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Abstract: The urban energy system is greatly dependent on the District Heating System (DHS).
However, many difficulties with regulation and control are caused by its large scale and numerous
coupling variables. Additionally, reliance on manual experience means it can be challenging to
guarantee heating comfort and effectiveness in the regulation of DHS. This paper proposes a data-
driven temperature response prediction model to predict secondary loop supply temperature based
on the heating substation’s historical operating status, valve opening degree, weather conditions,
etc. Further, the XGBoost model was established in this article with different input and prediction
steps. The results show that the XGBoost model with 72 input steps and 24 prediction steps has better
performance. As an application example, the model was applied to an urban central heating system.
Based on this data-driven model, different operation strategies on primary loop valve opening are
compared for temperature response analysis. Operators can check the temperature responses of
different valve control strategies before being applied. This paper guides the regulation behavior of
the DHS, which is of great significance for the operation of the actual DHS.

Keywords: district heating system; predictive regulation strategy; XGBoost; valve control strategies

1. Introduction

The DHS, an essential part of the energy system in a city, has been widely adopted
in northern China. At the end of 2021, the national urban central heating area reached
10,603,000,000 m2, up 7.30% from the previous year. It is noticeable that the consumption
of DHS occupying building energy consumption is more than 50%. Increasing buildings’
energy efficiency has enormous potential for energy savings. The control strategy is the
main factor restricting the heating system’s efficiency. The valve on the primary loop is
adapted to adjust the temperature of secondary supply water, as shown in Figure 1.

The heating substations are located between the primary and secondary loops, where
the transfer of heat between the primary and secondary loops is accomplished. If running
well, the heating substations supply water with the expected temperature, which means
the indoor temperatures of all apartments are comfortable. However, with the influence of
the lag effect [1] in the heat transfer process and nonlinearity between variables, reaching
the target temperature on the secondary loop is especially difficult. In practice, to reduce
user complaints, the regulators may continuously supply heating, leading to overheating
in buildings. This causes excessive heat loss, which can account for 10–20% of the total [2].

Existing studies about DHS mainly focused on the primary loop, but there is a lack of
research on the secondary loop of DHS. Zheng et al. [3] developed a scheduling model of
a thermos-electric integrated energy system considering DHS thermal inertia, in which a
complete hydraulic and thermal model is integrated to realize the dynamic temperature
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calculation of the whole network. Wang et al. [4] presented a method for pressure regulation
in DHS. Genetic algorithms are used to optimize the distributed variable speed pump
control technique, and a real DHS system is used to test the effectiveness of the strategy.
Stevanovic et al. [5] presented dynamic external conditions (wind intensity and solar
radiation intensity) and dynamic demand adjustment methods of heat source and pumping
station in DHS. Gu et al. [6] proposed a hybrid control scheme by applying electric control
valves with distributed variable speed pumps, which shows a great advantage in reducing
the pressure of the pipeline networks and effectively weakened the hydraulic imbalance.
Gustafsson et al. [7] found that it is possible and advantageous to utilize the primary supply
temperature for radiator system control while maintaining comfort and no additional
temperature sensors were needed. Gregor et al. [8] analyzed the causes of degradation
of temperature difference between supply and return flow and quantitatively evaluated
the numerous possible causes of degradation using a dynamic simulation environment.
Developing commissioning tools and approaches to rapidly detect faults in hydraulic
networks is recommended.
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The modeling of the heating system is the basis of the regulation of DHS. Most of the
literature focuses on generating control strategies with mechanism-based models, whose
modeling process is relatively complex. Data-driven models are mostly used for key pa-
rameter prediction, which is less used in the studies of generating regulation strategy of
DHS. Mendes et al. [9] established a mechanism-based model applied to build thermal
analysis and control systems design. A lumped approach was used to model the room air
temperature and a multi-layer model for the building envelope. Karlsson [10] described a
conceptual model for investigating the effects of increasing the thermal storage capacity of
building materials. The effects of wall thickness, wall area, free solar radiation, and other
factors on building heat storage were studied. Zhun [11] developed a building energy
demand forecasting model based on the decision tree method, which can classify and
predict categorical variables. Its competitive advantage over other widely used modeling
techniques, such as the regression and ANN methods, lies in generating accurate predictive
models with interpretable flowchart-like tree structures that enable users to extract useful
information quickly. Touzani [12] proposed an energy consumption baseline modeling
method that utilizes a gradient boosting machine. The results show that the linear regres-
sion machine model R2 improved by 80% compared with the industry best practice model
based on gradient boosting and the random forest algorithm. However, this study has not
been validated in a real system and lacks engineering significance. Magnier [13] firstly used
neural networks to describe the behavior of buildings and then combined neural networks
with multi-objective genetic algorithms for optimization studies of thermal comfort and
energy consumption in buildings. Machado et al. [14] addressed a comprehensive nonlin-
ear ODE-based thermo-hydraulic model of a DHS. This study proposes a new hydraulic
solution method, but the computational speed is not brought up. Xu et al. [15] developed
an integrated model for simulating the thermal and hydraulic behavior of the heating
system with various operation cases, and the results show that when the set value of the
TRV is kept at 2~3, its effectiveness in reducing the overheating phenomena caused by
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excessive water flow rate. Chicherin et al. [16] utilized the scaling design of heat demand
and the weighted moving average to investigate variations and peak values of actual heat
demand profiles in a district heating network. The results show that operational heat data
are utilized to discover that almost no weather correlation exists during warm months
when supply temperatures exceed 60 ◦C; thermal inertia of buildings affects their behavior
differently in terms of needed space heating.

As for the research on the regulation of the secondary loop of the heating system, many
models were proposed for efficient and low-carbon operation and control. Wang et al. [17]
introduced a thermo-hydraulic couplings model built on TRNSYS 18, two stochastic pa-
rameters, infiltration rates, and increased thermal resistance of buried pipes were con-
sidered. However, they were lacking in model accuracy for engineering applications.
Zheng et al. [18] introduced the intermittent heating mode for promoting wind power
integration in an integrated heat and power dispatch system based on a real DHS featuring
multiple heat sources and looped networks. Zhao et al. [19] proposed the indirect heating,
direct heating, and water source heat pump auxiliary heating modes depending on different
temperature levels. Sun et al. [20] put forward a control strategy of DHS that integrated
characteristics of users’ energy-saving behaviors and the combined control of feedforward
and feedback were realized. Wang et al. [21] proposed a novel thermal energy flow model
with transmission time delay and an optimal scheduling strategy for district-integrated
heat and power systems. Cadau et al. [22] presented a model predictive control approach
based on the prediction of the future evolution of the controlled system to manage district
heating and cooling networks. Bojic et al. [23] proposed a steady-state, bottom-up approach,
and sequential linear programming was used to solve the unbalanced distribution of heat
in a DHS. Turski et al. [24] proposed the energetic effect of using buildings and a district
heating network as thermal energy storage to compensate for the reduced heat output of
the DHS. In Ruseljuk et al. [25] the adaptability of different CHP equipment for different
district heating systems is compared, providing a reference for district heating system
design planning. Garcia et al. [26] studied a district heating system connected to renewable
energy. The related researches have been listed and classified in the Table 1.

Table 1. Summary of modeling and regulation in DHS.

Modeling Scale Research Target Highlights Ref.

DHS

thermal characteristic of DHS Model the room air temperature and a multi-layer model for the
building envelope [10]

thermal characteristic of DHS The effects of wall thickness, wall area, free solar radiation, and
other factors on building heat storage were studied [11]

DHS

regulation of DHS A building energy demand forecasting model based on the
decision tree method [12]

regulation of DHS A baseline modeling based on the gradient boosting machine to
forecast the energy consumption. [13]

thermal characteristic of DHS
Combine neural networks with multi-objective genetic

algorithms for optimization studies of thermal comfort and
energy consumption in buildings

[14]

regulation of DHS Address a comprehensive nonlinear ODE-based
thermo-hydraulic model of the DHS [15]

thermal characteristic of DHS Develop an integrated model for simulating the thermal and
hydraulic behavior of the DHS [16]

thermal characteristic of DHS Thermal inertia of buildings affects their behavior differently in
terms of needed space heating [17]

regulation of DHS
A steady-state, bottom-up approach, and sequential linear

programming was used to solve the unbalanced distribution of
heat in a DHS

[25]

regulation of DHS
The energetic effect of using buildings and a district heating

network as thermal energy storage to compensate for the reduced
heat output of the DHS

[26]
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Table 1. Cont.

Modeling Scale Research Target Highlights Ref.

Primary loop of DHS

regulation of DHS Genetic algorithm is used to optimize the adjustment strategy of
distributed variable speed pump in DHS. [4]

regulation of DHS A demand regulation model of DHS heat source and pump
station affected by external conditions [5]

regulation of DHS A numerical model to predict the thermal transients in the DHS [6]

regulation of DHS A hybrid control scheme with electric control valves with DVSPs
to the DHS [7]

regulation of DHS Primary supply temperature affects the result of the prediction
for primary return temperature [8]

thermal characteristic of DHS The reason for temperature difference degradation [9]

Secondary loop of DHS

regulation of DHS Study the effect of infiltration rates and increased thermal
resistance of buried pipes to thermo-hydraulic couplings model [18]

regulation of DHS
Introduce the intermittent heating mode for promoting wind

power integration in an integrated heat and power
dispatch system

[19]

regulation of DHS Propose the indirect heating, direct heating, and water source
heat pump auxiliary heating modes in the DHS [20]

regulation of DHS A control strategy of DHS that realized combined control of
feedforward and feedback [21]

regulation of DHS A novel thermal energy flow model with transmission time delay
in the DHS [22]

Most current research concentrates on one single area of DHS regulation, and few stud-
ies offer a complete regulatory method for DHS regulation. To reduce energy consumption
in the DHS, improve system efficiency, and reduce reliance on manual empirical decisions,
in this paper, based on multiple features, a model to predict the demand of secondary
loop supply temperature was established. Then, the mapping relationship between the
secondary loop supply temperature and the primary loop valve opening is dug. The paper
forms a complete DHS control solution that provides one-stop guidance for regulators.

2. Methodology

The research framework of this study is described in Figure 2, which includes five
main processes. Firstly, a real DHS’s raw data, which included climatic information, was
gathered. Then, the raw data were subjected to data preprocessing in order to fill in gaps
and address outliers. After that, the test set and the train set are divided in the ratio of 2:8.
Then, the integration model was developed to forecast the secondary loop temperature
response. Further, the evaluation method, root mean square error (RMSE), was used to
analyze the models using the test dataset.

The extreme gradient boosting machine (XGBoost), which is developed by Chen [10],
is a learning method based on a framework with gradient, which has been frequently
used in prediction issues. The fundamental principle of the XGBoost aims to continuously
calculate the current model’s residuals by structuring a new model, and to serially cover all
the models to obtain the final prediction.
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Data preprocessing is necessary before developing models because repeating data,
missing values, and outliers are contained in the collected data caused by signal trans-
mission and acquisition problems, which will decrease model performance. The data
preprocessing is mainly divided into the three parts:

1. Remove repeating data:

A simultaneous storage of the raw data is possible due to reading or storage faults. As
a result, only one piece of data must be retained rather than multiple.

2. Complete data and down-sampling:

Due to signal transmission issues or equipment, there could have been no data at
certain time periods throughout the raw data collecting phase; thus, the values of missing
data were replaced by average values.

3. Detect and replace outliers:

The outliers were found using the three-sigma approach, and then replaced with
neighboring values.

XGBOOST

The ensemble algorithm integrates multiple tree models to obtain a prediction model
with relatively good performance. Its structure is shown in (1). The t is the number of tree
models, and the fK(xi) is the K-th tree model.

ŷ(0)i = 0

ŷ(1)i = f1(xi) = ŷ(0)i + f1(xi)

ŷ(2)i = f1(xi) + f2(xi) = ŷ(1)i + f2(xi)
. . .

ŷ(t)i =
t

∑
K=1

fK(xi) = ŷ(t−1)
i + ft(xi)

(1)
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XGBoost is a typical ensemble algorithm with an outstanding performance with
sparse data. Coincidentally, heating system data have the same characteristics. Its objective
function is mainly composed of error terms and penalty terms, as shown in (2).

L(φ) = ∑
i

l(ŷi − yi) + ∑
k

Ω( fK) (2)

l(ŷi − yi) is the error term, the i is represented as the i-th sample, which represents
the error between the predicted value and true value of the heating system data. Ω( fK) is
the penalty term, K is represented as K-th tree model. Additionally, the complexity of the
model can be calculated by the penalty term. The smaller the complexity, the stronger the
generalization ability. The specific penalty terms are shown in (3).

Ω( fK) = γT +
1
2

λ
T

∑
j=1

ω2
j (3)

T is the number of leaf nodes and ωj is the weight of those. The minimum objective
function computed is shown in (4).

Obj = − 1
2

T
∑

j=1

G2
j

Hj+λ + γT

Gj = ∑i∈Ij
gi, Hj = ∑i∈Ij

hi

gi = ∂ŷ(t−1) l(yi, ŷ(t−1)), hi = ∂2
ŷ(t−1)

l(yi, ŷ(t−1))

(4)

The gi and hi is the first derivative and second derivative of the loss function. In this
study, the squared loss function is applied for ease of calculation, as shown in (5).

l(yi, ŷ(t−1)) = (yi − ŷ(t−1)
i )

2
(5)

The first derivative and second derivative of the loss function can be calculated, as
shown in (6) and (7).

gi =
∂l(yi, ŷ(t−1)

i )

∂ŷ(t−1)
i

= −2(yi − ŷ(t−1)
i ) (6)

hi =
∂2l(yi, ŷ(t−1)

i )

∂(ŷ(t−1)
i )

2 = 2 (7)

Substitute the above equation into the minimum objective function, and an approxi-
mation of the minimum objective function can be obtained, as shown in (8).

Obj(t) '
n

∑
i=1

[l(yi, ŷ(t−1)) + gi ft(xi) +
1
2

hi ft
2(xi)] + Ω( ft) + c (8)

The tree added to the model has been determined, which means there are some
gradient-independent terms in (8). The terms are removed from the minimum objective
function, and (9) is finally obtained.

Obj(t) '
n

∑
i=1

[gi ft(xi) +
1
2

hi ft
2(xi)] + Ω( ft) (9)

This paper adopts the sparse perception algorithm when constructing the tree model
to handle the missing data or outliers in the heating system. When each node is established,
a default direction is added so that the missing data samples are recognized and have no
effect on model calculations.
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The experimental data included in this study was obtained from a real DHS in the
Chinese city of Zhengzhou. The case study in this paper is a cooperation project with
Zhengzhou Heat Group Co., Ltd., Zhengzhou, China. In this DHS, there are 20 heat
sources, 4 peripheral power plants, 6 pressure isolation stations, and 10 gas boiler houses
for heating in different areas. Regarding the heat network, there are 10 independent
operational areas in the whole network during the heating season. The whole area of this
heat network reaches 136,948,500 km2, and the actual supply area of this heat network
achieves 115,553,750 km2. For the heating substations that have been put into operation,
the number of heating substations covering the whole network is about 2962 or so. The
area is in the very high heating supply stage, with a source heat supply of 31.715 million
GJ, of which 19.7 million GJ or 62% is supplied by cogeneration, gas boiler houses supply
12.015 million GJ or 38%, and the total consumption of natural gas is 355.686 million m3. As
shown in Figure 3, there are 8 branches under Zhengzhou Heat Group Co., Ltd. to manage
the heat network area, respectively, which is used as the research object of this paper. A
public building is heated by the heating substation selected and its secondary loop. The
details of the topology diagram structure in the northern direction of Figure 3 have been
shown in Figure 4. In Figure 3, the different districts are represented by lines with different
colors and the lines represent the pipework of primary loop in DHS. In Figure 4, a district
pipework with two heat sources is indicated.
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The data processing and modeling process in this paper is implemented on Python
with jupyter. The hardware information are as shown in the following: 11th Gen Intel(R)
Core(TM) i7-11800H, NVIDIA Geforce RTX 3060 GPU.
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In this study, raw data were collected from an actual system over a period of three
months. The data interval was set at five minutes. To simplify the data, the raw data were
down-sampled to an hourly frequency. This was achieved by calculating the average value
every five minutes and using it as the representative value for the new hourly sample. The
climate model strategy was also collected, which means the supply water temperature target
value according to the outdoor air temperature and the climate model as shown in Table 2.

Table 2. Climate model of the experimental heating substation.

Air Temperature/oC Heating Intensity per Unit
Area/W·m−2

Regulation Target Values

T2/◦C Tr,1/◦C Ts,2/◦C

−4 45.39 45.2 50.2 52.2
−3.5 45 45 50 52
−3 43.45 44.3 49.1 51
−2.5 42.48 43.8 48.6 50.4
−2 41.51 43.4 48 49.8
−1.5 40.54 42.9 47.4 49.2
−1 40.57 42.9 47.4 49.2
−0.5 39.6 42.5 46.9 48.6

0 38.63 42 46.3 48
0.5 37.66 41.5 45.7 47.4
1 36.69 41.1 45.2 46.8

1.5 35.72 40.6 44.6 46.2
2 34.75 40.1 44 45.5

2.5 33.78 39.7 43.4 44.9
3 32.81 39.2 42.8 44.3

3.5 30.84 38.2 41.6 43
4 29.97 37.7 41 42.3

4.5 28.9 37.2 40.4 41.7



Sustainability 2023, 15, 3524 9 of 15

Table 2. Cont.

Air Temperature/oC Heating Intensity per Unit
Area/W·m−2

Regulation Target Values

T2/◦C Tr,1/◦C Ts,2/◦C

5 27.93 36.7 39.8 41.1
5.5 26.96 36.2 39.2 40.4
6 25.99 35.7 38.6 39.7

6.5 25.02 35.2 38 39.1
7 24.05 34.7 38 38.4

7.5 23.08 34.2 38 37.7
8 22.11 33.6 38 37.1

8.5 21.14 33.1 38 36.4
9 20.17 32.6 38 35.7

9.5 19.2 32 38 35
10 18.23 31.5 38 34.3

3. Results and Discussion

The predicted results of XGBoost are discussed in this section. Figures 5–7 show that
the XGBoost model predicts the stepwise prediction error (RMSE) of 6, 12, and 24 steps in
the future with different input step sizes. Table 3 lists the average error results of the model
under different input and output step sizes.

Table 3. Average prediction error of XGBoost under varying input and output steps.

Input Steps
Prediction Steps

6 12 24

6 0.162 —— ——
12 0.147 0.151 ——
24 0.129 0.140 0.141
48 0.123 0.130 0.128
72 0.116 0.114 0.117

Judging from the stepwise prediction errors shown in Figures 5–7, the XGBoost
model’s prediction error will reach the maximum at prediction steps 3 to 6, and the stepwise
prediction error does not show an obvious upward trend as the step size increases.
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From the perspective of the prediction step size, the different XGBoost models do
not show an obvious upward trend with the increase in the prediction steps. As it can be
seen in Table 3, there is no obvious difference in the prediction error of the models under
different input step sizes and prediction step sizes.

As Table 3 shows, the average prediction error of the XGBoost model decreases with
the input step size increasing, when viewed from the perspective of the input step size. Take
the prediction step size of 6 as an example: the average prediction errors when the input
step sizes are 6, 12, 24, 48, and 72 reach 0.162, 0.147, 0.129, 0.123, and 0.116, respectively.
The same goes for the prediction step size of 12 or 24. That means that for the scenario
where the XGBoost model is used to forecast the temperature of the secondary loop supply
water, the longer the input steps included in the samples (within 72 steps), the higher the
accuracy of the prediction. The reason for this result is that the XGBoost model performs
well on information extraction through the integration of multiple predictors. When the
input step is longer, which means that more historical information is included, XGBoost
can effectively extract more helpful information to improve prediction performance.

As shown in Table 3, the XGBoost models presented the lowest prediction error with an
input step size of 72 and prediction step size of 24, which was adopted as the temperature
response prediction model. The prediction takes control data of the experimental heating
substation on 4 January 2020, as an application example. The data collection interval is
down-sampled from five minutes to one hour.

The temperature of the secondary supply and return water is controlled by the primary
loop valve. A predictive regulation model of heating substations with machine learning is
established to solve the problems of regulation in the current urban central heating system,
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combined with the actual heating substation operation data and weather data. In addition,
based on the experience of regulators and the information on climate, the climate model
was summed up. The climate model represents the quantitative relationship between the
outdoor temperature and valve opening, as shown in Table 2. For example: when the
external temperature is −3 ◦C, the heating intensity should be 43.45 W/m2, the regulation
target of the average temperature of supply and return water in secondary loop is 45.2 ◦C,
and the control target of the primary loop return water temperature is 49.1 ◦C, and the
control target of the secondary loop supply temperature is 51 ◦C. Different regulators have
different tracking targets, and the heating substation is mainly regulated according to the
secondary loop supply temperature as the target.

Table 4 lists six different regulation strategies. Valve strategy #1 is the control plan for
the actual operation of the regulators of the heating substation on 4 January. Valve strategy
#2 is to keep the valve opening unchanged at 15% the day before. Valve strategy #3 is to
directly increase the opening to 20%. Valve strategies #4, #5, and #6 are all trying to follow
changes with the outside temperature, which means regulating the valve with a larger
opening when in the morning and evening, and regulating the valve to a small opening
during the daytime. The according responses are presented in Figure 8.

Table 4. Six kinds of valve regulation strategies for the next 24 h.

Valve Regulation Strategy for the Next 24 h (%)

1 2 3 4 5 6 7 8 9 10 11 12

#1 15 15 14.8 15 15 15 15 15 15 15 15 18
#2 15 15 15 15 15 15 15 15 15 15 15 15
#3 20 20 20 20 20 20 20 20 20 20 20 20
#4 20 20 20 20 20 20 15 15 15 15 15 15
#5 18 18 18 18 18 18 10 10 10 10 10 10
#6 20 20 20 20 20 20 8 8 8 2 2 2

13 14 15 16 17 18 19 20 21 22 23 24

#1 20 20 20 20 20 20 20 20 20 20 19.9 20
#2 15 15 15 15 15 15 15 15 15 15 15 15
#3 20 20 20 20 20 20 20 20 20 20 20 20
#4 15 15 15 15 15 15 18 18 18 18 18 18
#5 10 10 10 10 10 10 10 10 10 18 18 18
#6 2 2 2 2 2 2 18 18 18 18 18 18

Through the above temperature response model, operators can check the valve control
strategy’s actual temperature response before applying it.

The following are the three strategies, corresponding to valve strategy #1, valve
strategy #2, and valve strategy #3, respectively, observing different valve control plans.
First of all, it can be seen that the temperature prediction curve for valve strategy #1 is
the same as the temperature response curve under the actual control plan. In the 24-h
comparison of the predicted temperature response and the actual temperature response, the
maximum prediction error of the model is 0.47 ◦C, the minimum prediction error is 0.01 ◦C,
and the average prediction error is 0.17 ◦C, which verified the accuracy and reliability of the
temperature response model. Secondly, valve strategy #2 is to maintain the valve opening
15% of the previous day unchanged, and the secondary loop supply temperature in the
next 24 h is maintained at 43–44 ◦C. Finally, valve strategy #3 is to directly increase the
valve opening from 15% to 20% and maintain this opening. It can be concluded that the
corresponding temperature response curve gradually rises from around 45 ◦C and finally
stabilizes at around 52 ◦C.
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Here are the other three strategies, corresponding to valve strategy #4, valve strategy
#5, and valve strategy #6, respectively, following the changes in the outside temperature.
First of all, valve strategy #4 is to increase the valve opening of the heating substation to
20% at the beginning and then reduce it to 15% during the day, finally increasing the valve
opening to 18% at night. The temperature response curve also correspondingly increases to
around 48 ◦C, then gradually decreases to around 44 ◦C, and finally increases to 50 ◦C at
night. Secondly, valve strategy #5 increases the control range based on regulation strategy
4, which reduces the valve opening to 10% during the day, and delays the increase in the
valve by three hours at night; correspondingly, the temperature response of the secondary
loop supply water increases from 45 ◦C to around 48 ◦C, then gradually decreases to 42 ◦C
after the valve opening is reduced, and then gradually increases to 50 ◦C at night. Finally,
valve strategy #6 tests the temperature response under extreme control actions. The valve
opening was adjusted to 20% and 18% in the morning and evening, and the valve opening is
reduced to 8% and 2% during the day, but Figure 8 shows that the corresponding secondary
temperature response still maintains above 42 ◦C during the day, which is unreasonable
according to expert knowledge and practical operation experience, so the temperature
response prediction model may be invalid under such extreme condition.

The secondary loop supply temperature and the opening of valve changes in the
experimental heating substation during the heating season of 2019–2020 are described in
Figure 9 to analyze the failure of the temperature prediction response model with extreme
conditions. Most of the time, the secondary loop supply temperature is above 40 ◦C,
except from 28 December to 31 December when the secondary loop supply temperature is
around 36 ◦C. In addition, as shown in Figure 9, it can be found that the valve opening of
heating substation during 2019–2020 heating season ranges from 11% to 20%, and the valve
opening range is basically maintained at 14% to 20%. The principle of machine learning is
learning the internal relationships and laws from existing historical samples. However, for
the training samples, the valve opening and the secondary loop supply temperature are
rarely less than 14% and 40 ◦C, and there is even no condition where the valve opening
is less than 10%. Considering the working conditions of the previous day and the future
weather forecast, the reason for the failure in model response valve strategy #6 is that the
high-dimensional sample space contained in the model has been exceeded during training.

To ensure the prediction accuracy and reliability of the temperature response prediction
model, the valve regulation command, which is the model’s input, should be kept in the
working condition space of the training sample. For regulators, the temperature response
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prediction model can predict the response temperature with different regulation strategies,
which guide regulation and avoid the empirical regulation of “regulation-stable-re-regulation”.
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4. Conclusions

This research aims to solve the regulation problems in current heating substations.
Firstly, a forecast model was established to calculate the supply temperature of the sec-
ondary loop in district heating systems using available information. Then, the relationship
between the secondary loop’s supply temperature and the valve’s opening in the primary
loop was investigated. Finally, a complete control chain of “collected information-predicted-
regulate” is established. The results are discussed as following:

1. The prediction performance of the machine learning model is compared under differ-
ent input step sizes and prediction step sizes. The XGBoost model with 72 steps of
input and 24 steps of prediction is used as the temperature response prediction model,
the average prediction error of which is 0.26%, which has a high prediction accuracy;

2. The XGBoost model with 72 steps of input and 24 steps of prediction is used to com-
pare different valve opening control strategies. Based on the model, the valve control
strategy of the heating substation is determined, which can realize the predictive con-
trol of the heating substation, improve the control accuracy of the heating substation,
and reduce the dependence on manual experience;

3. The work of this paper was practically applied in a real district heating system in
Zhengzhou, China. The final validation results showed that the adoption of the pro-
posed regulation strategy resulted in a 5% improvement in system energy efficiency.

In this paper, only one historical operating condition of a single heating substation
in one heating season is used for training, and the training sample space is limited, so the
prediction performance of the model with extreme operating conditions outside the sample
space is limited. It is necessary to explore further how to obtain a more widely distributed
sample space in the heating substation.
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