is 34. The average path length represents the average distance of all the
node pairs in the network. The average path length of the Suzhou Rail Transit network was
13.718. The cluster coefficient describes the possibility that individual neighbor nodes in
the network are also neighbors to each other. The network cluster coefficient is the average
of the cluster coefficients of all nodes in the network. The network cluster coefficient was 0,
indicating that the SZRT network did not have the small-world properties.
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Table 4. Basic parameters of topology network.

Line
Number

Node
Number

Link
Number

Average Node
Degree

Network
Diameter

Average
Path Length

Network
Cluster

Coefficient

6 154 163 2.117 34 13.718 0

We calculated the stations’ node degrees and betweenness centrality of the SZRT
network. The top 10 stations are shown in Table 5.

Table 5. SZRT network sorted by node degree and betweenness centrality of the stations.

Order Highest D Stations D Highest BC Stations BC

1 Shihudong RD. 4 Shihudong RD. 0.183

2 Baodai RD. 4 Baodai RD. 0.169

3 Nanmen 4 Nanmen 0.134

4 Suoshanqiaoxi 4 Suoshanqiaoxi 0.130

5 Leqiao 4 Leqiao 0.128

6 Dongfangzhimen 4 Dongfangzhimen 0.120

7 Jinsheqiao 4 Hongzhuang 0.118

8 Suzhou railway
station 4 Jinsheqiao 0.115

9 Laodong RD. 4 Suzhou railway
station 0.110

10 Guangjinan RD. 4 Laodong RD. 0.094

It can be seen from Table 5 that the ranking of the node degree and betweenness
centrality was basically the same, and there was a big difference in Hongzhuang Station,
mainly because the two indicators focused on different aspects. The node degree represents
the number of links connected to the node, which is a local indicator. The betweenness
centrality represents the intermediary role of the node in the network, which is a global
indicator. Both of them can partly reflect the importance of the stations in the network. Like
Hongzhuang Station, although there are only three adjacent nodes, it is very important for
Line 4F, because other lines must pass through Hongzhuang Station to reach other stations
on Line 4F. This further validates the CLI method, which comprehensively considers the
rationality of node degree and betweenness centrality.

6.2. CLI Node Importance Calculation

The Space Syntax is used to construct the line relationships of the SZRT network, as
shown in Figure 5.

According to the number of transfer stations between lines, the weight of the inter-
section lines is improved. The improved weight of intersecting lines is shown in Figure 5.
According to the given weight value, we calculated the shortest distance dpq between line p
and q, and then we obtained the accessibility of all lines. The results are shown in Table 6.

Table 6. Results of line accessibility.

Line 1 2 3 4 4F 5

accessibility 5.558 8.337 10.005 16.675 1.853 6.253
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It can be seen that Line 4 of the SZRT network had the highest accessibility while Line
4F had the lowest accessibility value. This was because Line 4F only intersected Line 4,
while Line 4 intersected all the other lines. Line 3 had more transfer stations with other lines,
so the line accessibility value was second only to Line 4. The line accessibility calculated
according to the improved Space Syntax conformed to the actual operation of the SZRT.

According to the line accessibility, the operation accessibility SAi of station i was
assigned. For the transfer stations, the operation accessibility of the station was the larger
accessibility of the intersecting lines. Table 7 shows the operational accessibility of part of
the stations.

Table 7. Operational accessibility of part of the stations.

Station Line Operational Accessibility

Shihudong RD. 2/4 16.675

Baodai RD. 3/4 16.675

Nanmen 4/5 16.675

Suoshanqiaoxi 3/5 10.005

Leqiao 1/4 16.675

Hongzhuang 4/4F 16.675

Dongfangzhimen 1/3 10.005

Guangjinan RD. 1/2 10.005

Xingtang ST. 1/5 10.005

Panli RD. 2/3 10.005

Xiangmen 1 5.558

Likou 2 10.005

Yinchun RD. 3 10.005

Huolidao 4 16.675

Xietang 5 10.005

Huagang 4F 1.853
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The node degrees, betweenness centrality, and operational accessibility of the stations
were obtained. The node importance CLI of the SZRT network was calculated according to
Formula (8), and the CLI sorting of the stations is shown in Table 8.

Table 8. CLI sorting of the stations.

Order Highest CLI Stations CLI

1 Shihudong RD. 1.000

2 Baodai RD. 0.964

3 Nanmen 0.871

4 Leqiao 0.857

5 Suzhou railway station 0.808

6 Suoshanqiaoxi 0.747

7 Hongzhuang 0.742

8 Dongfangzhimen 0.721

9 jinsheqiao 0.708

10 Laodong RD. 0.623

The difference between the results of the CLI and node degree and betweenness
centrality ranking mainly occurred in the Line 4 stations. When the characteristics of the
specific line’s operation are not considered, the convenience of going from a station to any
station connected with the transfer station is the same. However, in the actual operation
process, it is more convenient to go from a station to the station on the local line because it
is not necessary to get off at the transfer station and transfer to other lines. Therefore, it is
very important to consider the connection relationship between the lines to evaluate the
importance of stations.

6.3. Comparative Analysis

In order to compare different node importance evaluation methods more objectively,
attacks on the stations were arranged in order. Since the highest node degree of the stations
in the SZRT network did not differ, a comparison test of the stations with a high BC and
high CLI was used here. The nodes’ failure processes under different cases is shown in
Figure 6.

By comparison, in the attack scenarios sorted by different methods for node impor-
tance, there were a few differences between the failed nodes of the top 20 BC ranking and
CLI ranking. Most of the top 20 failed nodes were transfer stations in the network. When
the ranking exceeds 20, the gap between the failed nodes widens. The failed nodes of the
top 20–40 BC rankings were mainly distributed in Line 1, 3, and 5, while the failed nodes of
the top 20–40 CLI rankings were distributed in Line 3, 4, and 4F. The failed nodes of the top
40–60 BC rankings were still distributed in Line 1, 3, and 5, while the failed nodes of the
top 40–60 CLI rankings were distributed in Line 2, 3, and 5. It can be considered that the
CLI node importance method considering the characteristics of specific lines in urban rail
networks could increase the importance of Line 4 and the lines with greater interactions
with Line 4, and the importance of stations on the relevant lines will also increase.

In order to further explore whether the CLI node importance method considering
traffic characteristics is more accurate than other methods for urban rail networks, we
compared the network performance degradation under the CLI failure scenario and BC
failure scenario and used the two indicators of the largest connected subgraph and network
efficiency to characterize the network performance. The change in the largest connected
subgraph of the network is shown in Figure 7.
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It can be seen from Figure 7 that when the top five BC ranking nodes and CLI ranking
nodes were attacked in turn, the largest connected subgraph of the network decreased at
the same speed due to the two node failure cases. When attacking nodes in 5–10 order,
the largest connected subgraph under the CLI failure case decreased significantly faster
than the largest connected subgraph under the BC failure case. When attacking nodes in
10–20 order, the largest connected subgraph under the two node failure cases decreased at
the same speed. When attacking nodes with a ranking greater than 20, the largest connected
subgraph under the CLI failure case always dropped faster than the largest connected
subgraph under the BC failure case. According to the process of node failure in Figure 6,
it was found that the reasons for the gap between the two attack scenarios were mainly
concentrated on the nodes of Line 4. The typical node importance method ignored the
importance of the traffic characteristics of Line 4, making the node importance of Line 4 low,
while the CLI method considered the traffic characteristics of each line, which improved
the node importance of Line 4. The results showed that after the ranking of the node
importance of the stations on Line 4 improved, the largest connected subgraph decreased
faster. Therefore, it can be considered that the node failure case sorted according to the CLI
made the largest connected subgraph drop faster in general, that is, the key nodes obtained
by the CLI method had a greater impact on the integrity of the network than the key nodes
obtained by the BC method.

It can be seen from Figure 8 that when attacking the top 20 nodes, the network
efficiency under the CLI failure case was similar to that under the BC failure case. When
the attack sequence was greater than 20 nodes, the network efficiency under the CLI failure
case decreased faster than that under the BC failure case. In general, the node failure case
sorted according to the CLI made the network efficiency drop faster, which indicated that
the key nodes obtained by the CLI method had a greater impact on the transport function
of the urban rail network.
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To sum up, the CLI method proposed in this paper is more accurate in evaluating the
node importance of the network. Because this method considers the traffic characteristics of
the line where the node is located, it is particularly suitable for urban rail transit networks. It
can provide a reference for improving the service quality of urban rail transit and ensuring
the safety of urban rail networks.

7. Conclusions

In order to more accurately evaluate the key stations of urban rail networks, using
complex network theory, a station importance evaluation method considering the charac-
teristics of operation on specific lines is proposed based on the typical node importance
evaluation methods and combined with the operation characteristics of urban rail net-
works. The CLI evaluation method combined the local and global indicators of complex
networks and the operation accessibility of nodes considering the specific lines. Take the
SZRT network as an example to conduct simulation experiments, and take the node degree,
betweenness centrality, and CLI as attack strategies to simulate network failure scenarios.
The largest connected subgraph and network efficiency were used to measure the network
performance under the network failure scenarios. The following conclusions were drawn
from the simulation results:

(1) Attacking the network according to the node sequence obtained by the CLI method
makes the largest connected subgraph of the urban rail network decrease faster.

(2) Attacking the network according to the node sequence obtained by the CLI method
makes the network efficiency of the urban rail network decrease faster.

(3) The node importance is related to the line accessibility, and the node importance method
considering traffic characteristics can make the network performance decline faster.

To sum up the above three conclusions, it is indicated that the traffic characteristics
should be considered in the node importance evaluation of urban rail networks; it is more
accurate to use the CLI method to evaluate the station importance of urban rail networks
than other methods such as the betweenness centrality.

The research of this paper can help the operation department find the key stations that
have a great impact on the urban rail network performance and ensure the safe operation
of the urban rail transit. Additionally, it can provide reference for the maintenance and
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recovery of the network and help the urban rail transit operation department improve the
operation management level and service level.

The urban rail network not only has a static topology network layer but also a service
network layer for passenger flow. This paper still has room for further improvement. In the
future, we can combine the static network layer and the dynamic network layer to study
the node importance of the integrated layer network that can adapt to different operational
scenarios. Different urban rail networks may have different characteristics. If the CLI node
importance method is applied to different urban rail networks, the results may make us
find more implications. Therefore, we will consider exploring the different characteristics
of urban rail networks in different cities in future research, so as to make the research on
the node importance method of urban rail networks more systematic.

Author Contributions: Conceptualization, T.C., J.M. and X.G.; methodology, T.C.; software, T.C.;
validation, T.C.; resources, X.G.; data curation, Z.Z.; writing—original draft preparation, T.C.;
writing—review and editing, J.M. and Z.Z.; funding acquisition, J.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was funded by the Scientific Research Foundation for Advanced Talents of Nan-
jing Forestry University, grant number: No. 163106041; the General Program of the Natural Science
Foundation of the Jiangsu Higher Education Institutions of China, grant number: 20KJB580013; and
the General Project of Philosophy and Social Science Foundation of the Jiangsu Higher Education
Institutions of China, funding number: 2020SJA0125.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Authors would like to acknowledge the anonymous reviewers for their con-
structive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ministry of Transport of the People’s Republic of China. Express Report of Urban Rail Transit Operation Data in November 2022.

Available online: https://www.mot.gov.cn/ (accessed on 15 December 2022).
2. China News. The Subway Station is Still Closed after a Train Overspeed Accident in Boston. Available online: https://www.

chinanews.com/gj/shipin/cns-d/2021/08-04/news896940.shtml (accessed on 15 December 2022).
3. Xinhua News Agency. The Investigation Report on the “July 20” Rainstorm Disaster in Zhengzhou, Henan Province Was Released.

Available online: https://s.cyol.com/articles/2022-01/21/content_DgRgQOUz.html (accessed on 15 December 2022).
4. Paul, S.K. Vulnerability Concepts and its Application in Various Fields A Review on Geographical Perspective. J. Life Earth Sci.

2014, 8, 63–81. [CrossRef]
5. Scherb, A.; Garrè, L.; Straub, D. Reliability and Component Importance in Networks Subject to Spatially Distributed Hazards

Followed by Cascading Failures. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2017, 3, 021007. [CrossRef]
6. Liu, Z.; Jiang, C.; Wang, J.; Yu, H. The node importance in actual complex networks based on a multi-attribute ranking method.

Knowl.-Based Syst. 2015, 84, 56–66. [CrossRef]
7. Ai, X. Node Importance Ranking of Complex Networks with Entropy Variation. Entropy 2017, 19, 303. [CrossRef]
8. Zhang, M.; Wang, X.; Jin, L.; Song, M.; Li, Z.J.N. A new approach for evaluating node importance in complex networks via deep

learning methods. Neurocomputing 2022, 497, 13–27. [CrossRef]
9. Yang, P.; Xu, G.; Chen, H. Multi-attribute ranking method for identifying key nodes in complex networks based on GRA. Int. J.

Mod. Phys. B 2019, 32, 1850363. [CrossRef]
10. Jiang, Z.-Y.; Zeng, Y.; Liu, Z.-H.; Ma, J.-F. Identifying critical nodes’ group in complex networks. Phys. A Stat. Mech. Its Appl. 2019,

514, 121–132. [CrossRef]
11. Saito, K.; Kimura, M.; Ohara, K.; Motoda, H. Super mediator—A new centrality measure of node importance for information

diffusion over social network. Inf. Sci. Comput. Sci. Intell. Syst. Appl. Int. J. 2016, 3, 34. [CrossRef]
12. Zhang, C.; Lin, Z.; Wen, F.; Ledwich, G.; Xue, Y. Two-stage power network reconfiguration strategy considering node importance

and restored generation capacity. IET Gener. Transm. Distrib. 2014, 8, 91–103. [CrossRef]
13. Kanwar, K.; Kaushal, S.; Kumar, H. A hybrid node ranking technique for finding influential nodes in complex social networks.

Libr. Hi Tech. 2019, 40, 98–114. [CrossRef]

https://www.mot.gov.cn/
https://www.chinanews.com/gj/shipin/cns-d/2021/08-04/news896940.shtml
https://www.chinanews.com/gj/shipin/cns-d/2021/08-04/news896940.shtml
https://s.cyol.com/articles/2022-01/21/content_DgRgQOUz.html
http://doi.org/10.3329/jles.v8i0.20150
http://doi.org/10.1115/1.4036091
http://doi.org/10.1016/j.knosys.2015.03.026
http://doi.org/10.3390/e19070303
http://doi.org/10.1016/j.neucom.2022.05.010
http://doi.org/10.1142/S0217979218503630
http://doi.org/10.1016/j.physa.2018.09.069
http://doi.org/10.1016/j.ins.2015.03.034
http://doi.org/10.1049/iet-gtd.2013.0065
http://doi.org/10.1108/LHT-01-2019-0019


Sustainability 2023, 15, 3582 19 of 20

14. Khomami, M.M.D.; Rezvanian, A.; Meybodi, M.R.; Bagheri, A. CFIN: A community-based algorithm for finding influential nodes
in complex social networks. J. Supercomput. 2020, 77, 2207–2236. [CrossRef]

15. Zhang, W.; Liu, K.y.; Sheng, W.; Du, S.; Jia, D. Critical node identification in active distribution network using resilience and risk
theory. IET Gener. Transm. Distrib. 2020, 14, 2771–2778. [CrossRef]

16. Kitsak, M.; Gallos, L.K.; Havlin, S.; Liljeros, F.; Muchnik, L.; Stanley, H.E.; Makse, H.A. Identification of influential spreaders in
complex networks. Nat. Phys. 2010, 6, 888–893. [CrossRef]

17. Lu, L.; Zhou, T.; Zhang, Q.M.; Stanley, H.E. The H-index of a network node and its relation to degree and coreness. Nat. Commun.
2016, 7, 10168. [CrossRef] [PubMed]

18. Hébert-Dufresne, L.; Allard, A.; Young, J.G.; Dube, L.J. Global efficiency of local immunization on complex networks. Sci. Rep.
2013, 3, 2171. [CrossRef]

19. Bergamini, E.; Borassi, M.; Crescenzi, P.; Marino, A.; Meyerhenke, H. Computing Top-k Closeness Centrality Faster in Unweighted
Graphs. Front. Psychol. 2017, 8, 1683.

20. Fei, L.; Deng, Y. A new method to identify influential nodes based on relative entropy. Chaos Solitons Fractals X 2017, 104, 257–267.
[CrossRef]

21. Black, W.R. Transportation: A Geographical Analysis. J. Transp. Geogr. 2004, 13, 201–203.
22. Meng, Y.; Qi, Q.; Liu, J.; Zhou, W. Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro

Network from 2004 to 2021. Sustainability 2022, 14, 7234. [CrossRef]
23. Lin, J.; Ban, Y. Complex Network Topology of Transportation Systems. Transp. Rev. 2013, 33, 658–685. [CrossRef]
24. Latoraa, V.; Marchiorib, M. Is the Boston subway a small-world network? Phys. A Stat. Mech. Its Appl. 2002, 34, 109–113.

[CrossRef]
25. Li, W.; Cai, X. Empirical analysis of a scale-free railway network in China. Phys. A Stat. Mech. Its Appl. 2007, 382, 693–703.

[CrossRef]
26. Derrible, S.; Kennedy, C. Network Analysis of World Subway Systems Using Updated Graph Theory. Transp. Res. Rec. J. Transp.

Res. Board 2009, 2112, 17–25. [CrossRef]
27. Zhang, J.; Xu, X.; Hong, L.; Wang, S.; Fei, Q. Networked analysis of the Shanghai subway network, in China. Phys. A Stat. Mech.

Its Appl. 2011, 390, 4562–4570. [CrossRef]
28. Zhang, J.; Zhao, M.; Liu, H.; Xu, X. Networked characteristics of the urban rail transit networks. Phys. A Stat. Mech. Its Appl. 2013,

392, 1538–1546. [CrossRef]
29. Chen, S.; Zhuang, D. Evolution and Evaluation of the Guangzhou Metro Network Topology Based on an Integration of Complex

Network Analysis and GIS. Sustainability 2020, 12, 538. [CrossRef]
30. Yang, Y.; Liu, Y.; Zhou, M.; Li, F.; Sun, C. Robustness assessment of urban rail transit based on complex network theory: A case

study of the Beijing Subway. Saf. Sci. 2015, 79, 149–162. [CrossRef]
31. Zhang, D.-M.; Du, F.; Huang, H.; Zhang, F.; Ayyub, B.M.; Beer, M. Resiliency assessment of urban rail transit networks: Shanghai

metro as an example. Saf. Sci. 2018, 106, 230–243. [CrossRef]
32. Sun, D.; Zhao, Y.H.; Lu, Q.C. Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China.

Sustainability 2015, 7, 6919–6936. [CrossRef]
33. Xing, Y.; Lu, J.; Chen, S.; Dissanayake, S. Vulnerability analysis of urban rail transit based on complex network theory: A case

study of Shanghai Metro. Public Transp. 2017, 9, 501–525. [CrossRef]
34. Shen, Y.; Ren, G.; Ran, B. Cascading failure analysis and robustness optimization of metro networks based on coupled map

lattices: A case study of Nanjing, China. Transportation 2019, 48, 537–553. [CrossRef]
35. Li, X.L.; Zhang, P.; Zhu, G.Y. Measuring Method of Node Importance of Urban Rail Network Based on H Index. Appl. Sci. 2019, 9,

5189. [CrossRef]
36. Lai, Q.; Zhang, H.H. Analysis of identification methods of key nodes in transportation network. Chin. Phys. B 2022, 31, 068905.

[CrossRef]
37. Liu, Y.; Tan, Y. Complexity Modeling and Stability Analysis of Urban Subway Network: Wuhan City Case Study. Procedia—Soc.

Behav. Sci. 2013, 96, 1611–1621. [CrossRef]
38. Sun, S.W.; Li, H.Y.; Xu, X.Y. A key station identification method for urban rail transit: A case study of beijing subway. Promet-Traffic

Transp. 2017, 29, 267–273. [CrossRef]
39. Xia, F.; Wang, J.; Kong, X.; Zhang, D.; Wang, Z. Ranking Station Importance With Human Mobility Patterns Using Subway

Network Datasets. IEEE Trans. Intell. Transp. Syst. 2020, 21, 2840–2852. [CrossRef]
40. Du, Z.; Tang, J.; Qi, Y.; Wang, Y.; Han, C.; Yang, Y. Identifying critical nodes in metro network considering topological potential:

A case study in Shenzhen city—China. Phys. A Stat. Mech. Its Appl. 2020, 539, 122926. [CrossRef]
41. Barucca, P.; Caldarelli, G.; Squartini, T. Tackling Information Asymmetry in Networks: A New Entropy-Based Ranking Index.

J. Stat. Phys. 2018, 173, 1028–1044. [CrossRef]
42. Zhang, Y.J.; Ayyub, B.M.; Saadat, Y.; Zhang, D.M.; Huang, H.W. A double-weighted vulnerability assessment model for metrorail

transit networks and its application in Shanghai metro. Int. J. Crit. Infrastruct. Prot. 2020, 29, 100358. [CrossRef]
43. Xu, Z.; Chopra, S.S.; Lee, H. Resilient Urban Public Transportation Infrastructure: A Comparison of Five Flow-Weighted Metro

Networks in Terms of the Resilience Cycle Framework. IEEE Trans. Intell. Transp. Syst. 2022, 23, 12688–12699. [CrossRef]
44. Angeloudis, P.; Fisk, D. Large subway systems as complex networks. Phys. A Stat. Mech. Its Appl. 2006, 367, 553–558. [CrossRef]

http://doi.org/10.1007/s11227-020-03355-2
http://doi.org/10.1049/iet-gtd.2019.1781
http://doi.org/10.1038/nphys1746
http://doi.org/10.1038/ncomms10168
http://www.ncbi.nlm.nih.gov/pubmed/26754161
http://doi.org/10.1038/srep02171
http://doi.org/10.1016/j.chaos.2017.08.010
http://doi.org/10.3390/su14127234
http://doi.org/10.1080/01441647.2013.848955
http://doi.org/10.1016/S0378-4371(02)01089-0
http://doi.org/10.1016/j.physa.2007.04.031
http://doi.org/10.3141/2112-03
http://doi.org/10.1016/j.physa.2011.06.022
http://doi.org/10.1016/j.physa.2012.11.036
http://doi.org/10.3390/su12020538
http://doi.org/10.1016/j.ssci.2015.06.006
http://doi.org/10.1016/j.ssci.2018.03.023
http://doi.org/10.3390/su7066919
http://doi.org/10.1007/s12469-017-0170-2
http://doi.org/10.1007/s11116-019-10066-y
http://doi.org/10.3390/app9235189
http://doi.org/10.1088/1674-1056/ac4a6c
http://doi.org/10.1016/j.sbspro.2013.08.183
http://doi.org/10.7307/ptt.v29i3.2133
http://doi.org/10.1109/TITS.2019.2920962
http://doi.org/10.1016/j.physa.2019.122926
http://doi.org/10.1007/s10955-018-2076-z
http://doi.org/10.1016/j.ijcip.2020.100358
http://doi.org/10.1109/TITS.2021.3116667
http://doi.org/10.1016/j.physa.2005.11.007


Sustainability 2023, 15, 3582 20 of 20

45. Ferber, C.V.; Holovatch, T.; Holovatch, Y.; Palchykov, V. Public transport networks: Empirical analysis and modeling. Eur. Phys. J.
B 2009, 68, 261–275. [CrossRef]

46. Hoeven, F.V.D.; Nes, A.V. Improving the design of urban underground space in metro stations using the space syntax methodology.
Tunn. Undergr. Space Technol. 2014, 40, 64–74. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1140/epjb/e2009-00090-x
http://doi.org/10.1016/j.tust.2013.09.007

	Introduction 
	Literature Review 
	Evaluation of Node Importance of Complex Networks 
	Evaluation of Node Importance of Urban Rail Networks 

	Methodology 
	Urban Rail Complex Networks 
	Topology Analysis of Urban Rail Networks 
	Typical Indicators of Complex Networks 
	Index Considering the Characteristic of Specific Lines in Urban Rail Networks 

	Node Importance of Urban Rail Networks 
	Improved Evaluation Method for Node Importance 
	Method Validation 

	Experimental Analysis and Discussion 
	Typical Characteristic Indicators of Suzhou Railway Network 
	CLI Node Importance Calculation 
	Comparative Analysis 

	Conclusions 
	References

