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Abstract: Land use/land cover (LULC) changes are among the most significant human-caused
global variations affecting the natural environment and ecosystems. Pakistan’s LULC patterns
have undergone huge changes since the 1900s, with no clear mitigation plan. This paper aims
to determine LULC and normalized difference vegetation index (NDVI) changes as well as their
causes in Pakistan’s Southern Punjab province over four different periods (2000, 2007, 2014, and
2021). Landsat-based images of 30 m × 30 m spatial resolution were used to detect LULC changes,
while NDVI dynamics were calculated using Modis Product MOD13Q1 (Tiles: h24 v5, h24 v6) at
a resolution of 250 m. The iterative self-organizing (ISO) cluster method (object meta-clustering
using the minimal distance center approach) was used to quantify the LULC changes in this research
because of its straightforward approach that requires minimal human intervention. The accuracy
assessment and the Kappa coefficient were calculated to assess the efficacy of results derived from
LULC changes. Our findings revealed considerable changes in settlements, forests, and barren land
in Southern Punjab. Compared to 2000, while forest cover had reduced by 31.03%, settlement had
increased by 14.52% in 2021. Similarly, forest land had rapidly been converted into barren land. For
example, barren land had increased by 12.87% in 2021 compared to 2000. The analysis showed that
forests were reduced by 31.03%, while settlements and barren land increased by 14.52% and 12.87%,
respectively, over the twenty year period in Southern Punjab. The forest area had decreased to 4.36%
by 2021. It shows that 31.03% of forest land had been converted to urban land, barren ground, and
farmland. Land that was formerly utilized for vegetation had been converted into urban land due
to the expansion of infrastructure and the commercial sector in Southern Punjab. Consequently,
proper monitoring of LULC changes is required. Furthermore, relevant agencies, governments, and
policymakers must focus on land management development. Finally, the current study provides
an overall scenario of how LULC trends are evolving over the study region, which aids in land use
planning and management.

Keywords: land use/land cover; unsupervised classification; geographic information system; remote
sensing; normalized difference vegetation index; Southern Punjab
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1. Introduction

Land is a vital component of the natural environment and ecosystem worldwide [1,2].
However, its resources are limited due to population and agricultural growth demands [3–5].
Land cover (LC) refers to the physical properties of the earth’s surface that are either natural
or man-made, such as water bodies and vegetation cover [6]. On the other hand, land use
(LU) refers to human activity on the earth’s surface, such as infrastructure construction and
agricultural cropping [7,8]. In recent years, human activities have significantly impacted land
use/land cover (LULC) [9–14]. In addition, LULC investigation has the potential to greatly
impact natural resource management [15]. In recent years, accurate and sufficient information
regarding LULC has become vital for determining the social, economic, and environmental
repercussions of such changes and for understanding those repercussions [16–18].

Nowadays, rapid urban population growth strains urban infrastructure, resulting in a
low people-to-land ratio and, as a result, land degradation [19]. Recently, it has become
necessary to evaluate changes in LULC to carry out appropriate planning and ensure
natural resources are protected in various ways by utilizing geospatial technology [20].
Since LULC is an essential and dynamic component for understanding the links between
human activities, it is also required to promote ecological change [21]. LULC change has
become a crucial component of the current research for monitoring ecological changes and
natural resources’ management [22,23].

The LULC change analysis has been found to address issues such as changes in
environmental services, urban growth, and watershed features. These and other research
areas have been supported by evidence that LULC change analysis has played a significant
role in addressing these issues [24–26]. LULC change detection is extremely important for
achieving the most thorough understanding of the connections and dynamics between
natural processes and human activities [27,28]. LULC change analysis has also been utilized
in research on LULC changes effects caused by suburban and urban expansion, natural
disasters, and insect infestations on plant cover [29–32].

In the fields of hydrometeorology, climate change, and the environment, remote sensing
(RS) and geographic information system (GIS) have been applied to a variety of different
purposes [33,34]. While RS provides high-resolution spatial data, GIS offers distinct tools for
the more effective management of the environment and ecosystems [35,36]. Spatial studies of
urban patterns, planning, and variation at global, regional, and local scales have benefitted in
recent years from collecting various information from RS data. This information was collected
and analyzed using RS data over several years [37,38]. In addition, RS data enabled local
environmental studies as well as LULC change management and protection at the global,
regional, and local scales [39]. Some techniques used and applied to observe LULC changes
include RS data, cross-correlation analysis, image differencing, post-classification comparison
(PCC), object pixel-based classification in LULC change mapping, and image fusion-based
LULC change detection [40,41]. Utilizing multi-spectral RS data, the LULC change analysis
is a technique that is frequently utilized to quantify LULC changes [42]. Multi-spectral and
multi-temporal RS satellite data have provided several research opportunities, including
investigating LULC patterns [43]. Several Landsat images, including those from the Landsat
Operational Land Imager (OLI), Thermal Infrared Sensor (TIRS), Enhanced Thematic Mapper
Plus (ETM+), Thematic Mapper (TM), and Multi-Spectral Scanner (MSS), have been used to
study LULC changes [44,45]. These images can also provide regular crop information and
different agriculture or environmental indices [46,47].

Scientists around the globe are interested in assessing LULC patterns and change
detection because they recognize the land resources’ significance for environmental sustain-
ability [48–53]. Moreover, LULC transformation becomes more problematic in unplanned,
dynamic locations such as urban settlements in developing countries [54]. Land cover
change patterns’ examination over the past 30 years and future land use change prediction
are required to understand how LULC change affects the Earth’s surface [55]. Satellite
imaging and remote sensing data are typically the primary sources of investigating LULC
trends and changes at a larger scale [56,57]. A few researchers have examined LULC
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variations in different parts of Pakistan [47,48,58]. In contrast, LULC change varies with
time, geographical location, slope, and altitude. Using the greatest likelihood approach and
Landsat data, Hussain et al. [47] discovered a 4.5% increase in settlements and a decrease
in vegetation cover area between 2000 and 2020 in the Okara district of Punjab, Pakistan.
Khan et al. [58] found vegetation cover decreased by 7.17% between 1990 and 2019 in the
Khyber Pakhtunkhwa (KPK) districts of Mardan and Charsadda, Pakistan. In contrast,
barren land and urban development increased by 5.5% and 2.23%, respectively. Another
study by Khan et al. [48] determined that a vast area of grassland and agricultural land
in Islamabad, Pakistan, was replaced by barren land between 1993 and 2018 when it was
examined using Landsat images.

In the past few years, the normalized difference vegetation index (NDVI) has been gen-
erally used for defining the spatiotemporal properties of LULC [31,59]. The polar-orbiting
Moderate Resolution Imaging Spectroradiometer sensor (MODIS) makes monitoring and as-
sessing vegetation and environmental indicators possible. Advanced Very-High-Resolution
Radiometer (AVHRR) sensor data cannot match the spatial and radiometric resolution
of MODIS-derived data, which results in an improved radiometric, spatial, and spectral
illustration of surface vegetation conditions [60,61]. The NDVI time series is significant
among the frequently used datasets in monitoring vegetation changes [62–64].

Land use assessment, land development, and ecological sustainability at all scales—
rural, urban, and regional—require regular updates to the LULC. Climate change regularly
impacts farmers in Pakistan, such as high or low temperatures, droughts, and floods
(e.g., recent flood, August–September, 2022) because agriculture is their sole source of
income. Due to poor LULC management over the past few years, Pakistan has seen a
significant fluctuation in LULC trends [65]. More than 39 million people live in southern
Punjab, the most productive agricultural area. It is well-known for its natural beauty and
fertile farmland where various crops are grown. It comprises 16 districts (Bahawalnagar,
Bahawalpur, Bhakkar, Dear Ghazi Khan, Jhang Khanewal, Layyah, Lodhran, Multan,
Muzaffargarh, Pakpattan, Rahimyar Khan, Rajanpur, Sahiwal, Toba Tek Singh, Vehari).
District-wise LULC studies exist in the literature. Hussain [66] determined LULC changes
in Lodhran, Multan, and Vehari districts using Landsat satellite images. Naeem et al. [67]
examined LULC detection in the Multan district from 1990 to 2020. The studies of Hussain
et al. [68] and Hussain et al. [30] evaluated LULC patterns in Lodhran and Multan districts,
respectively. Ahsen et al. [69] investigated LULC change in Multan District. Similarly,
LULC change detection was observed in Okara district by Hussain et al. [48]. Hussain
et al. [70] recently determined LULC changes in two districts (Multan and Vehari) of South
Punjab. Additionally, several researchers conducted an accuracy assessment and used the
Kappa coefficient to analyze the findings produced from the satellite images [67,70].

Based on the intensive literature review discussed above, LULC change detection in
South Punjab was only analyzed by considering 1–3 districts. To the best of our knowledge,
no study is reported in the literature that covers the complete South Punjab, which includes
16 districts. The research region has a wide variety of topography. Dera Ghazi (D.G.) Khan
is situated in the area that divides the Indus River from the Koh-e-Suleman mountain range.
Muzaffargarh and Layyah are on the eastern bank of the Indus River, whereas D.G. Khan is
on the western side. Rahimyar Khan lies on the eastern margin of the Indus River, whereas
Multan and Bahawalpur are on the eastern bank of the Chenab River. The districts of D.G.
Khan and Muzaffargarh are the most susceptible to severe flooding induced by heavy rains.
For instance, Layyah and Multan, located in Sindh Sagar-Doab, a region between the Indus
and Jhelum Rivers, feature deserts with a hot temperature. In the last several decades,
the southern part of Punjab has faced both drought risks and floods, making it the most
at risk area in the country. The current study used the latest data (satellite images) from
2000 to 2021 to identify the LULC change. Most studies in the literature used supervised
classification methods to identify LULC changes over the studied region. Alternatively,
iterative self-organizing (ISO) cluster, an unsupervised classification method, was chosen
in this study for LULC classification. The ISO cluster method was selected because of its
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straightforward approach that requires minimal human intervention. Thus, the objectives
of the current study are to:

(1) Create LULC maps for Southern Punjab, Pakistan, which includes 16 districts, for the
years 2000, 2007, 2014, and 2021;

(2) Identify LULC changes between 2000 and 2021;
(3) Calculate the normalized difference vegetation index (NDVI) to examine

vegetation status.

2. Study Area and Dataset
2.1. Study Area

South Punjab’s history and politics are intertwined. Figure 1 depicts the South Punjab
region, which includes 16 districts. This region has been inhabited since at least 200 BC.
This region has long been significant in terms of geography and politics. South Punjab
provides most of Punjab’s economic resources. In total, 39.14 million people call South
Punjab home. The average household size in the region is 6.56. People in urban regions
comprise 23% of the total population, while those in rural areas represent 77%. A total
of 116,518 km2 (57% of Punjab’s total land) and 36% of its population dwell in the South
Punjab region (PBS 2022). There is a productive plateau with agricultural fields watered
by canals, tube wells, and rain, although most of the terrain is flat. It is just on the brink
of the monsoon climate, which is why it is so popular. Summers are hot and humid, yet
the weather varies drastically from summer to winter. A typical summer day on plains is
30 degrees Celsius, whereas a typical winter day is 10 degrees Celsius. The annual average
rainfall is 22.18 millimeters [30,69].
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Figure 1. Geographical location of Southern Punjab, Pakistan (study area).

Agriculture is the province of Punjab’s primary source of income and employment,
notably in its southern portion. Historically, the majority of the province was desert and
unsuitable for settlement. However, once a massive network of irrigation canals utilizing
the water of the Indus tributaries was developed in the early 20th century, its nature
changed. The entire province was included in the settlement area, which had previously
only included the northern and northeastern portions. As a result, nearly three-quarters
of the province’s fertile land is now irrigated. Cotton and wheat are the most important
crops. Fruits, vegetables, oilseeds, pulses, millet, rice, sugarcane, and corn are among
the planted crops (maize). There is a massive production of cattle and poultry. Punjab
is home to over half of Pakistan’s population as well as the majority of the country’s
major cities, including Lahore, Faisalabad, Rawalpindi, Multan, and Gujranwala. Due to
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high population density, the geographical area of this province is continually changing,
including the loss of huge agricultural fields, water bodies, and forest regions for urban
expansion and development [71].

2.2. Data Collection

Landsat-based images of 30 m × 30 m spatial resolution covering the Southern Punjab
were obtained for the year 2000 of Landsat 5 (TM), 2007 of Landsat 5 (TM), 2014 of Landsat
8 (OLI-TIRS), and 2021 of 8 (OLI-TIRS). These images were obtained from the United States
Geological Survey (USGS) website (https://earthexplorer.usgs.gov, accessed on 27 October
2022) to determine LULC changes (January 2000–December 2021). The images were used
for the months of August, October, and November because in these months, Landsat images
were found to be proper and precise. In addition, cloud-free Landsat images were selected for
the data collection to ensure accuracy. Alternately, if clouds fully or partly obscure the field,
the data will not be correct. Table 1 provides summary of collected Landsat data.

Table 1. Landsat data for LULC changes’ calculations.

Access
Date Acquisition Satellite Sensor Band Used Path/Row Resolution

(m)

Cloud
Cover

(%)

25/05/2022 06/11/2000 Landsat 5 TM 1,2,3,4,5,7 149/39, 149/40, 150/38 to
150/41, 151/38 to 151/41 30 0

25/05/2022 28/11/2007 Landsat 5 TM 1,2,3,4,5,7 149/39, 149/40, 150/38 to
150/41, 151/38 to 151/41 30 0

28/06/2022 25/08/2014 Landsat 8 OLI-TIRS 1,2,3,4,5,6,7,9 149/39, 149/40, 150/38 to
150/41, 151/38 to 151/41 30 0

28/06/2022 15/10/2021 Landsat 8 OLI-TIRS 1,2,3,4,5,6,7,9 149/39, 149/40, 150/38 to
150/41, 151/38 to 151/41 30 0

MODIS is the instrument aboard the NASA’s Terra and Aqua satellites. NASA
launched Terra MODIS and Aqua in December 1999 and May 2002, respectively. MODIS
views the entire Earth’s surface every one to two days, obtaining data in 36 spectral bands
with wavelengths ranging from 0.4 to 14.385 µm. The MODIS imagery has a spatial res-
olution of 250 m, 500 m, and 1 km. Over twenty years, Modis Product MOD13Q1 (tiles:
h24 v5, h24 v6) at resolution of 250 meters was obtained to map and monitor the NDVI
changes (January 2000–December 2021). As a result, 16 sets of MODIS images were ob-
tained from the United States National Aeronautics and Space Administration’s (NASA’s)
website (https://lpdaac.usgs.gov/tools/data-pool/, accessed on 14 October 2022). Table 2
provides a description of MODIS data.

Table 2. Description of Modis MOD13Q1 (Tiles: h24 v5, h24 v6) for NDVI changes’ calculations.

SDS Name Description Units Data Type Valid Range Scale
Factor

250 m 16 days NDVI 16 day NDVI NDVI 16-bit signed integer −2000 to 10,000 0.0001
250 m 16 days EVI 16 day EVI EVI 16-bit signed integer −2000 to 10,000 0.0001

250 m 16 days VI Quality VI quality indicators Bit Field 16-bit unsigned integer 0 to 65,534 N/A
250 m 16 days red reflectance Surface Reflectance Band 1 N/A 16-bit signed integer 0 to 10,000 0.0001
250 m 16 days NIR reflectance Surface Reflectance Band 2 N/A 16-bit signed integer 0 to 10,000 0.0001
250 m 16 days blue reflectance Surface Reflectance Band 3 N/A 16-bit signed integer 0 to 10,000 0.0001
250 m 16 days MIR reflectance Surface Reflectance Band 7 N/A 16-bit signed integer 0 to 10,000 0.0001

250 m 16 days view zenith angle View zenith angle of VI Pixel Degree 16-bit signed integer 0 to 18,000 0.01
250 m 16 days sun zenith angle Sun zenith angle of VI pixel Degree 16-bit signed integer 0 to 18,000 0.01

250 m 16 days relative
azimuth angle

Relative azimuth angle
of VI pixel Degree 16-bit signed integer −18,000 to 18,000 0.01

250 m 16 days composite day
of the year Day of year VI pixel Julian day 16-bit signed integer 1 to 366 N/A

250 m 16 days pixel reliability Quality reliability of VI pixel Rank 8-bit signed integer 0 to 3 N/A

https://earthexplorer.usgs.gov
https://lpdaac.usgs.gov/tools/data-pool/


Sustainability 2023, 15, 3572 6 of 21

3. Adopted Methodology
3.1. Data Pre-Processing

Data are commonly used to pre-process Landsat images for radiometric correction,
layer stacking, and mosaicking using software ERDAS imagine 15 [72]. Image enhancement
algorithms are generally used to remove the stripping lines in the images of the ETM+ as
well as to enhance the quality of an image, and a new enhanced image is produced using
the software ERDAS imagine 15 [73]. Minimum mappable unit (1:25,000) was kept during
each step of various LULC classifications and maps. The subsetting process was conducted
using the extract by mask tool in Arc GIS 10.8 software of the image based on the study
area. Several steps were performed, including composite band, copy raster, mosaic to new
raster, and extract by mask to pre-process satellite images. This procedure was carried out
using ArcMap. The copy raster has image backgrounds that have been removed, leaving a
transparent background. Furthermore, an image enhancement technique was chosen for
histogram equalization. For Landsat images, an image mosaic tool was used to create a
new raster, which was used to create a single accurate research area aerial.

3.2. Data Classification

For LULC classification, an iterative self-organizing (ISO) cluster, an unsupervised
classification method, was chosen. ISO cluster method, known as ISO Data Analysis
Techniques A (ISODATA), is frequently used in remote sensing applications. It is based
on object meta-clustering using the minimal distance center approach. Indeed, it was
selected in this research because of its straightforward approach that requires minimal
human intervention [74,75]. The ISO cluster classification requires parameters such as the
initial clustering center and the number of categories. For our research, LULC classification
was achieved with a 0.97 convergence threshold and 50% iterations [45]. To assist the ISO
algorithm, more results were refined by seeking farmers’ opinions considering various
LULC classes in the study area. Furthermore, two visual interpretations of satellite images
were performed: false-color composite and natural color. A “natural” rendering is provided
by a “false-color composite”, for example, for Landsat 5, it is provided by 7, 4, and 2 bands.
Tamouk et al. [76] characterized healthy vegetation as vibrant green, grasslands as green,
barren soils as pink, oranges and browns as dry forest areas, water as blue, and urban
areas as varying concentrations of magenta. Bands 4, 3, and 2 of Landsat 8 provide natural
color repetitions similar to what the human eye perceives. Unhealthy vegetation appears
darker, whereas desirable growth is green. Water seems gray or black, while urban features
are pale and white [76,77]. Eva et al. [78] investigated the effects of combining multiple
land cover types into a single land cover class. Within the scope of this research, several
distinct categories were distinguished, including water, forests, cropland, barren lands, and
settlements. Equation (1) was used to find the area of each class, and Equation (2) was
utilized to compute the area percentage.

Area (ha) =
(Counted Pixels)× (Pixel size)2

104 (1)

Area (%) =
Area

Total Area
× 100 (2)

3.3. Post-Classification Change Detection

This study used ArcGIS 10.8 and Google Earth Pro tools to analyze and classify satellite
images from 2000 to 2021 based on satellite and actual geographical land utilization to
detect LULC changes. For this purpose, we conducted accuracy assessments to evaluate
the classified images and LULC changes.



Sustainability 2023, 15, 3572 7 of 21

3.4. Accuracy Assessment

The classification accuracy of satellite images can be assessed by calculating overall
accuracy and Kappa Coefficient (K). The overall accuracy can be determined by estimating
user and producer accuracy [67,70]. User accuracy is used to quantify the probability that
a classified pixel matches the land cover class of its actual geographical position. The
classification accuracy of actual land cover types is evaluated by producer accuracy, which
is quantified by gap errors. About 50 random ground control points (GCPs) were created
for each year, i.e., 2000, 2007, 2014, and 2021, and the minimum allowance distance set was
30 m for each class. The total accuracy of the classification of satellite images is determined
by comparing how each pixel is classed against the actual land cover produced from their
combined baseline data [79–81]. The coefficient K was utilized as an indicator of consistency
between predicted results and actuality [80] or to determine if the numbers included in an
input dataset reflect a considerably best improvement [82].

For example, in 2000, in the classified satellite image, water body’s correct points were
9; the row total was 10 and the column total was 9. The user and producer accuracies
were estimated to be 90% and 100%, respectively. On the other hand, the total number of
samples was 50, total number of correct samples was 44, and errors were 6 in the classified
satellite image of 2000. The overall accuracy and coefficient K were found to be 88% and
85%, respectively. The calculation of accuracy assessment indices for the complete study
period (2000–2021) is presented in the Results section.

3.5. Normalized Difference Vegetation Index (NDVI)

The spectral features of vegetation, such as its ability to absorb visible light and photosyn-
thetic energy, are considered in NDVI assessment. NDVI is a plant health assessment based
on how the plant absorbs and reflects light at specific frequencies. The NDVI is an excellent
indicator of vegetative growth conditions and vegetative cover degree. If a region is vegetated,
its NDVI value is a positive number that increases as the vegetation cover improve [83].

The methodology of current study to perform pre- and post-processing of dataset
is shown in Figure 2. MODIS data were obtained in HDF (Hierarchical Data Format).
Subsequently, it was reprojected from the original sinusoidal projection to geographic
projection (WGS84 datum). Then, stacking, mosaicking, and subsetting to AOI were
performed in ArcMap 10.8. Likewise, NDVI matrices were calculated using an ArcMap
spatial analysis tool (using a raster calculator) according to Equation (3). After processing
all the data, maps for the years 2000, 2007, 2014, and 2021 were developed.

NDVI =
NIR − RED
NIR + RED

(3)

where NIR is the near-infrared band, and RED is the red band. These indices have charac-
teristic values between −1 and 1 [84]. NIR is reflected by leaves in plants, while chlorophyll
absorbs it. If NDVI is high, it indicates that vegetation is abundant. Alternatively, if NDVI
is low, there is little or no vegetation potential. Extremely low NDVI values (below 0.1)
correlate to bare rock, sand, or snow regions. High levels imply temperate and tropical
rainforests (0.2 to 0.3), whereas moderate values depict shrubs and grasslands (0.6 to 0.8).
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4. Study Results
4.1. LULC Change Analysis

The ISO cluster unsupervised classification technique was used to generate the LULC
map presented in Figure 3, which covers 2000–2021 and includes intervals of seven years.
Table 3 and Figures 3 and 4 exhibit the results of the performed LULC adjustments. In 2000,
water accounted for 2.06% of the total area. The fall in water area was approximately 1.95%
in 2007, but by 2014, it was increased to 3.63%. Since then, it has undergone a substantial
decrease, and as of 2021, it only accounted for 3.081% of the entire area (Table 3 and Figure 3).
The total area covered by forest shrunk by 31.03% between 2000 and 2021. According to
Table 2, over the first seven years, it was about 35.39% of the total land area, but that rate
plummeted to approximately 4.36% during the subsequent thirteen years.

Table 3. LULC area changes from 2000 to 2021.

Land Use
2000 2007 2014 2021 2000–2021

Area
(Km2)

Area
(%)

Area
(Km2)

Area
(%)

Area
(Km2)

Area
(%)

Area
(Km2)

Area
(%)

Change
(%)

Water 2601.05 2.06 2470.08 1.95 4592.90 3.63 3904.15 3.08 1.02

Cropland 26,024.41 20.58 11,518.71 9.11 30,986 24.50 29,395 23.21 2.63

Forest 44,756.13 35.39 37,722.03 29.83 8578.51 6.78 5523.31 4.36 −31.03

Settlements 11,132.0181 8.80 22,391.14 17.71 31,011 24.52 29,534 23.32 14.52

Barren Land 41,925.37 33.15 52,337.01 41.39 51,270 40.55 58,276 46.02 12.87

Total Area 126,438.98 100 126,438.98 100.00 126,438.98 100 126,438.98 100 0.00
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Figure 4. LULC dynamics during the period of 2000–2021 for Southern Punjab, Pakistan.

On the other hand, despite the rapid growth of settlements, only 8.80% of the total
land area was occupied by them in 2000. In 2007, an increase of around 8.90% in settlement
led to a total of 17.71%. It increased by 6.81% over the next seven years and then declined
by 1.20% over the following seven years, for a total growth of 23.32% in the area in 2021.
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After twenty years, the amount of land occupied by settlements increased to about 14.52%.
Over the past 20 years, barren land appears to have rapidly increased. In 2000, 33.15% of
the barren land was unusable for agriculture. After seven years, the figure reached 41.39%
in 2007. The subsequent seven years showed a decline of 0.84%, while the subsequent
seven years showed a growth of 5.47%; this accounted for 46.02% of the entire area. Table 3
makes it easy to understand how the LULC has been modified over the last 20 years across
the whole region. It can be perceived from Table 3 that following a period of 20 years, the
changes in the areas of water, cropland, forest, settlements, and barren land were estimated
to be 1.02%, 2.63%, −31.03%, 14.52%, and 12.87%, respectively. In addition, Figure 4 shows
LULC dynamics from 2000 to 2021 for Southern Punjab, Pakistan, which also supports and
validates our results mentioned above.

Figure 5 and Table 4 indicate LULC area transfer change in the studied area from 2000 to
2021. From 2000 to 2007, water, cropland, and forest decreased considerably by −131.0 km2,
−14,505.7 km2, and −7034.1 km2, respectively, while the areas of settlements (11,259.1 km2)
and barren land (10,411.6 km2) were significantly raised. Moreover, a fall in forest (−29,143.5
km2) and barren land (−1067.2 km2) was observed in 2007–2014 (Table 4). From 2014–2021,
areas of water (−688.7 km2), cropland (−1591.0 km2), forest (−3055.2 km2), and settlements
(−1477.9 km2) were drastically reduced and shifted into barren land (6813.2 km2). The net
changes in water, cropland, forest, settlements, and barren land from 2000 to 2021 were found
to be 1303.1 km2, 3370.9 km2, −39,232.8 km2, 18,401.5 km2, and 16,157.6 km2, respectively. The
dynamics as mentioned above (%) in LULC for each class can also be observed in Figure 5.
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4.2. Accuracy Measurement

Data accuracy assessment is an important part of processing and analyzing remote
sensing data. It determines the veracity of the produced data for a user [85]. The user,
producer, overall accuracies, and coefficient K were calculated for each classification
(a = water; b = cropland; c = forest; d = settlements; e = barren land) from the years
2000 to 2021 to investigate the quality of satellite images used in this study. The calculation
of accuracy assessment indices for the complete study period (2000–2021) is presented
in Table 5.
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Table 4. Land use area changes from 2000–2021 (km2) for Southern Punjab, Pakistan.

Land Use 2000–2007 2007–2014 2014–2021 2000–2021

Water −131.0 2122.8 −688.7 1303.1
Cropland −14,505.7 19,467.5 −1591.0 3370.9

Forest −7034.1 −29,143.5 −3055.2 −39,232.8
Settlements 11,259.1 8620.3 −1477.9 18,401.5
Barren Land 10,411.6 −1067.2 6813.2 16,157.6

Table 5. Results of accuracy assessment indices for the current study.

Year
User Accuracy (%) Producer Accuracy (%) Overall Accuracy Coefficient K

a b c d e a b c d e (%) (%)

2000 90 100 80 90 80 100 76.92 88.88 100 80 88 85

2007 100 90 70 100 100 100 81.81 88.88 87.5 100 86 82.76

2014 90 100 80 80 100 100 76.92 100 88.88 90.9 90 87.5

2021 100 100 75 75 100 100 71.43 100 100 100 90.63 88.24

Here, a = water; b = cropland; c = forest; d = settlements; e = barren land.

4.3. NDVI Analysis

Figures 6 and 7 show NDVI changes in 2000, 2007, 2014, and 2021 during the Rabi
and Kharif seasons. In 2000, NDVI values ranged from −0.2 to +0.74. They altered in 2014
(minimum −0.2 and highest +0.79). NDVI values varied throughout 2021 (−0.2 to +0.76),
as observed in Table 5. The most productive areas have the highest NDVI values, such as
vegetation and forest. However, lower NDVI values indicate less productive regions, such
as barren land, water, and towns. Forested areas have a larger NDVI value than barren land,
which may influence the vegetation greenness observed by satellites throughout the study
region. It can be observed in Table 5 that the NDVI for the Rabi seasons in 2014 was found to
be considerably different from the NDVI in 2000. On the other hand, the NDVI decreased
by 0.03% in the Kharif seasons in 2021 compared to 2014 (Table 6). Additionally, Figure 8
indicates the NDVI dynamics for 2000–2021 in Southern Punjab. Figure 8a shows the variation
in the NDVI for the Kharif season, while seasonal variation during the Rabi season can be
found in Figure 8b. It can be perceived from Figure 8 that blue indicates a higher NDVI value;
the orange color shows a moderate value, while the lowest NDVI value is displayed by red.
The NDVI guides the partition of distinct classes based on a single performance in conditions
of crest trends and phonological periods inside a particular agro-ecosystem.

Table 6. Calculated NDVI for Kharif and Rabi Season (2000 to 2021) in Southern Punjab, Pakistan.

Years
Kharif Season Rabi Season

High Value Low Value Mean Value High Value Low Value Mean Value

2000 0.7406 −0.2 0.2703 0.8328 −0.2 0.3164

2007 0.7491 −0.2 0.2745 0.7215 −0.2 0.2607

2014 0.7975 −0.2 0.2987 0.8404 −0.2 0.3202

2021 0.769 −0.2 0.2845 0.8223 −0.2 0.3111
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Figure 8. NDVI changes from 2000 to 2021 in Kharif and Rabi seasons for Southern Punjab, Pakistan
(blue indicates a higher NDVI; orange shows a moderate NDVI, red displays the lowest NDVI value).

According to Ahmad [86], the NDVI is a useful vegetation indicator because it is
steady enough to allow detailed comparisons of seasonal and inter-annual variations
in plant growth and activity. With the NDVI, various sources of multiplicative noise
(irradiance variations, cloud shadows, air attenuation, and some topography changes) are
reduced because of its rationing approach. The NDVI is used to determine the vegetation
variations [68]. Since there is less water available, vegetative areas have shrunk significantly.
With respect to these changes, our natural ecology and biodiversity have suffered, and
additional growth might result in various environmental problems. The enhancement of
agricultural production could improve the lives of our inhabitants [30,70].

5. Discussion

The livelihoods of rural farmers totally depend on agricultural activities that directly
depend on the natural temperature, but changes in natural temperature cause less rain,
a shortage of irrigation water, and drought that directly affect the agricultural activities
and agricultural yield. The Southern Punjab faces rising temperature, less irrigation water,
and low rainfall. Farmers are aware of these climatic changes and are adapting strategies
to cope with the effects but require support from government. The results revealed that
the vegetation fraction gives a more grounded positive connection with the NDVI, but
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settlements and barren land areas show a negative relationship between the NDVI and
LULC during these 21 years. Several studies have been conducted at the local, national,
and global levels on LULC change. Most of these research studies have focused on the
developed areas of China, Europe, and the United States [16,28,87,88]. Pakistan is one of
the most significant exceptions to the fact that many Asian countries, especially at the local
and national levels, have not yet been thoroughly studied [47]. These researches seriously
influence the world’s capacity to manage and monitor Earth’s resources properly.

South Punjab is a major agricultural region, contributing much to the national economy.
It is the primary economic driver in Punjab. In light of increasing competition for scarce
water resources on a national and regional scale and the challenges posed by climate
change, there is presently a heated dispute over the path Punjab agriculture should pursue
to revitalize and contribute to the country. Khalil [89] investigated LULC classification for
the Okara district of Pakistan. LULC changes across time were determined using a mix of
SAR (Synthetic Aperture Radar) and supervised classification methods. Since this study
was completed in 2016, it has been demonstrated that four separate LULC classes may be
categorized as cropland, settlements, water, and barren land. Researchers have generated
LULC maps at the global, national, and local levels for various environmental purposes in
recent years.

Due to its geographical location and topographical characteristics, the study region is
particularly susceptible to natural disasters [90]. Settlements, vegetation, agriculture, and
water sources changed significantly throughout the study duration (2000–2021). For the
most part, there were very few human settlements when the area was first occupied. Rapid
population expansion and urbanization have led to increased settlements, such as housing
developments, structures, and highways, among other things [16,91,92].

Hadeel et al. [93] used supervised classification to show how remote sensing and GIS
can be used to detect changes in LULC. This methodology was used in Northern Australia to
map land cover and compare objective-oriented and pixel-based assessment strategies [94].

However, several articles have described the use of supervised classification to detect
land cover changes, including in Tirupati, India [95]; Egypt’s western Nile delta [56];
and South America [78]. Recently, Naeem et al. [67] and Hussain et al. [70] successfully
identified LULC changes and NDVI estimation in Southern Punjab using the districts of
Multan, Lodhran, and Vehari. Our study used 16 districts (Figure 1) of Southern Punjab to
examine more accurate LULC changes and vegetation. The current study classified LULC
into five categories and changes detected from 2000 to 2021 for each class, water, cropland,
forest, settlements and barren land, were found to be 1.02%, 2.63%, −31.03%, 14.52%, and
12.87%, respectively. The LULC change detection was found to be of a similar pattern to
those of the studies of Naeem et al. [67] and Hussain et al. [70] with less variation due
to periodic differences. These studies show that rapid LULC changes are taking place at
national and local levels in Pakistan.

The rapidly increasing population and declining rate of agricultural land/per capita is
becoming a major concern for food security. Scientifically and systematically documenting
LUCC over the past several decades is important for understanding the consequences
of these changes for human welfare [96–101]. According to the findings of spatial and
non-spatial studies of forest area changes, LULC has been influenced by various causes
during the time [102–105]. Poverty, overcrowding, illegal deforestation, agricultural land
expansion, and a lack of effective legislation and policy execution have all contributed to
the decline in forest cover [106,107]. Our study showed that the forest area in Southern
Punjab reduced by −31.03% between 2000 and 2021. As a result of the severe shrinkage
in agricultural land [108], barren land has risen sharply from 2000 to 2021 and change
detection was found to be 14.52%. Cropland declined by 11.47% between 2000 and 2007
but expanded by 14.10% between 2008 and 2021. The number of settlements increased
by 14.51% between 2000 and 2021. This study indicated that the NDVI improved during
the Kharif season from 0.74 to 0.77 and declined during the Rabi season from 0.83 to 0.82
(Table 4 and Figure 5). To better understand cropping trends in the area, it is beneficial to
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determine crop distribution patterns in terms of crop yield. Seasonal data may be extracted
from NDVI time series using thresholds that assume a phonological event that begins when
NDVI values exceed a preset threshold [109,110].

In Islamabad’s watershed, Butt et al. [111] investigated LULC changes using super-
vised classification from 1992 to 2012. According to the literature, there are five types of
LULC: vegetative area, urban area, agricultural, aquatic bodies, and bare soil. Further-
more, vegetation and water bodies reduced dramatically from 74.3% to 38.2% compared to
metropolitan areas, barren land, and motorways. Hussain et al. [68] reported that cropland
and forest conversion to roads and human settlements reduced bare soil and vegetation by
5.2% between 1977 and 2017 in the Lodhran district of Pakistan. Due to rapid urbanization,
the district of Lodhran is spreading haphazardly. Many cities’ current infrastructures are
being degraded as population growth outpaces the available resources for urban develop-
ment. These cities have several challenges, including incompatible LU and a poisonous
environment. According to Hussain et al. [48], the Okara district’s settlements increased by
3778 hectares (4.5%) between 2000 and 2020. Several factors contribute to the expansion of
urban areas; considerable changes have occurred in older urban areas. From 2000 to 2020,
Okara district had many LULC changes, with the usage of vegetative land continually
decreasing. The LULC changes have a profound influence on the topography and ecology
of the study area. Ali et al. [23] revealed that the settlements had grown slower than Multan
district’s population area. Migration from rural to urban areas is primarily responsible
for the rise in metropolitan areas, which has increased the strain on natural resources and
spurred vegetation growth in urban areas. According to Manzoor et al. [112], significant
urbanization is taking place in metropolitan areas, leaving an information gap in LULC
development at local and regional levels, including in Pakistan. One of the key causes for
the weak performance of different regional and urban planning entities has been identified
as a lack of technical skills and the inability to precisely, rapidly, and efficiently investigate
the growth of urban areas [92].

Our findings suggest that expanding infrastructure and commercial sectors affects
vegetated regions. The research findings could be applied in the planning and management
sectors to help policymakers work effectively and sustainably. The most significant LULC
changes have occurred along routes connecting regions to major and minor cities. This
research also found that additional residential areas and associated projects might be
built on roadways, including along the Sahiwal, Multan, Bahawalnagar, and Jhang roads.
Our findings also indicated that the major cities of Multan, Jhang, DG khan, Sahiwal,
and Rajanpur would expand in the next years, resulting in a rise in overpopulation and
congestion on the major city roadways. This scenario will have altered, but at the same
time, it will have perilous effects in other cities due to linked issues, such as overpopulation,
lack of services, traffic congestion, and increased crime. Financial globalization will affect
LULC due to the pressure exerted by changing the functionality of the research area
and its significance in the biosphere. For current LULC management, federal and state
governments must educate and train both proposers and related experts in cutting-edge
techniques such as RS and GIS.

6. Conclusions

This study aimed to determine LULC change and estimate the vegetative index
(NDVI) from 2000 to 2021 in Southern Punjab. For this purpose, Landsat-based images of
30 m × 30 m spatial resolution covering the studied region were used to determine LULC
change for the years 2000 of Landsat 5 (TM), 2007 of Landsat 5 (TM), 2014 of Landsat 8
(OLI-TIRS) and 2021 of 8 (OLI-TIRS), while Modis Product MOD13Q1 (tiles: h24 v5, h24
v6) at a resolution of 250 meters from 2000 to 2021 were used to estimate the NDVI changes
in the study region. The result demonstrated that changes in LULC significantly negatively
influenced the land and ecology of Southern Punjab. Increased urbanization affects forest
depletion. In the study region, the forest cover was reduced from 4,475,612.79 ha (35.39%)
in 2000 to 552,331.20 ha (4.36%) in 2021. In 2000, 8.80% of the area was occupied by settlers,
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but in 2021, that number had climbed to 23.20% in Southern Punjab. According to our
findings, forest land was turned into urban land (highways, link roads, commercial land,
and residential houses) and the NDVI dynamics from 2000 to 2021 in Southern Punjab
varied significantly and land was converted into non-vegetative areas. It was determined
that the population increased due to settlement growth, whereas the barren land percentage
in the study region increased to 13.13%. Changes in LULC can be attributed largely to
an increase in population in rural areas and a subsequent relocation to urban areas. The
agricultural sector is primarily focused on obtaining food for the increasing population,
which means that governmental capacity is lacking to support mitigation. Providing an
appropriate role for agriculture in modern discussions is essential to achieving Southern
Punjab’s most significant mitigation potential. Our findings suggest that the development
of infrastructure and commercial areas have impacted vegetative regions. This research
will assist the government, agencies, and land policymakers in guiding effective land
monitoring and policy making.

Various recommendations are given below about the LULC design for future use in
Southern Punjab.

According to the current research, rapid population growth and urban road construc-
tion will cause the urban area to expand in the coming years. Multiple factors, including
overcrowding, traffic pressure, roadworks, and inadequate infrastructure, will change but,
equally, will have devastating effects on Southern Punjab. It is suggested that residents
be incentivized to construct outside of the city by offering incentives along the Sahiwal,
Multan, Jhang, Bahawalpur, and DG Khan roads. Using RS/GIS tools and data, the current
LULC map should be revised. This will give stakeholders a consistent and accurate LULC
map and contribute to the success of policy employment initiatives. The government
should employ the abilities of RS and GIS technology for mapping to provide adequate and
reliable spatial information and data that are useful to develop the effective management
and monitoring of LULC changes in Pakistan.
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