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Abstract: Fuel cell hybrid electric vehicles (FCEVs) are mainly electrified by the fuel cell (FC) system.
As a supplementary power source, a battery or supercapacitor (SC) is employed (besides the FC)
to enhance the power response due to the slow dynamics of the FC. Indeed, the performance of
the hybrid power system mainly depends on the required power distribution manner among the
sources, which is managed by the energy management strategy (EMS). This paper considers an FCEV
based on the proton exchange membrane FC (PEMFC)/battery/SC. The energy management strategy
is designed to ensure optimum power distribution between the sources considering hydrogen
consumption. Its main objective is to meet the electric motor’s required power with economic
hydrogen consumption and better electrical efficiency. The proposed EMS combines the external
energy maximization strategy (EEMS) and the bald eagle search algorithm (BES). Simulation tests
for the Extra-Urban Driving Cycle (EUDC) and New European Driving Cycle (NEDC) profiles were
performed. The test is supposed to be performed in typical conditions t = 25 ◦C on a flat road
without no wind effect. In addition, this strategy was compared with the state machine control
strategy, classic PI, and equivalent consumption minimization strategy. In terms of optimization, the
proposed approach was compared with the original EEMS, particle swarm optimization (PSO)-based
EEMS, and equilibrium optimizer (EO)-based EEMS. The results confirm the ability of the proposed
strategy to reduce fuel consumption and enhance system efficiency. This strategy provides 26.36% for
NEDC and 11.35% for EUDC fuel-saving and efficiency enhancement by 6.74% for NEDC and 36.19%
for EUDC.

Keywords: hybrid electric vehicles; energy management; energy efficiency; fuel cells; hydrogen

1. Introduction

The demand for fossil fuels has grown during the industrial period. Burning fossil fuels
has resulted in an increase in global carbon dioxide emissions, exacerbating global warming.
According to the US department of energy (DoE), the transportation sector consumes more
than 28% of the total electrical power [1]. As an alternative fuel, hydrogen may be created
by reforming carbon-based fuels (grey and blue hydrogen) or by operating water with
electricity generated from renewable resources (green hydrogen). Electric vehicles are a
promising solution to decarbonize the transport sector [2]. The fuel cell hybrid electric
vehicle (FCEV) is one of the most promising solutions that reduce carbon dioxide emissions.
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FCEV technology combines an energy storage system (ESS) with hydrogen fuel cell(s) (FC)
to supply an electrical motor [3]. FCEV technology provides better energy savings and
fuel economy [4]. FCEV has many benefits, such as high performance with no pollutant
emissions, quiet operation, small size, and no reliance on fossil fuels [5]. To achieve this,
the US Department of Energy (DOE) has established two 2025 fuel cell standards that must
be accomplished simultaneously: a cost target of 40$/kW net and a durability target of
5000 h. Targets for performance and longevity at their highest levels are 30$/kW net and
8000 h [6]. As a result, electric vehicles (EVs) are expected to be heavily incorporated into
future smart grids due to their critical role in creating a safe environment and sustainable
transportation sector [7].

Since the FCEV power system is entirely electrical, the ESS (batteries and/or superca-
pacitors) recover or provide high power peaks during braking or accelerating [8]. Because
of the slow dynamics of the fuel cell and the limited battery charging/discharging cycles,
hybridization with a high specific energy storage system, such as supercapacitors (SCs) that
have fast dynamics, is required to overcome these issues and to enhance the overall per-
formance [9]. The hybridization provides the FC system with better operating conditions,
increasing FC system performance. This hybrid multisource system requires an energy
management strategy (EMS) that controls the power flow to reduce fuel consumption and
enhance system efficiency. In other words, the EMS functions as a power splitter for energy
from both primary and auxiliary sources [10]. However, the primary concern in EMSs is the
efficiency of the chosen strategy or control approach. To this end, different EMSs have been
widely reported in the literature. EMSs can be divided into two classes [11]: rule-based and
optimization-based EMSs.

Rule-based strategies represent strategies that depend on the operating system state.
This class has two subclasses: deterministic rule-based and fuzzy rules-based. The state
machine control strategy (SMC) is one most used deterministic rule-based [12]. However,
fuzzy logic is the most adopted EMS in this category based on fuzzy logic controllers [13].
Although it is easy to design and implement, it is still based on the designer’s knowledge,
which limits its performance [14]. The optimization strategies are based on the objective
function’s minimization or maximization. There are two subclasses: offline (global) and
online optimization strategies (real-time). Developing the EMS as an offline optimization
problem involves solving an optimal control problem over an a priori known mission
(speed profile). There are different approaches:

• Direct methods (disciplined optimal control).
• Indirect methods (Pontryagin’s maximum principle (PMP) [15], calculus of variations [16]).
• Dynamic programming (DP) [17] and stochastic dynamic programming (SDP) [18].

These strategies require knowledge of the total load profiles, which results in enormous
amounts of data to calculate. The decision of the online strategies is based on the evolution
of objective function value, which makes them more robust with high performance. These
strategies typically include equivalent consumption minimization strategy (ECMS) [19]
and external energy maximization strategy (EEMS) [20]. Real-time strategies are necessarily
suboptimal. ECMS is derived from optimal control theory. According to [21], the ECMS is
designed and demonstrated based on the PMP strategy. The equivalent factor plays the
same role as the co-state of the PMP approach. So ECMS with a constant co-state is an
optimal solution to the offline optimization problem [22]. Since the EEMS system aims to
maximize the power that comes from the SC and the battery, the overall system efficiency
will be implicitly improved. In addition, the FC has limited dynamics and supplies only
the steady state load. The SC and the battery are the sources that meet the transitory loads.
Hence, this will enhance the system’s efficiency.

A set of published works are listed in Table 1. This table includes the details of each
reported EMS such as the used EMSs, the advantages, the drawbacks, and its application
either online or offline. Most of the reported works in this table use the online strategy. This
can be explained by the ability of online strategies to adapt to various operating conditions.
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Table 1. Summary of some published works.

Reference EMS Advantages Drawbacks Application

Li and Liu [10] Fuzzy logic Highest efficiency. Dynamic problems are
not included. Online

E. Pukkunnen et al. [23] Hybrid fuzzy
reinforcement learning

Training the FL-based
EMS enables HEV to
operate with reduced
energy loss and
enhanced efficiency.

It requires training data.
It requires
high calculators.

Online

Y. Lui et al. [24] Imitation reinforcement
learning-based algorithm

Reduced data training and
requirement of the
prediction of future
operation states.

Offline optimization
enables optimality.
However, keeping
adaptivity in real-time
applications
is challenging.

Online

B. Tormos et al. [25] Offline dynamic
programming

Reduce fuel consumption
while protecting
the battery.

Offline optimization
cannot guarantee
optimality in cases out of
the expected ones.

Offline

D. Min et al. [26] Neural network with
genetic algorithm

Prolonged lifespan of the
fuel cell. It requires training data. Online

Ouddah et al. [27] Frequency decoupling
PMP

DC bus voltage is
smoother using the
PMP strategy.

Power converter losses
were ignored. Online

Garcia et al. [28]

SMC
Cascade PI control
Fuzzy logic
ECMS
Predictive control

In comparison, ECMS has
the lowest hydrogen
mass usage.

Power generation was
400 kW, although demand
power showed 500 kW.

Online

Zandi et al. [29]
Flatness control strategy
(FLC)
Fuzzy logic

FLC calculates
power-sharing coefficients
for SC and battery.

Neglecting cable
inductance and capacitor
series resistance.

Online

Matopan et al. [30]

SMC
Fuzzy logic
classical PI
frequency decoupling
ECMS

Classical PI provides the
lowest hydrogen
consumption and second
lowest battery stress, and
SMC has the highest
efficiency and lowest
battery stress.

Only hydrogen
consumption and stress
analysis were considered
as comparison points.

Online

Uzunoglu and Alam [31] Wavelet-based algorithm

The results demonstrate
the role of the SC in
providing quick switching
of voltage-positive and
-negative terminals.

It does not include
a battery. Online

Ates et al. [32] Artificial neural network
(ANN)

SC effectively smooths
charging and discharging
power demand
fluctuations.

It does not include
a battery. Online

M. Iqbal et al. [33]
Dual-layer approach for
systematic sizing and
online EMS

The online optimizer
adjusts the power-splitting
rules of distinct layers,
which decreases fuel
consumption and system
health degradation.

Double-layer online
optimization may require
high computing
calculators for
real-world applications.

Online

Several studies confirmed that hybridizing metaheuristic algorithms (MAs) and on-
line EMSs could provide the best performance. These algorithms have gained enormous
popularity in these engineering applications [34]. Hegazy et al. [35] proposed an opti-
mized version of ECMS and EEMS based on the mine blast algorithm (MBA) and the salp
swarm algorithm (SSA). The combination between the SSA and EEMS provides optimal effi-
ciency and fuel consumption performance. A similar comparative study was performed by
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Zhao et al. [36]; in this paper, different meta-heuristic optimization algorithms were used,
including the artificial bee colony (ABC), grey wolf optimization (GWO), electromagnetic
field optimization (EFO), cuckoo search (CS), MBA, moth swarm algorithm (MSA), har-
mony search (HS), modified flower pollination algorithm (MFPA), and whale optimization
algorithm (WOA). The obtained results provide the optimized EEMS with the GWO over
the ECMS and its optimized versions. Genetic fuzzy-based EMS was proposed in [37] to
improve fuel economy. Optimized EMS based on the genetic algorithm was proposed
in [38]. This paper includes a review of different FCEV topologies.

The FC/battery used topology has been used in the literature; its benefits were ap-
proved [39]. However, introducing the SC can enhance the battery lifecycle due to its
fast dynamics. In addition, this paper provides and approves an optimized version
of the EEMS that requires an SC connected to the DC bus. For these reasons, the FC
(FPEMC)/battery/supercapacitor FCEV semi-active topology was chosen. The studied
power system is illustrated in Figure 1. The proposed EMS is optimized by a modern
optimization MA called the bald eagle search (BES) algorithm. The BES algorithm has
provided excellent performance for many online and offline applications compared to
other classical and recent algorithms ([40–42]). This high performance is due to a unique
updating mechanism that uses three phases: select space, search in the space, and swoop-
ing. Each phase contributes effectively to finding the optimal results. In this study, it is
assumed that the battery state of charge (SoC) is known (measurable), as well as the load
demand. The main contribution of this study is to benefit from the high performance of
the BES to reduce hydrogen consumption while improving the electrical efficiency of the
power system. This paper presents the first use of this algorithm in this kind of application.
Its practical applicability can provide the EV with a better driving experience where the
economized fuel can allow longer driving distances, and the enhanced efficiency enables
better energy economy. The proposed EMS is compared in terms of fuel consumption and
system efficiency with the original EEMS and particle swarm optimization (PSO) [43] and
equilibrium optimizer (EO) [44]. To make it clear, the main contribution of this paper is
in providing an optimized version of the conventional EEMS that effectively reduces fuel
consumption while enhancing electrical efficiency.
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The rest of the paper is organized as follows: Section 2 presents the FCEV architecture,
including the used mathematical models; Section Section 3 explains the energy management
strategy, including the EEMS and the BES algorithms; the results and discussion are
provided in Section 4, including the simulation results and analysis; this paper ends with a
conclusion in Section 5.

2. FCEV Architecture

As illustrated in Figure 1, the FCEV is powered by three energy sources: proton
exchange membrane fuel cell (PEMFC) as the primary source, lithium-ion battery, and
supercapacitor energy storage systems (EESs). The fuel cell is connected to the DC bus
through a unidirectional DC/DC boost converter. A bidirectional DC/DC boost is used
to connect the battery. The SC is connected directly to the DC bus. On the other side, the
vehicle motor is supplied utilizing a bidirectional DC/AC inverter that allows the power to
flow in two directions, from the DC bus to the motor in the traction case and the opposite
in the breaking case.

2.1. Vehicle Traction Model

The traction force can be calculated according to the physical forces applied to the
vehicle body as follows [45]

FT = Fm + Fr + Fad + FU (1)

where FT is the traction force, Fr is the rolling resistance force, Fad is the aerodynamic force,
FU is the gradeability or uphill driving force, and Fm is the motor force. Each force can be
calculated as follows

Fad =
1
2

ρv2 ACd (2)

where ρ is the air density; v is the vehicle speed; A is the frontal area; Cd is the
drag coefficient.

Fr = crmvg cos(α) (3)

where mv is the vehicle mass; g is the gravity acceleration; cos(α) represents the influence
of a non-horizontal road; α is the read slop; cr is the rolling friction coefficient depending
on the vehicle speed, tire pressure, road surface conditions, etc.

FU = mvgsin(α) (4)

Fm = Mequia =

(
mv + Jem

ρ2

R2
tire

)
dv(t)

dt
(5)

where a is the acceleration, Jem is the motor inertia, Rtire is the tire radius. An illustration of
these forces is presented in Figure 2.
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From Equation (1), the required power by the traction motor on the DC bus can be
calculated as follows [46]

Pload(t) = PT(t) · η = v(t) · FT(t)ηmot · ηinv · ηtrans (6)

where ηmot and ηtrans are the electrical and mechanical transmission efficiencies, respectively,
ηinv is the inverter efficiency, and v(t) is the DC bus voltage.

2.2. FC hydrogen Consumption Model

FC is an electrochemical device that converts the converter chemical energy of hydro-
gen and oxygen to electrical power. According to [47], hydrogen consumption is related to
the FC output current as follows

CH2 =
∫ t

0

MH2 ncell

2F
iFC(t)dt (7)

where CH2 describes the hydrogen consumption rate (g/s), ncell is the number of cells,
MH2 denotes the hydrogen molar mass (2.02 g/mol), iFC is the FC output current (A), and
F is the Faraday constant (96, 487 C).

2.3. Battery State of Charge Estimation Model

According to the published works in [48], the battery state of charge (SoC) can be
calculated as follows

SoC(t) = SoC0 −
1
Q

∫ t

0
iBatt(t)dt (8)

where SoC0 is the initial SoC (%), Q is the nominal battery capacity (Ah), and iBatt is the
battery current (A).

3. The Proposed Energy Management Strategy

The energy management strategy was developed to minimize fuel consumption,
extend the battery and supercapacitor lifespans, and maximize overall efficiency.

3.1. Problem Formulation

As mentioned above, the EEMS is an RTO strategy that aims to minimize fuel con-
sumption by maximizing the battery and SC energy requests within their operational
limitations [20]. Therefore, the studied problem is an optimization problem where the
objective function to minimize (J) is given in Equation (9), and the decision variables are
v = [PBatt, ∆V]. The objective function can be formulated as

J = −(v1Ts + 1/2CSCv2
2) = −(PBattTs + 1/2CSC∆V2) (9)

PBatt is the battery power, Ts is the sampling time, ∆V is the charge/discharge voltage,
and CSC is the SC-rated capacity. The decision variables are bounded as

Pmin
Batt ≤ v1 ≤ Pmax

Batt
∆Vmin ≤ v2 ≤ ∆Vmax

(10)

where Pmin
Batt and Pmax

Batt are the battery’s min and max output power, Vmin
dc and Vmax

dc are the
min and max DC bus voltage limits.

This objective function is submitted to the following constraint

PBattTs ≤ (SoC− SoCmin)VBattQBatt (11)

SoC is the battery state of charge, SoCmin is the battery’s lower SoC, VBatt, and QBatt
are the battery voltage and capacity, respectively. This equation determines the maximum
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possible power by considering the difference between the actual SoC and its minimum
limit value. The optimization variables have the following constraints.

The power reference for the battery and the FC can be formulated as follows

Pre f
Batt = v1

Pre f
FC = Pload − Pre f

Batt

(12)

In fact, the DC bus voltage is regulated using the battery system. The PI regulator
generates the battery power reference and ensures a stable DC bus voltage [30]. The
operating scheme is illustrated in Figure 3.
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3.2. Bald Eagle Search Algorithm

The bald eagle search (BES) algorithm is a recent metaheuristic optimization algorithm
(MA) that was inspired by the searching and hunting strategy of the bald eagle [49]. The
fundamental idea of BES is to simulate the movement and hunting process of a bald eagle
hunting process. Mainly, there are three phases: select space, search, and swooping.

1. Select space: the eagle starts from random positions and searches to detect prey space
based on the following equation

Pnew = Pbest + α.r.(Pm − P) (13)

where Pnew is the newly generated positions, Pbest is the prey location (best position), α
is a controlling factor [1.5,2], and r is a random number in [0,1], Pm is the mean of the
current positions. According to the fitness of the new positions, Pbest will be updated.

2. Searching in the space: In this phase, the eagle explores the search space as follows

Pnew(i) = P(i) + y(i).(P(i)− P(i + 1)) + x(i).(P(i)− Pm) (14)

where Pnew(i) is the i-th newly generated positions, x and y are their directional
coordinates that can be defined as{

rx(i) = r(i). sin(θ(i))
ry(i) = r(i). cos(θ(i)) x(i) = rx(i)

max(|rx |)

y(i) = ry(i)
max(|ry|)

θ(i) = a.π.rand; r(i) = θ(i).R.rand

(15)
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where r is the radius and rx and ry are its comports, x and y can be obtained by
normalizing rx and ry, a is a controlling factor utilized to determine the corner between
point search in the central point, it takes value in [5, 10], R is a parametric gain in
[0.5, 2] utilized to determine the number of search cycles. Pbest value will be updated
according to the obtained fitness of Pnew.

3. Swooping: the eagle suddenly attacks the prey from the best-obtained position ac-
cording to the following equation

Pnew(i) = rand.Pbest + x1(i).(P(i)− c1.Pmean) + y1(i).(P(i)− c2.Pbest) (16)

where c1 and c2 are random factors [1, 2], Pmean is the mean of the current positions,
x1 and y1 are the directional coordinates of each position. They can be expressed as

x1(i) = xr(i)
max(|xr|) ; xr(i) = r(i).sinh(θ(i))

y1(i) = yr(i)
max(|yr|) ; yr(i) = r(i). cosh(θ(i))

θ(i) = a.π.rand; r(i) = θ(i)

(17)

The BES will be used to optimize the EEMS objective function. The main objective is to
minimize fuel consumption and enhance the overall efficiency compared with the original
EEMS. The BES flowchart is illustrated in Figure 4.
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Figure 4. BES flowchart.

The bald eagle search algorithm, similar to the other metaheuristic optimization
algorithms, can be employed in online applications. At each iteration, the BES sends the
candidate solutions to the system, and then the system reaction will send back to it through
a zero-order hold block (ZOH). Based on the received feedback, the optimizer updates
the positions and sends them again to the system to evaluate their effect on the system’s
performance and determine the best one among them. This online optimization manner is
similar to the one reported in [35].
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4. Results and Discussion

To assess and validate the performance of each strategy, a simulation model was
built in Matlab/Simulink environment. The elements, including the converters and the
sources, are modeled using SimPowerSystem blocks. The performance of the studied EMS
is evaluated for the Extra-Urban Driving Cycle (EUDC) and New European Driving Cycle
(NEDC) speed profiles [45]. Table 2 presents the characteristics of each driving cycle. The
speed and motor power profiles for both NEDC and EUDC are shown in Figures 5 and 6,
respectively. The proposed EMS was tested in a similar system used in [30]. The simulation
is performed under several assumptions including the typical conditions t = 25 ◦C on a flat
road without including the wind effect. In addition, the machine side is not included in the
traction system to simplify the global model and accelerate the simulation.

Table 2. Driving cycle characteristics.

EUDC NEDC Unit

Time 400 1184 sec

Distance 6.95 10.93 km

Max speed 120 120 km/h

Average speed 62.59 33.21 km/h

Max acceleration 0.833 1.06 m/s2

Min acceleration −1.39 m/s2

Average acceleration 0.354 0.54 m/s2

Average deceleration −0.79 m/s2

Idle time 39 298 sec

Number of stops 1 13
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Average models have been used to represent the converters. Thus, efficacy is supposed
to be constant. On the other hand, the vehicle parameters are presented in Table 3.

Table 3. Vehicle parameters.

Element Value Unit

PEMFC
30–60 V

12.5 kW

Li-ion Battery
48 V

40 Ah

Supercapacitor

Six series-connected caps

15.6 F

291.6 V

FC boost converter
12.5 kW

η = 85 %

Battery boost converter (for discharging)
4 kW

η = 88 %

Battery buck converter (for charging)
1.2 kW

η = 88 %

Motor inverter

15 kVA

200 V AC

400 Hz

η = 97 %

Vehicle

Weight (mv) 579 kg

Frontal surface area (A) 2.48 m2

Density of air (ρ) 1.26 kg/m3

Drag coefficient (Cd) 0.7

Rolling resistance coefficient (cr) 0.015

Mechanical transmission efficiency (ηtrans) 0.92

the gravitational acceleration (g) 9.81 m/s2

Inclining angle (α) 0◦
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The proposed EMS is compared with the state machine control strategy (SMCS),
equivalent consumption minimization strategy (ECMS), and classic PI control strategy.
The PI regulator generates the battery power reference, which is then subtracted from the
load power to obtain the fuel cell reference power. The PI gains the same with [30]. These
parameters are included in More Electric Aircraft in the Matlab/Simulink library.

Furthermore, the proposed EEMS-based BES will be compared with EEMS minimized
by the fmin function, PSO-based EEMS, and EO-based EEMS to validate its performance.
The population size for each algorithm is set at five, and the max number of iterations
is 100.

Figure 5 presents the velocity and the corresponding traction load power for the NEDC
case. As illustrated in this figure, the speed significantly increases after the 800th second
to the end of the profile. The power changes according to the velocity changes. Figure 6
presents the evolution of the speed and power for the EUDC driving cycle. The variation
of the speed, in this case, is reduced compared to the case of the NEDC.

4.1. NEDC Case

The power sources, including the load, are displayed in Figure 7, employing the EEMS.
The fuel flow rate and consumption for SMCS, PI, ECMS, and EEMS are represented in
Figure 8. The SC power, which expresses the bus power, decreases if the load power
decreases to absorb the excess power generated by the slow dynamic system (mainly the
FC). In the load-increasing case, the SC provides the required power for a limited transition
time until the battery and the FC reach their power references.
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Figure 7. Load, FC, battery, and SC power using EEMS for NEDC.

As illustrated in Figure 7, the FC supplies most of the load slowly due to its limited
dynamics, which are related to its chemical reactions. The battery balances the power in the
DC bus. It absorbs the excess power and supports FC in case of a deficit. The SC provides
DC bus voltage smoothing by supplying the transit periods. Its mean power is zero in the
steady state case.
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Figure 8. Fuel flow rate and fuel consumption for SMCS, PI, ECMS, and EEMS for NEDC.

Compared with the other strategies, the EEMS can successfully reduce fuel consump-
tion, as illustrated in Figure 8. The fuel consumption evolution is slower compared to the
other strategies. This advantage can be explained by its objective function, which maxi-
mizes the energy from the auxiliary sources, such as the battery, to contribute to minimizing
fuel consumption.

Focusing on the EEMS, the EEMS-based fmin, PSO, EO, and BES results are illustrated
in Figure 9. The top figure illustrates the fuel flow rate (FFR), and the bottom one shows the
cumulative fuel consumption. The FFR achieves its max level during peak times because of
the high demand for power from the traction system. As mentioned before, the FC supplied
most of this load. Therefore the consumed fuel curve rises quickly during these times.
EEMS-based PSO and EO do not perform better than the conventional EEMS, whereas
the EEMS-based BES effectively reduces the FFR and the cumulative fuel consumption
as illustrated at the end of these curves (from t = 850 to t = tend). Simulation statistics are
presented in Table 4 to analyze the achieved results better. This table includes the consumed
fuel, the electrical efficiency, and the battery’s final state of charge. The best results are
marked in bold. The electrical efficiency expresses the losses efficiency in the power system.
It can be calculated as a ratio between the traction system power and the total provided
power as follows

ηtotal =
Pmot

PFC + PBatt + PSC
100 (18)

The proposed EMS (EEMS-BES) successfully reduced the fuel consumption to 48.41 g
compared to the conventional EEMS (65.71 g) and the other considered strategies. At the
same time, it provided a higher electrical efficiency performance of 79.84%. The SMC strategy
provides the second-best result concerning fuel consumption with 64.05 g, whereas the
conventional EEMS provides the second-best efficiency with 74.80%. This confirmed its ability
to reduce consumed hydrogen and enhance efficiency.
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Table 4. Simulation results.

Strategy Fuel Consumption (g) Electrical Efficiency (%) Final SoC (%)

SMCS 64.05 64.90 59.01

PI 66.74 49.01 52.30

ECMS 76.38 39.80 66.38

EEMS 65.71 74.80 52.39

EEMS-PSO 66.69 55.79 62.08

EEMS-EO 66.68 56.80 62.07

EEMS-BES 48.41 79.84 47.11

4.2. EUDC Case

The power sources, including the load, are displayed in Figure 10, employing the
EEMS. The fuel flow rate and consumption for SMCS, PI, ECMS, and EEMS are represented
in Figure 11. EEMS-based fmin, PSO, EO, and BES are illustrated in Figure 12.

The load fluctuations are lower compared with the NEDC case. FC, battery, and SC
dynamics are more explicit in this figure, where the FC supplies the most load, the battery
balances the power in the DC bus, and the SC provides the transit periods. The simulation
results are presented in Figures 11 and 12, and their corresponding statistics are presented
in Table 5. At the first 20 s, the load is minimal, the FC operates at its lower rate, and
the battery starts charging. After 30 s, the constant switching between the battery and
the supercapacitor is related to the optimizer output signals. The optimizer starts from
random positions and sends them to the power system as candidate solutions. The opti-
mizer converges to the optimal solutions based on the recorded feedback from the system.
At t = 280 s, the load is down. However, the required power by the bus, expressed by the
SC power, is still high due to the SC discharging. At this moment, the FC charges the SC. At
t = 303 s, the load suddenly rises, which will be supplied quickly by the SC and the battery.
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This large amount provided by the SC and the battery reduces the demand on the FC for a
short time. At t = 365 s, the load power becomes negative due to the breaking power. This
extra power will charge the battery.
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Table 5. Simulation results.

Strategy Fuel Consumption (g) Electrical Efficiency (%) Final SoC (%)

SMCS 43.71 47.82 56.39

PI 42 42.84 54.64

ECMS 47.11 42.93 58.27

EEMS 41.05 44.93 54.84

EEMS-PSO 43.63 47.87 56.73

EEMS-EO 43.59 47.96 56.70

EEMS-BES 36.39 70.41 51.49

Figures 11 and 12 show the variations in the fuel flow rate (FFR) and the evolution
of the consumed hydrogen as a function of time. Similar to the results obtained in the
NEDC case, the proposed EEMMS minimized fuel consumption compared to the other
common strategies. The EEMS-BES also provides better results compared with the other
EEMS versions. In Table 5, the best results are marked in bold. The proposed method
results are the best in terms of fuel consumption and electrical efficiency.

The proposed EMS (EEMS-BES) proves its best performance compared to the other
strategies regarding fuel consumption and electrical efficiency. The total consumed fuel was
reduced to 36.39 g during the driving cycle, and efficiency equals 70.41%. The conventional
EEMS follows it in terms of fuel consumption (41.05 g), and the EEMS-EO provides the
second-best results regarding electrical efficiency. This second test approves the ability
and robustness of the proposed strategy to meet predefined objectives, fuel reduction, and
efficiency enhancement.

To ultimately approve the performance of the proposed EMS, Table 6 provides com-
parison results between the proposed EEMS-BES and the other common strategies. For
the fuel-saving column, each value represents the fuel-saving ratio compared to each strat-
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egy (PI, SMC, ECMS, and conventional EEMS). In contrast, the efficiency enhancement
represents the gain ratio compared to each strategy.

Table 6. Statistical results of the optimized EEMS-BES compared to other strategies.

Compared to

NEDC EUDC

Fuel Saving (%) Efficiency
Enhancement (%) Fuel Saving (%) Efficiency

Enhancement (%)

PI 27.64 38.61 16.75 39.16

SMCS 24.42 18.71 13.36 32.08

ECMS 36.62 50.10 22.76 39.03

EEMS 26.33 6.74 11.35 36.19

Compared to the method reported in [30], the proposed EMS successfully reduced the
consumed fuel and enhanced the electrical efficiency. The performance of the proposed
EMS has been approved from these results in both fuel saving compared to the classical
EEMS (26.33% for the NEDC case and 11.35% for EUDC) and efficiency enhancement
(6.74% for the NEDC case, 36.19% for EUDC).

5. Conclusions and Future Works

This paper presents an optimal energy management strategy (EMS) for fuel cell hy-
brid electrical vehicles (FCEVs) that was designed to ensure optimum power distribution
between the sources, considering fuel consumption minimization and enhancing electrical
efficiency. The proposed EMS is an optimized version of the external energy maximization
strategy (EEMS) employing the bald eagle search (BES) algorithm. To approve the perfor-
mance of the proposed EMS, a comparative simulation was performed for Extra-Urban
Driving Cycle (EUDC) and the New European Driving Cycle (NEDC) profiles. Further-
more, this strategy was compared with the state machine control strategy (SMCS), classic
PI, equivalent consumption minimization strategy (ECMS) EEMS based on fmin function,
particle swarm optimization (PSO)-based EEMS, and equilibrium optimizer (EO)-based
EEMS. Finally, fuel consumption and electrical system efficiency were compared. The
obtained results approve the ability of the proposed strategy to reduce fuel consumption by
26.33% for NEDC and 11.35% for EUDC and enhance system efficiency by 6.74% for NEDC
and 36.19% for EUDC. The increased complexity of the BES may require a fast-resolving
calculator, which may increase the installation cost of this strategy in real-world applica-
tions. However, the cost of these calculators may decrease with technological advancement.
Moreover, the results provided by the PSO and the PO are worse than the conventional
EEMS. This can be explained by the no-free lunch theory (NFL), where no optimization
algorithm can provide good performance for all optimization problems.

This study intends to reduce fuel consumption and increase the power system’s global
efficiency. Considering the battery SoC is a challenging task, this will be investigated
as a multi-optimization problem in our future works. In addition, analyzing the power
losses can be a critical factor in optimizing performance. This will be investigated in our
future works.
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Nomenclature

FCEV fuel cell hybrid electric vehicle
FC fuel cell
PEMFC proton exchange membrane FC
CH2 consumed hydrogen
FFR fuel flow rate
SC supercapacitor
EES energy storage system
SoC state of charge
EMS energy management strategy
EEMS external energy maximization strategy
ECMS equivalent consumption minimization strategy
SMCS state machine control strategy
BES bald eagle search algorithm
PSO particle swarm optimization
EO equilibrium optimizer
EUDC Extra-Urban Driving Cycle
NEDC New European Driving Cycle
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