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Abstract: Estimating wind energy at a specific wind site depends on how well the real wind data
in that area can be represented using an appropriate distribution function. In fact, wind sites differ
in the extent to which their wind data can be represented from one region to another, despite the
widespread use of the Weibull function in representing the wind speed in various wind locations in
the world. In this study, a new probability distribution model (normal PDF) was tested to implement
wind speed at several wind locations in Jordan. The results show high compatibility between this
model and the wind resources in Jordan. Therefore, this model was used to estimate the values of the
wind energy and the extracted energy of wind turbines compared to those obtained by the Weibull
PDF. Several artificial intelligence techniques were used (GA, BFOA, SA, and a neuro-fuzzy method)
to estimate and predict the parameters of both the normal and Weibull PDFs that were reflected in
conjunction with the actual observed data of wind probabilities. Afterward, the goodness of fit was
decided with the aid of two performance indicators (RMSE and MAE). Surprisingly, in this study,
the normal probability distribution function (PDF) outstripped the Weibull PDF, and interestingly,
BFOA and SA were the most accurate methods. In the last stage, machine learning was used to
classify and predict the error level between the actual probability and the estimated probability based
on the trained and tested data of the PDF parameters. The proposed novel methodology aims to
predict the most accurate parameters, as the subsequent energy calculation phases of wind depend
on the proper selection of these parameters. Hence, 24 classifier algorithms were used in this study.
The medium tree classifier shows the best performance from the accuracy and training time points
of view, while the ensemble-boosted trees classifier shows poor performance regarding providing
correct predictions.

Keywords: wind estimation; normal PDF; Weibull PDF; optimization algorithms; machine learning;
prediction; classification; accuracy

1. Introduction

Long ago, it was understood that the continuous usage of conventional energy sources
(fossil fuel) jeopardizes and threatens the stability of life. As a result, humanity has tried to
find other inexhaustible energy resources to tackle the issues of the undesired impacts of the
dominant energy sources (fossil fuel). Renewable energy sources were the best alternative,
which became grist, an integral part, and the interesting core of the energy sector due to
their immense valuable features [1]. Furthermore, the lack of conventional energy resources
boosts the harnessing of clean energy sources [2]. Inasmuch, the development of lifestyle is
associated with energy demand. As such, the larger the energy demand in a certain area,
the most sophisticated the area [3–7].

Wide choices of renewable energy are available, such as solar, the internal heat of
the earth, wind, tidal, and biomass energy [8]. Wind energy has played a prominent,
astounding, and marvelous role in contributing to the depreciation of carbon dioxide [9],
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which has encouraged some countries to invest in wind energy [10]. The key to wind energy
is its kinetic energy; the energy that can be harvested by wind turbines fundamentally
depends on the average wind speed. The most effective areas to install a wind farm are
those located beside coasts, on the edge of water bodies, and in open terrain [11]. Figure 1
shows the worldwide distribution of wind energy [12].

Figure 1. The worldwide distribution of wind energy.

Wind energy is defined as an inherently unfixed energy source, which varies rapidly
over time [13]. It is dramatically growing and ubiquitous since this type of renewable
energy has several strong points which make it outstrip fossil fuel; for example, it can meet
the massive demand for energy and minimize the pollution resulting from fossil fuel usage
up to a certain limit. Consequently, wind energy is deemed a green energy technology [14].
In addition, wind energy projects contribute to enhancing the situation of the environment,
economy, and society [15].

Wind turbines can be installed on ranches or farms, which improves the economic
situation, as mentioned before, chiefly in rural regions where the best sites for wind are
found. These turbines do not generate any atmospheric emissions that are responsible
for greenhouse gases and acid rain, which makes wind energy eco-friendly, as mentioned
before [16,17].

Among the types of renewable energy, the consumption of wind energy is the largest
category in most countries [18]. For illustration, it constitutes about more than 20% of the
total renewable energy, and this percentage is increasing continuously [19,20]. The global
capacity of wind was about 336.327 GW in June 2014. However, 17.613 GW of this was
installed in the first half of the same year [21]. In particular, Jordan is considered a country
where the wind is available in abundance. The attention to wind energy began in Jordan in
1979, and these days, Jordan has decided to provide 20% of the required energy from wind
and solar energy [22]. Several wind projects exist, such as the Tafilah wind project, which
delivers almost 132 MW of electricity to the national grid; meanwhile, some other wind
projects deliver about 25 MW of electricity [23–28]. Moreover, Jordan has been deemed
as one of the Arab countries which contributes to the spread of the culture of renewable
energy exploitation; notably, by the end of 2021, the installed renewable energy projects
will contribute to electricity generation by a percentage of 20.1% generally and 15.3% by
the wind, as clarified in Figure 2. Accordingly, the awareness of wind energy has increased
abruptly and attracted attention, which is the reason for installing two new wind farms in
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2021 with a capacity of 51.75MW each [29]. Figure 3 represents the MW production from
wind during the period from 2010 to 2021 in Jordan [30].

Figure 2. Electricity generation sources in Jordan.

Figure 3. Wind Profile of Jordan.

The output of wind power depends mainly on the speed of the wind. Hence, it is
irrefutable that evaluating the distribution of wind speed is considered the starting point for
wind energy potential assessment purposes [31]. Usually, the distribution of wind speed is
estimated and described by several probability distribution functions (PDFs) [32], especially
by the Weibull PDF, since the estimated outcomes are close to the actual observed wind
speed. In addition, the Rayleigh PDF, which is a special case of the previously mentioned
PDF (Weibull), is used in some studies, and sometimes, it provides a better fitting [33].
Therefore, it can be understood that no particular PDF can fit the distribution of wind
speed in all sites meticulously, bearing in mind that the estimation of wind speed is not
simple because of the stochastic nature of the wind source and frictional and roughness
effects [34–36].



Sustainability 2023, 15, 3270 4 of 29

Several recent studies stated that estimating the wind turbines’ P-V curve is required
in the preliminary assessment of the wind turbines’ energy yield [37]. However, different
methods have been proposed to make an initial assessment and estimation of wind speed
with an uneven degree of resolution and accuracy [38]. Kevin et al. proposed a technique
in [39] that endorsed a study conducted by Al-Mhairat et al. in [1], showed that gamma PDF
outperforms the other PDFs in wind assessment. This study was performed in Kenya and
aimed to specify the optimal parameters of the selected distribution functions, which were
Weibull, log-normal, and gamma. The process of this study was conducted by estimating
the PDFs’ parameters by using a numerical approach, that is, the maximum likelihood
method (MLM).

Consequently, Rejhana [40] decided to use two methods to estimate the parameters of
the Weibull PDF and the wind power density, which are the MLM and the energy pattern
factor methods. The outcomes showed that the wind energy that is available in Sarajevo is
not enough to meet the required energy for that region.

Similarly, Boro et al. in [41] used the MLM in order to compare the accuracy of various
PDFs, including the inverse Gaussian, gamma, Rayleigh, hybrid Weibull, and Weibull PDFs.
Some statistical tools were used as indicators, such as the coefficient of determination (R2)
and root-mean-square error (RMSE). The results stated that there is not only one PDF that
fits the whole region worldwide, such that in some sites, such as Ouahigouya, Dédougou,
and Ouaga, the Weibull PDF was the most suitable one, while in other sites, such as Gaoua,
Dori, and Boromo, it was found that the inverse Gaussian PDF was the most suitable one.

Saeed et al. in [42] aimed to improve the performance of the Weibull PDF by using
artificial intelligence optimization techniques (AIOP) to obtain the highest possible precision
from the Weibull PDF. This study was conducted in thirteen different sites in Pakistan and
tried to provide an alternative method for the estimation of parameters for the Weibull PDF.
Further, the convergence was enhanced in this study by three AIOTs. The results showed
that the proposed method for estimating the parameters of the Weibull PDF outperforms
the common Weibull PDF.

However, some studies used both Weibull and Rayleigh PDFs in wind speed esti-
mation. The reason for being the two most common PDFs is their accuracy in predicting
and describing wind speed. For instance, Bidaoui et al. in [43] evaluated the potential of
wind energy by using stochastic models of Rayleigh and Weibull PDFs of five locations
in Northern Morocco. Some indicators were utilized, such as the mean bias error (MBE),
RMSE, Chi-square error (χ2), and R2. The outcomes of this study indicated that the accuracy
of the Weibull PDF is higher than the Rayleigh PDF.

Abeysirigunawardena et al. in [44] claimed in their study that the maximum likeli-
hood estimation (MLE) approach is the most commonly used in wind estimation. This
method can mix various information with the parameters of the model. Moreover, the
results showed that approximate standard errors for the estimated parameters may be
shaped automatically.

Baloch et al. stated in [45] that a sensitivity analysis is usually conducted in order to
test the effectiveness of varying the parameters. Several research studies were conducted
to study the effect of distribution function parameter variations on the energy of both wind
regimes and wind turbines [46–48]. However, the goal of proposing new approaches is
to be able to select accurate parameters for each PDF such that the estimated probability
becomes very close to the actual one. Accordingly, the subsequent applications based on
these parameters will become more reliable. The previously mentioned recent studies are
summarized in Table 1.
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Table 1. Summary for the previous studies in the same field of research.

Study Year Proposed Region Used PDF Used Method Objective
Function

Data
Resolution Data Period

[39] 2020 Kenya
Weibull,

log-normal,
and gamma

Numerical
approach
(MLM)

NA Hourly From 2016 to
2018

[40] 2021 Sarajevo, Bosnia and
Herzegovina Weibull

MLM and
energy pattern

factor
NA

The rate of the
recorded data

was 48 per day
in 30 min time

intervals

1 January 2019
to 31 December

2019

[41] 2020

Dori, Ouahigouya,
Ouagadougou, Fada
N’goura, Gaoua, PO,
Dédougou, Ouaga,

Bobo Dioulasso,
Bogandé, and

Boromo

Inverse
Gaussian,
gamma,

Rayleigh,
hybrid Weibull,

and Weibull

MLM
To identify the best

PDF for the
proposed sites

Every three
hours

From January
2006 to

December 2016

[42] 2021 Pakistan Weibull AI
Minimize cost

Min LEC =
∑N

n=0 Cnet/(1+i)n

∑N
n=0 Eo,n/(1+i)n

NA
April

2015–January
2018

[43] 2019

Northern Morocco
(Tangier, Tetuan,

Al-Hoceima, Nador,
Larach)

Weibull and
Rayleigh NA

Minimize the error
between the

estimated
theoretical and the
actual wind speed

Monthly One year

[44] 2009 South coast of British
Columbia, Canada

Generalized
Pareto

distribution
MLM Test the validity NA NA

Our Study 2022 Jordan Normal and
Weibull

AI and
machine

learning (ML)

Max ETotal =
(1− ξ)×
(Eir + Ero)

Daily
From 1 October

2021 to 30
September

2022

The importance of the PDF is summarized by being able to make a description and
prediction for the probability of a certain event. Each PDF carries its own parameters,
and the right selection of these parameters will be reflected in a proper application. The
normal PDF depicts one of the most common PDFs that is commonly used in estimating
probability [49]. This PDF is represented by two main parameters, µ, which is the mean
value that describes the central tendency, and σ, which is the standard deviation that
describes how the probability values are dispersed around the central point. [50]. Moreover,
the Weibull PDF is also considered an accurate PDF that is used in wind variation estimation.
This PDF is represented by two main parameters, K, which is the shape factor, and C, which
is the scaling factor [51].

The main contribution of this study compared to other studies in the same field of
research can be summarized by the following:

• This study estimates the wind energy and extracted energy of a wind turbine using a
new distribution function (normal) that has not regularly been used in the literature.

• The estimation method of this study is performed using several artificial intelligence
methods with the aid of machine learning classifiers that have not previously been
used in other studies.

However, wind speed can be measured by several apparatuses, such as the cup
anemometer, which is represented in Figure 4a [52]; this technology responds promptly
to wind movement, but this device cannot stop immediately once the wind stops [53].
Moreover, another technology that is used in wind speed measuring is the propeller
anemometer, which is represented in Figure 4b [52], while sonic anemometers are used for
both wind speed and direction measurement, which is represented in Figure 4c [54].
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Figure 4. Technologies that are used in wind speed measurement. (a) Cup anemometer; (b) propeller
anemometers; and (c) sonic anemometer.

2. Methodology

Innumerable choices for studying the extractable energy from wind are available nowa-
days; the chosen method strongly depends on statistical science. The general methodology
adopted to accomplish this study is clarified and depicted in Figure 5.

Figure 5. Flowchart steps of the intended study.

2.1. Data Collection for the Whole Site

An abundant number of marvelous research were conducted to achieve the goal of
developing some reliable and sophisticated methods for wind forecasting. Each method
has a tolerance percentage and does not match the actual wind measurements strictly.

In other words, the only essence disparity that differs vividly from one strategy to
another is the uneven level of rigor. However, these methods are clarified in Figure 6 [55].
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Figure 6. Forecasting methods for wind measurements.

The physical approaches use several types of physical information, including, to name
a few, wind conditions, especially at the turbine hub’s height, the power curve of the wind
turbine, data from the meteorological departments, and the weather conditions, by and
large. Regardless, these physical data are borne in mind to estimate wind readings.

In juxtaposition, statistical methods can forecast either wind speed power probability
or wind speed/power value. Both are commonly obtained based on statistical analyses of
time series, which depend on past observed wind data.

The third astounding method is the hybrid approach, which is a combination of
several methods, such as physical methods in conjunction with statistical methods. Finally,
the fourth method is other new techniques such as entropy-based training, ensemble
predictions, wavelet transform, fuzzy logic, and spatial correlation.

In this paper, the daily wind speed data have been collected from RETScreen software
for nine sites in Jordan, which are clarified in Table 2 with their corresponding details. The
raw data period was for one complete year, starting from 1 October 2021 and going to
30 September 2022. All of these data were recorded at a 10 m height.

Table 2. The latitude, longitude, and elevation of the proposed sites [56].

Site Latitude North (◦) Longitude East (◦) Elevation (m)

Al-Badieh 31.88 36.90 658
Amman 31.59 35.59 767
Aqaba 29.52 35.00 6
Bayir 30.76 36.68 831
Irbid 32.33 35.51 618

Irwaished 32.30 38.12 686
Ma’an 30.10 35.47 1069
Mafraq 32.22 36.15 686

Queen Alia Airport 31.43 35.59 722

2.2. Data Analysis and Statistical Analysis

Currently, modern turbines have a hub height of around 100 m, while the wind data
were measured at 10 m, as mentioned afore. Therefore, the first step in wind data analysis is
carried out by making a conversion for the obtained wind speed at 10 m into corresponding
data at 100 m. The reflected wind speed at 100 m is obtained by applying Equation (1) [57].

V2 = V1

(
h2

h1

)α

(1)

where V2 represents the desired wind speed at the extrapolated height, V1 represents the
wind speed at the reference level, h2 represents the desired height, and h1 represents the
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reference height. Finally, the symbol α represents the wind shear exponent (WSE) that
discerns and describes the terrain situation of the site. Table 3 clarifies several scenarios for
the factor of the proposed sites. The following subsections clarify how the corrected wind
speed was analyzed statistically.

Table 3. Details regarding the WSE [58].

Type of Terrain The Corresponding Value of α

Large cities with tall buildings 0.4
Small towns with trees and shrubs 0.3
Wooded countryside, many trees 0.25
High crops, hedges, and shrubs 60.20

Tall grass on level ground 0.15
Smooth, hard ground, calm water 0.1

2.2.1. Selecting the Candidate PDFs

The current trend is to use the probability density function (PDF) approach to assess
wind energy resources. The Weibull approach is the most ubiquitous PDF that has been
used in most recent studies in wind assessment. This research sheds light on another PDF,
the well-known normal PDF, to assess wind in several sites in Jordan. The mathematical
representations for the proposed PDFs are clarified in the following points [59].

(A). Weibull

As stated before, the wind speed probability for a certain region is often expressed
and represented by the Weibull PDF. Based on the following mathematical representation,
it can be observed that this PDF has two main parameters, which are the shape and the
scale factor.

fW(v) =
k
c

(v
c

)k−1
e−(

v
c )

k
(2)

(B). Normal

The second proposed PDF in this paper is the normal PDF, which is also known as
the Gaussian distribution. This distribution function is called the Gaussian distribution by
physicists and the bell curve by social scientists [60]. The following mathematical formula
shows the PDF for the normal function:

fN(v) =
1√

2πσ2
× e

−(v−µ)2

2σ2 (3)

where σ and µ are the standard deviation and the mean wind speed.
Analyses of wind speed can be made by the PDFs. Thus, the more precise the selected

parameters, the more accurate and more satisfactory the outcomes. In other words, the
estimation of the parameters is the springboard, and it is considered a critical phase that
plays an essential role in achieving the desired and accurate outcomes. The performance of
the PDFs relies on several factors, such as the number of data, the evaluation criteria, and
the period of data measuring.

2.2.2. Set an Objective Function

A power curve of a wind turbine is defined as a visual representation of the generated
electrical output power for each corresponding wind speed. The lofty goal of capturing and
exploiting the wind is to produce electrical power. Therefore, it is necessary to link these
two parameters (electrical power and intermittent wind speed) in order to comprehend
how they affect each other. The power curve of wind turbines that depicts the relationship
between the electrical power output and the wind speed is known as the P-V curve, and
each wind turbine model has its own P-V curve. This curve is essential for many purposes,
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chiefly for project conducting and planning, monitoring the turbines, and detecting the
likelihood of the maloperation of turbines [61].

Producing electrical power from wind energy at the sites under investigation relies on
immense factors, including the mean wind speed and wind turbine speed characteristics,
which involve the cut-in speed, rated speed, and cut-out speed. The available energy in the
wind varies with the variation in wind speed. Hence, understanding the P-V characteristics
of wind is essential in wind assessment. Figure 7 clarifies a typical representation of the
ideal P-V curve.

Figure 7. P-V curve of an ideal wind turbine.

It is apparent in Figure 7 that, in the region before the cut-in speed, the output power
from the wind turbine is zero since the cut-in speed is quite low and cannot produce
enough power to overbear the friction of the wind turbine. However, even if the friction
of the wind turbine has been overcome and a rotation of the generator is observed, the
corresponding generated electrical power may be slight and not sufficient to offset the
required power by the generator field windings. Per contra, once the wind speed increases
above the cut-in speed, the resultant output power rapidly increases until it reaches a
critical point where the output power flattens out. At this point, the turbine is reaching
its upper limit of generation, which is known as the rated output power. After a certain
threshold value, which is around 25 m/s, the next wind speed is known as the cut-out
speed, where the turbine initiates shut-down mode for protection purposes since the blades
are at risk because of the large applied force. Hence, based on the previous clarification,
the symbols vi, vr, vo, PR refer to cut-in speed, rated wind speed, cut-out speed, and rated
power, respectively. However, the most important parameter of this curve is Q (v), which
describes the nonlinear region.

The enclave region between the cut-in speed and the rated wind speed (nonlinear
region) can be represented using several mathematical formulas. Therefore, the output
power from a wind turbine can be determined depending on the interval of wind speed, as
illustrated below [62]:

P(v) =


0, v > vo or v < vi

Q(v), vi < v < vr (enclave region)
PR, vr < v < vo

(4)
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In this research, four representations of Q(v) have been examined, which are [63]:

Q1(v) = PR

(
v2 − v2

i
v2

r − v2
i

)
(5)

Q2(v) = PR

(
1− e−(

v
β )

5
)

, β = 0.70335986vr − 0.00049995 (6)

Q3(v) =
PR

1 + e−(bv−7.5)
, b = 5.822e−0.3398vr + 1.79e−0.0548vr (7)

Q4(v) = PR

(
v3

v3
r

)
(8)

In this paper, the objective function is to maximize the energy captured by wind
by the proper selection of the proposed PDFs’ parameters as illustrated in the following
equations [64]:

Maximize : ETotal = (1− ξ)× (Eir + Ero) (9)

Subject to:

Minimise Error =
√
(PO − PD)

2 (10)

where:
ETotal: Total energy that can be generated by the wind turbine (KWh/m2);
ξ: The overall loss percentage of the turbine;
T: Time period in an hour;
Eir: Generated energy by the wind turbine in the region between the cut-in speed and

rated speed in KWh/m2.

Eir = T
∫ vr

vi

Q(v)× f (v)dv (11)

Ero: Generated energy by the wind turbine in the region from the rated speed to the
cut-out speed in KWh/m2.

Ero = TPR

∫ vo

vr
f (v)dv (12)

PO: The probability based on the observations (real data from RETScreen);
PD: The probability based on the proposed PDFs.
In general, the energy that is available from wind resources can be determined based

on the following expression:

ED =
∫ ∞

0
WPD× f (v)dv =

∫ ∞

0

1
2
× ρa ×V3 × f (v) dv (13)

where:
ED : The available energy in the regime;
WPD : The wind power density;
f (v) : The used PDF;
A : The effective area of the disk;
ρa : The air density;
V : The velocity of the wind.
The attention in this research goes to tracking the maximum energy by varying the

two parameters of the normal and Weibull PDFs such that the estimated probabilities must
be close to the observed probabilities for each wind speed class.
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2.2.3. Estimating and Predicting the Parameters by Artificial Intelligence Techniques in
Conjunction with Neural Fuzzy Methods

In the design stage of any project implementation, optimization is an essential tool by
which the performance of the overall system can be enhanced effectively. Furthermore, this
tool is used in the whole field and is not limited to only one field due to the diversity of the
dilemma nowadays. The intriguing ideas of the optimization algorithms were put forth
depending on the behavior of things around us.

The concentration of this research is oriented toward estimating the parameters of the
various distribution functions by optimization algorithms. Nowadays, artificial intelligence
(AI) has become a trend due to its features. This technique programs the machine to be
capable of performing complex tasks. Further, it works in various fields, which makes it
popular these days [65].

In this study, three distinct algorithms are employed to estimate the parameters of the
proposed PDFs. The first one is the genetic algorithm (GA), the second one is the bacterial
foraging optimization algorithm (BFOA), and the third one is the simulated annealing (SA)
algorithm. It is no wonder that artificial intelligence (AI) techniques are more recommended
than numerical approaches due to their high level of accuracy and flexibility.

In this paper, the initial population of each parameter started from 0 to 100 for each
PDF, with a step of 0.05 for each iteration. The goal of the AI was to find the best parameters
that made the estimated wind speed as close as possible to the actual wind speed. Thus,
the stopping criteria were based on finding the most accurate parameters by evaluating the
holistic possibilities of the initial population.

(A). Genetic Algorithm

The GA mimics the biological evolution natural process by selecting fit individuals for
reproduction. It works with specific population sizes (individuals) that are evolving with
time. The principle of this algorithm is inspired by human beings based on the three main
operators: selection, crossover, and mutation. Figure 7 shows the implementation steps of
GA based on [66].

Based on Figure 8, the principle of this algorithm can be simply explained as follows:
the population of a certain number of chromosomes is generated randomly. The next step
is to find the corresponding fitness value of each chromosome. Afterward, a single-point
crossover is applied for the two chromosomes (two inputs of the optimization problem) to
generate offspring. The applied crossover in this thesis is the partially matched crossover
(PMX) method since it is the most commonly used crossover. The next step is to apply the
mutation operation to the obtained offspring to generate a new population. Thereafter,
the previous process (selection, crossover, and mutation) is applied again until a new
population is obtained [67].

(B). Bacterial Foraging Optimization Algorithm

BFOA is considered an optimization approach that was developed depending on the
base of Escherichia Coli (E. Coil) bacteria’s foraging strategy. These bacteria live inside the
human gut. The term “foraging” refers to the animals’ behavior for ingesting, handling, or
locating their food. In general, E. Coil bacteria have flagella, which enable the bacteria to
rotate or move in a locomotion manner. For clarification, with the aid of the flagella, the
bacteria may move in the same direction or change its orientation. The ultimate two goals
of this bacteria are to find a place with a high level of nutrients and mitigate the noxious
areas by moving in a certain motion. Hence, as a summary, when the bacteria reach a
place with a higher level of nutrients compared with the previous place, the movement is
described as “swimming” or “running”. Otherwise, it will tumble. Figure 9a,b clarifies
the previous discussion. In Figure 9a, the bacteria move from location L1 into location L2
since the nutrient level in L2 is higher than in L1. It can be observed that the bacteria move
forward within the same path, “swim”. Similarly, the bacteria move from L2 into L3, which
indicates that L3 has more nutrient levels compared with L2. This process is repeated until
the phase-out of the bacteria’s life.
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Figure 8. Flowchart of GA.

Figure 9. Bacteria movement based on the nutrient level in each location where (a) represents
“swimming” case, and (b) represents “swimming and tumbling” case.
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The second mentioned case is clarified in Figure 9b. This case may include swimming
beside tumbling. In this case, the initial location is L1; the bacteria try to find another
location, and the nutrient levels of the two locations are compared. If the nutrient level of
the new location is higher, the bacteria will go toward (swimming) this area; otherwise,
it will search for another location with a higher nutrient level by changing its trajectory
(tumbling). Since the nutrient level at L2 is lower than that of L1, the bacteria will not
continue moving with the same path but will move in another path until reaching L3, where
the nutrient level is higher in comparison with the previous location. Another test for
nutrient level will be conducted; if at L3 the nutrient level is lower than that of L2, the
bacteria will tumble and move into another location, L4. If the nutrient level at L4 is higher
than that of L3, the bacteria will swim in the same path of the previous movement until a
new location, L5, is reached [68]. The flowchart of this algorithm is clarified in Figure 10,
where Nd refers to the number of elimination-dispersal events, Nre refers to the number of
reproduction steps, and Nc refers to the number of chemotactic steps [69].

Figure 10. Flowchart of BFOA.
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(C). Simulated Annealing Algorithm

The idea of the simulated annealing (SA) algorithm mimics the metal reshaping
process, where a heated metal is reshaped from one structure to another after being cold.
An initial solution is set randomly and then based on this procedure, which is clarified in
Figure 11 [70]. The control parameter in this algorithm is the temperature, which controls
the number of iterations of the process [71]. In the end, the best fit which meets the objective
function will be selected. Based on Figure 11, it can be noticed that SA has a sequence of
moving from the initial solution toward the next solution, where in some cases, the worst
solution may be accepted based on a probability factor.

Figure 11. Flowchart of SA.

(D). Adaptive Neural Fuzzy Inference System (ANFIS)

Fuzzy logic is a worthwhile tool in conducting complex tasks, especially when it
is difficult to obtain a mathematical model. In addition, fuzzy logic may be used in
prediction problems for quality amelioration purposes. In contrast, neural networks (NNs)
are networks that can link the input with the output data in a certain manner, where each
input is assigned a certain value of weight. Subsequently, the output is determined based
on the assigned weights [72].
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However, in this paper, a combination of these two techniques is used, where ANFIS
is classified as a hybrid AI model that coalesces and combines the intrinsic features of fuzzy
logic in the parallel processing of a NN [72]. The architecture appears from the tool itself
for the proposed problem, which has two inputs and a single output. The flowchart of
ANFIS is presented in Figures 12 and 13 [73].

Figure 12. Architecture of ANFIS.

Figure 13. Flowchart of ANFIS.
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ANFIS became a technique that can be used for predicting purposes, as it can make an
input-output mapping and accordingly design an input-output prediction by the hybrid
learning process. In general, ANFIS is commonly used to simulate nonlinear systems
providing intrinsic and reliable outcomes [74].

2.2.4. Selecting the Most Accurate Approach Based on the Indicators (RMSE and MAE)

Estimating the parameters of the proposed PDFs is a non-trivial task, and the most
challenging task is to opt for and decide which PDF model is the best. Based on the previ-
ously mentioned two methods of selecting the parameters (either by artificial intelligence
techniques or by prediction), once the corresponding parameters of each PDF are selected,
the next step is assigned to choose the most precise PDF. This can be accomplished with
the aid of some goodness-of-fit (GOF) indicators, such as RMSE and MAE. Incontrovertibly,
the lower the fitness value, the better the proposed model fit. Each proposed PDF is a
candidate to be accepted if its parameters achieve a fitness value that is relatively small.

Several options for GOF tests are offered and available nowadays; in this study, RMSE
and MAE are the proposed indicators since these two indicators are the most frequently
employed in evaluating accuracy. The mathematical formulas for these indicators are
illustrated in the following points [75].

(A). RMSE:

The root-mean-square error (RMSE) between X datasets (the observed probability)
and Y datasets (the estimated probability) is defined as a measurement of the difference
between their values and can be expressed as:

RMSE =

√√√√1
k

k

∑
i=1

(Xi −Yi)
2 (14)

This indicator is commonly used to assess how good the predicted probability is over
the observed probability, where the smaller value of RMSE is, the better the accuracy of the
proposed model, indicating that the selected parameters achieve the best results.

(B). Mean Absolute Error (MAE)

This test determines the absolute error between the observed value and the corre-
sponding estimated value. This performance indicator looks similar to the RMSE since
the lower the MAE, the better the outcomes obtained are. Its mathematical formula is
represented below:

MAE =
1
n

n

∑
i=1
|yi − xi| (15)

2.2.5. Machine Learning Classification and Prediction Based on the Best PDF

Machine learning (ML) is a description of a computer that has been programmed and
trained based on a certain data pattern, thus becoming able to predict the situation for
newly inserted data. This term (ML) is divided into two major categories: classification
(supervised learning) and clustering (unsupervised learning). In classification, two phases
are required: the training phase and the testing phase. In the training phase, the inserted
data should be divided into a certain number of categories, where each category carries a
particular percentage from the overall data that have the same classification. Commonly,
the first columns in the intended trained data represent the input(s), while the last column
represents how each input(s) has been classified. Within the same phase and based on
several built-in classifier algorithms, the machine will be able to understand and learn the
data. Accordingly, by generating a learning model while in the data testing phase, the data
is classified based on the generated trained model in addition to the classifier model.

On the other hand, in clustering, the input data are grouped based on their similarities
without any trained model. The purpose of using ML in this study is to be able to predict
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the difference (error) between the actual observed wind speed data and the estimated wind
speed for the best PDF, which will be decided based on the performance indicators, as
mentioned before. Here, a small error indicates that the selected parameters are good, while
a medium error indicates that the selected parameters are not good enough, and finally, a
Large error indicates that the selected parameters achieve a large difference between the
observed and the estimated value.

In this paper, 24 classification algorithms have been used to run the data. These
algorithms have been summarized in the last section of this paper. The significance of using
ML in this study came from the necessity of the more precise prediction of the parameters
since the remaining phases of energy estimation depend on the selected parameters.

3. Results and Discussion

The two parameters of the normal PDF, µ and σ, were selected intelligently by GA,
BFOA, SA, and the neuro-fuzzy method. The corresponding energy regime in Kwh/year
was determined accordingly based on each method for all sites, as clarified in Table 4. These
parameters are reflected concurrently with the observed actual data of wind speed for all
sites, as represented in Figure 14.

Table 4. Outcomes for the normal PDF parameters by GA, BFOA, SA, and ANFIS along with the
energy regime per year.

GA BFOA SA Fuzzy Neural Energy Regime kWh/m2

(Year)

Site µ σ µ σ µ σ µ σ GA BFOA SA ANFIS

Al-Badieh 4.5 1.44 4.31 1.41 4.35 1.41 4.4 1.4 641.207 570.84 581.838 595.31
Amman 4.05 1.07 4.02 1.09 3.95 1.14 4.1 1.1 431.509 425.21 413.435 449.1
Aqaba 3.75 1.09 3.81 1.09 3.85 1.1 3.75 1.1 355.470 370.41 380.653 355.47
Bayir 4.45 1.59 4.45 1.66 4.45 1.66 4.4 1.61 655.642 669.977 669.977 641.37
Irbid 2.7 0.591 2.36 0.62 2.35 0.59 2.5 0.63 120.85 85.217 82.893 99.958

Irwaished 4.45 1.56 3.66 1.18 3.65 1.18 4 1.18 648.476 345.16 343.249 433.64
Maan 4 1.09 3.91 1.06 3.9 1.05 4.1 1.12 420.761 390.83 387.428 452.4

Mafraq 3.65 1.02 3.75 1.02 3.75 1.02 3.7 1 322.68 346.414 346.414 331.42
Queen Alia airport 4.5 1.51 4.16 1.48 4.2 1.47 4.3 1.48 655.699 533.69 543.012 579.02

Similarly, the parameters of the Weibull PDF, K and C, were assigned by the same
approaches of GA, BFOA, SA, and the neuro-fuzzy method. The corresponding energy
regime in Kwh/year has been determined accordingly based on each method for all sites,
as clarified in Table 5. These parameters are reflected in conjunction with the observed
actual data of wind speed for all sites, as represented in Figure 15.

Table 5. Outcomes for the Weibull PDF parameters by GA, BFOA, SA, and ANFIS along with the
energy regime per year.

GA BFOA SA Fuzzy Neural Energy Regime kWh/m2

(Year)

Site K C K C K C K C GA BFOA SA ANFIS

Al-Badieh 3.65 4.6 3.5 4.8 3.5 4.8 3.7 4.5 489.56 562.41 562.41 456.81
Amman 3.25 4.8 3.2599 4.6326 3.2 4.6 3 4.9 575.51 516.84 509.29 631.25
Aqaba 3.2 4.35 3.9 4.25 3.9 4.25 3.3 4.1 430.68 380.41 380.41 356.82
Bayir 2.95 5.55 3.0571 4.993 3.1 5 2.9 5.3 923.93 662.69 661.83 810.84
Irbid 4.55 2.35 4.4 2.6 4.4 2.6 4.2 2.4 62.778 85.375 85.375 67.603

Irwaished 3.3 4.1 3.5064 4.031 3.55 4.05 3.1 4.2 356.82 332.93 336.51 392.27
Maan 4.3 4.1 4.1651 4.1869 4.2 4.2 4.4 4 335.85 359.41 362.31 310.88

Mafraq 4.05 3.95 4.25 4.1 4.25 4.1 4 3.85 303.23 336.43 336.43 281.41
Queen Alia airport 3.55 4.6 3.25 4.7 3.25 4.7 3.6 4.6 493.07 540.28 540.28 491.26
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Figure 14. Outcomes based on Normal PDF.

Figure 15. Outcomes based on Weibull PDF.

In the end, the extractable energy from wind has been determined based on the four
listed P-V models for both the normal and Weibull PDFs. The outcomes are summarized in
Tables 6 and 7, respectively, assuming the same wind turbine brand parameters for a fair
comparison.
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Table 6. Extractable energy (MWh per year) based on Normal PDF.

Extractable Energy Based on
Q1 Model

Extractable Energy Based on
Q2 Model

Extractable Energy Based on
Q3 Model

Extractable Energy Based on
Q4 Model

Site GA BFOA SA ANFIS GA BFOA SA ANFIS GA BFOA SA ANFIS GA BFOA SA ANFIS

Al-Badieh 2299 1938 1993 2056 2453 2044 2105 2169 3087 2572 2648 2728 2053 1779 1822 1875
Amman 1126 1106 1074 1222 1162 1141 1111 1256 1459 1434 1396 1577 1209 1185 1141 1283
Aqaba 795 856 904 795 834 894 942 834 1051 1126 1186 1051 902 961 1003 902
Bayir 2403 2486 2486 2337 2618 2733 2733 2546 3290 3437 3437 3203 2100 2162 2162 2053
Irbid 6 1 1 4 13 3 2 8 17 5 3 11 20 5 3 12

Irwaished 2361 794 787 1188 2550 831 823 1226 3220 1046 1037 1541 2080 877 870 1227
Maan 1087 934 911 1248 1120 972 950 1283 1410 1223 1196 1611 1160 1040 1024 1298

Mafraq 624 721 721 646 668 721 721 691 845 763 763 874 758 853 853 787
Queen Alia

Airport 2386 1777 1819 1999 2573 1883 1926 2129 2573 2370 2423 2679 3238 1638 1673 1812

Table 7. Extractable energy (MWh per year) based on Weibull PDF.

Extractable Energy Based on
Q1 Model

Extractable Energy based on
Q2 Model

Extractable Energy Based on
Q3 Model

Extractable Energy Based on
Q4 Model

Site GA BFOA SA ANFIS GA BFOA SA ANFIS GA BFOA SA ANFIS GA BFOA SA ANFIS

Al-Badieh 1503 1899 1899 1328 1542 1980 1980 1358 1935 2490 2490 1703 1463 1749 1749 1331
Amman 1988 1686 1654 2292 2109 1766 1736 2504 2655 2222 2185 3153 1798 1571 1542 2009
Aqaba 1257 914 914 879 1304 943 943 910 1639 1186 1186 1145 1234 1016 1016 937
Bayir 3731 2446 2439 3184 4355 2682 2666 3648 5434 3377 3357 4568 3103 2129 2126 2682
Irbid 0.002 0.3 0.3 0.04 0.01 1 1 0.1 0.01 1 1 0.2 0.01 1 1 0.2

Irwaished 879 736 746 1081 910 768 779 1123 1145 967 980 1412 937 832 845 1085
Maan 651 780 790 525 697 816 826 0579 881 1029 1041 737 816 921 933 704

Mafraq 530 659 659 442 576 703 703 490 731 890 890 624 685 820 820 595
Queen Alia

Airport 1532 1808 1808 1518 1578 1903 1903 1559 1981 2395 2395 1957 1477 1662 1662 1470

3.1. Assessment of the Proposed Approaches

An assessment of the proposed approaches was carried out based on the GOF by two
performance indicators (RMSE, MAE), as clarified in Table 8, to ascertain the accuracy
of the selected parameters. The goal of this step was to rank the selectivity level of each
approach depending on the minimal difference (error) between the observed data and the
foreshadowed data. Hence, based on Table 8, it can be perceived that BFOA and SA are
the most accurate and predominant approaches in selecting the parameters in both the
normal and Weibull PDFs, with a slight ignorable difference between them compared with
their counterparts. In addition, based on the same table, it can be noticed that the normal
PDF gives more accurate and precise estimated outcomes compared with the Weibull PDF.
Therefore, the classification of classes was conducted based on the normal PDF. Accordingly,
based on the outcomes that were obtained from this study, the worthiest regions in Jordan
that are rich in wind resources, headed by Bayir and wrapped up by Irbid, are arranged in
Figure 16 based on the BFOA and SA algorithms.

Table 8. Comparison between normal and Weibull PDFs based on several performance indicators for
the four methods of parameter selection.
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Al-Badieh 2.2154 2.0480 1.6860 1.8402 1.7127 1.8402 1.7438 2.5164 1.4284 1.6278 1.1883 1.2964 1.1829 1.2964 1.2329 1.9336
Amman 3.1027 3.6164 2.8906 3.1293 2.5751 3.1179 3.1258 4.0767 1.9644 2.2439 1.8973 2.1273 1.9080 2.1301 2.1746 5.6719
Aqaba 1.9567 3.7269 1.4537 1.5499 1.3942 1.5499 2.7570 3.5467 1.4130 2.8002 0.9072 1.1287 0.9028 1.1287 1.4130 2.9174
Bayir 1.6636 3.0264 1.6757 1.4336 1.6757 1.4242 1.6422 2.2053 1.3706 2.3625 1.3043 1.0807 1.3043 1.0758 1.3435 1.7186
Irbid 9.4640 6.7671 0.8988 0.5492 1.0263 0.5492 3.6928 5.9630 6.1133 4.5869 0.7881 0.5072 0.9501 0.5072 2.6720 4.6240

Irwaished 6.3403 2.6331 2.2236 2.4685 2.2426 2.5946 3.5435 3.0769 4.4746 2.0076 1.6651 1.7918 1.6686 1.7943 2.8742 2.3617
Maan 3.0444 2.6829 2.9661 2.6439 2.5240 2.6300 3.4508 3.2724 2.0540 2.0683 1.7651 1.9797 1.7627 1.9842 2.5257 2.5927

Mafraq 3.7953 4.2286 4.0225 4.6509 4.0225 4.6509 3.9485 4.3644 2.9061 3.3184 2.5749 2.9943 2.5749 2.9943 2.8589 3.6309
Queen Alia Airport 2.2031 1.7485 1.4870 1.4602 1.4295 1.4602 1.5079 1.8163 1.6565 1.2139 1.0363 0.9552 1.0471 0.9552 1.2436 1.2702
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Figure 16. The ranked sites in Jordan based on the availability of wind.

The bottom line of Table 8 is to emphasize that the Weibull PDF is not always the most
accurate PDF but rather the opposite in this study, as it was found that the normal PDF
overwhelmed the Weibull PDF.

3.2. Machine Learning Classification Outcomes

Several studies used ML in several fields, for instance, [76], in the diagnosis of the crime
rate against women by using k-fold cross-validation. In [77], ML was used to conduct the
sensitivity analysis of k-fold cross-validation, especially in error prediction and estimation.
Another study conducted by [78] stated that ML is an effective and powerful tool, notably
when massive amounts of data are collected.

In this study, a novel approach is proposed to classify and predict wind estimation
by a MATLAB environment-classification learner application based on the datasets that
were gathered from RETScreen, analyzed by the SPSS environment, and finally tested by
AI codes. Hence, a huge dataset has been investigated to evaluate the performance of the
normal PDF, where the nominated approaches try to find the best parameters of µ and σ

that attain the least difference (error) between the observed and estimated probabilities
for each site. The sample size comprises 3000 species for each candidate site; these 3000
were divided into three main categories. Thus, three distinct classifications were assigned,
low error, medium error, and large error, based on each case of µ and σ and the resultant
error. Each classifier has its accuracy percentage, cost misclassification, and training time.
Therefore, the trade-off between them was based on the accuracy percentage in the first
level, then on the training time if several classifiers gave the same accuracy percentage.

The validation process of the inserted data can be made by three options, cross-
validation (x-validation), holdout validation, and no validation. Each approach has its
features, where the cross-validation approach mitigates the situation of overfitting by
dividing the whole raw data into a certain number of folds, while holdout validation is
recommended to be used in large data sets. Finally, with no validation option, there is no
protection against overfitting. In this study, the k-fold cross-validation method was used
to validate the behavior of the generated learned model, where a certain number of folds
equal to 5 was set. In other words, the inserted data was divided into five groups; one
group was used for testing in the testing phase, while the remaining four groups were used
for learning purposes in the training phase, as clarified in Figure 17. Generally, the k-fold
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cross-validation method has five main steps to be implemented, which are summarized in
Figure 18. The principle of k-fold cross-validation can be explained by splitting the data
into k groups, where each group carries an equal data sample weight; afterward, each
group will be used as a test group for one time and as a training group for k-1 times. This
validation approach is very common since it is easy to understand [76].

Figure 17. Five-fold cross-validation demonstration.

Figure 18. Steps of applying K-fold validation.
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In general, the corresponding performance of any classifier is represented by the
confusion matrix from an accuracy point of view, as clarified in Figure 19 in terms of
true-positive rate (TPR) and false-positive rate (FPR). In a scatter plot, the performance of
the classifier is represented in another manner, where the dot sign represents the correct
prediction, and the cross sign indicates an incorrect prediction, as shown in Figure 20.

Figure 19. Obtained confusion matrices for all sites based on the best and the worst classifier.

Figure 20. Scatter plot shows that the uncorrected prediction occurs on the edge of two classes when
the accuracy is high (90%).

A confusion matrix is a square matrix that is divided into n× n, where n is the number
of classes. In this paper, low error, medium error, and large error were the three classes.
Thus, the resulting confusion matrix was 3 × 3. However, it can be observed that the
percentage of prediction for each class in this matrix is contained inside a square, where
the reflection of this square on the x-axis represents how this classifier classifies this class,
while the reflection on the y-axis represents the true classification. The diagonal line of each
matrix represents the accurate predictions, and the out-of-diagonal squares are the incorrect
predictions. Regardless, some other classifier algorithms showed a good performance,
where the accuracy was close to 100%. Interestingly, it was observed that for the classifiers
with 90% accuracy, the misclassified points were those which were located at the boundary
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(edge) between two classes, as represented in Figure 20. Surprisingly, another observation
that is in dire need to be mentioned is that in ML classification, the data sample for each
class affects the accuracy. For instance, if a certain class contains merely one row of data
(one case), while the other classes have a relatively higher sample of data, the prediction of
this class will not be detected easily or maybe at all. For example, there is the best selection
of µ and σ that achieves the best fit for each site. Hence, when a new class was created and
named “Best”, this class was not predicted since it contained merely one case, while the
other classes contained around 500 cases or more.

Figure 20 shows that there is a certain range of µ and σ that commences and achieves
a small error between the estimated and observed data. Once the values of µ and σ exceed
this range, another region representing a medium error will be entered. Finally, when the
range of µ and σ exceeds the range of medium error, the last region will be entered, which
represents a large error.

Accuracy =

(
100− round

total misclassi f ication cost
Overall number o f inserted data

)
% (16)

The overall number of inserted data refers to the number of observations that were in-
serted to be trained and tested, or in other words, the same as the sample size. However, the
previous table can be summarized by two main figures, as represented in Figures 21 and 22.
Based on Table 9, the performance of 24 classifier algorithms was evaluated. Hence, from
the accuracy and training time points of view, it was deduced that the medium tree classifier
showed the most accurate and swiftest results for all sites, with an accuracy percentage of
100% and with minimal training time compared with the other classifier algorithms. It can
predict the error level based on the given values of µ and σ. Therefore, the medium tree
classifier is a second-to-none trustworthy classifier since it can effectively predict the error.
On the other hand, the ensemble-boosted trees classifier shows poor and awful performance
in predicting the error level based on the values of µ and σ of each site. Figure 19 shows the
confusion matrices based on these two classifier algorithms, where for all sites, the same
matrices were obtained for these two classifiers. These classifier algorithms were trained
and tested automatically by the classification learner application in MATLAB software, and
the prediction process was carried out by exporting the trained model into a workspace.

In the end, the usage of ML in this paper is justified since it was concluded based
on Equations (11) and (12), which clarify how to calculate wind energy, that the energy
calculation of wind depends on the turbine specifications, which are constant, in addition
to the parameters of the proposed PDF. Hence, the precise selection of the parameter gives
actual values for the wind energy regime and for the extractable energy from wind turbines.
Otherwise, if the selection of the parameters is not accurate enough, all corresponding
calculations cannot be trusted. Accordingly, the selection of these parameters is a critical
phase and must be carried out wisely.

Hence, it was necessary to predict and double-check if the chosen parameters attained
low error between the actual and the estimated wind speed values, and that was the role
of the ML in this paper based on the most accurate classifier, which was the medium
tree classifier.
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Figure 21. Comparison between all 24 classifiers for all locations from the training time point of view.

Figure 22. Comparison between all 24 classifiers for all locations from an accuracy point of view.
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Table 9. The tested 24 classifiers for all candidate sites.

Al-Badieh Amman Aqaba Bayir Irbid Irwaished Maan Mafraq Queen Alia Airport

A
cc

ur
ac

y

Tr
ai

ni
ng

Ti
m

e

A
cc

ur
ac

y

Tr
ai

ni
ng

Ti
m

e

A
cc

ur
ac

y

Tr
ai

ni
ng

Ti
m

e

A
cc

ur
ac

y

Tr
ai

ni
ng

Ti
m

e

A
cc

ur
ac

y

Tr
ai

ni
ng

Ti
m

e

A
cc

ur
ac

y

Tr
ai

ni
ng

Ti
m

e

A
cc

ur
ac

y

Tr
ai

ni
ng

Ti
m

e

A
cc

ur
ac

y

Tr
ai

ni
ng

Ti
m

e

A
cc

ur
ac

y

Tr
ai

ni
ng

Ti
m

e

Fine Tree 100 1.91 100 11.44 100 1.79 100 1.65 100 1.92 100 1.78 100 2.22 100 2.67 100 1.91
Medium Tree * 100 1.36 100 10.55 100 1.30 100 0.82 100 1.52 100 0.87 100 1.45 100 1.41 100 0.84

Coarse Tree 100 2.78 100 11.87 100 2.44 100 2.62 100 3.44 100 3.10 100 2.26 100 2.47 100 2.58
Linear discrimination 98.9 2.59 97.7 13.19 98.3 2.68 98.3 2.45 97 2.97 98 2.85 96.6 1.94 97.3 2.14 95.3 2.39

Quadratic Discrimination 98.5 2.32 98.1 14.04 98.6 3.84 99.3 2.26 98.5 2.73 98 2.45 98.5 3.57 96.5 2.83 98.5 2.18
Gaussian Naïve Bayes 98.6 3.31 98.2 15.41 98.1 4.03 98.7 2.05 98 3.79 97.9 2.16 97.7 1.18 96.7 2.59 98.2 2.00

Kernel Naive Bayes 98.4 5.78 98.2 24 98 15.19 98.3 6.12 98.9 10.42 98.1 9.87 97.8 9.63 98.8 10.09 98.3 12.38
Linear SVM 99.5 2.24 99.5 21.83 99.6 6.15 99.5 3.30 99.6 4.79 99.1 5.84 99.5 3.65 99.5 5.39 99.4 3.65

Quadratic SVM 99.3 4.20 99.6 26.30 99.5 9.15 99.4 5.86 99.6 6.84 99.3 7.56 99.5 7.37 99.6 15.70 99.3 9.70
Cubic SVM 99.6 7.78 99.6 33.85 99.8 13.62 99.5 9.63 99.6 7.74 99.6 15.38 99.5 12.50 99.7 14.20 99.8 23.96

Fine Gaussian SVM 99.3 10.69 99.6 32.76 99.2 15.81 99.4 7.89 99.9 12.03 99 13.51 99.6 13.59 99.5 17.94 99.4 15.01
Medium Gaussian SVM 99.1 10.41 99.3 34.95 99.1 14.05 99 9.04 99.7 9.80 98.7 15.57 99.3 14.71 99.5 16.92 99.3 17.02
Coarse Gaussian SVM 98.6 12.42 98.8 36.39 98.6 16.65 99.1 10.30 99.1 12.53 98.6 16.89 98.2 18.52 98.8 18.79 98.6 19.51

Fine KNN 99.3 10.84 99.3 37.10 99.1 16.43 98.9 9.53 99.9 11.39 99.5 14.98 99.5 15.48 99.6 18.14 99.2 23.16
Medium KNN 98.5 11.22 98.6 38.93 98.3 15.87 98.6 10.48 99.5 12.35 98.7 15.62 99.1 17.41 99.1 18.41 98.5 24.95
Coarse KNN 98.3 12.42 97.9 38.29 98.4 16.24 98.5 11.63 99.1 13.16 98 15.28 98.1 18.93 97 19.37 98.5 24.52
Cosine KNN 97.8 14.12 97.5 40.21 97.6 17.19 97.7 12.76 97.3 14.36 98.2 14.46 98.2 19.71 98 19.78 97.4 23.29
Cubic KNN 98.4 13.69 98.6 39.95 98.3 16.97 98.7 13.57 99.5 15.99 98.7 15.15 99 19.48 99.1 20.15 98.6 22.28

Weighted KNN 99.6 14.62 99.7 40.98 99.5 17.76 99.4 14.11 99.9 16.34 99.7 14.46 99.7 20.15 99.6 19.95 99.5 21.96
Ensemble-Boosted Trees * 53.1 14.88 56.3 43.39 54 18.75 48.9 23.45 94.7 14.96 53.9 7.62 60.8 20.90 49.9 20.80 45.7 21.63

Ensemble-Bagged Trees 100 25.22 100 52.83 100 26.43 100 22.32 100 25.58 100 15.01 100 29.04 100 25.89 100 28.99
Subspace Discriminant 98.4 24.81 98.7 54.21 97.2 26.86 99.1 22.83 97.9 25.31 97.7 14.73 96.9 28.75 97.6 25.35 95.8 27.75

Subspace KNN 99.8 31.35 100 60.89 99.9 32.65 99.8 30.77 100 33.72 99.8 15.60 99.9 34.61 100 30.67 99.9 29.51
RUSBoosted Trees 62.3 25.23 90.9 55.29 72.2 27.19 48.9 23.2 99.6 27.12 99.8 10.23 99.8 28.13 99.8 28.10 67.3 22.64

* These rows indicate the best and worst classifiers respectively.
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4. Conclusions

This paper shed light on a PDF that is not regularly used in wind estimation, the
normal PDF, which overwhelmed the most commonly used PDF in wind estimation, the
Weibull PDF. The decision was made based on two performance indicators (RMSE and
MAE). The goal of using these PDFs was to estimate the extractable energy from wind in
nine sites in Jordan by the proper selection of the parameters of each PDF. The outcomes
showed that Bayir is the richest wind source site. Finally, this paper used machine learning
with 24 classifier algorithms for the purpose of predicting suitable parameters for each
site based on previously trained data based on the k-fold cross-validation method. It was
noticed that several classifier algorithms achieve an accuracy of 100%, which justifies the
comparison between them based on the training time point of view. The medium tree
classifier was the most accurate and swiftest classifier for all sites. On the contrary, the
ensemble-boosted trees classifier was the worst one, with the lowest accuracy for the nine
sites. Finally, it was observed that for the classifiers with accuracy in the range of 90%,
the misclassified points were those which are located at the boundary (edge) between
two classes.
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