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Abstract: The corrosion inhibition performance of a quaternary phosphonium-based ionic liquid, i.e.,
hexadecyltriphenylphosphonium bromide (HPP), on mild steel in 1 M HCl solution was investigated
by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) methods.
The surface characterization of mild steel was examined by scanning electron microscopy with energy-
dispersive X-ray spectroscopy (SEM-EDS). The results revealed that the inhibition efficiency increases
with its increasing concentration, and it can reach up to 99.1% at the concentration of 0.07 mM HPP.
PDP data showed that the absorption of HPP conformed to Langmuir adsorption, which served as
a mixed-type inhibitor, involving chemisorption and physisorption. SEM analysis confirmed the
formation of barrier film on the metal surface, inhibiting the acid attack. Moreover, density functional
theory (DFT) calculations and molecular dynamics (MD) simulations were conducted to elucidate
the adsorption mechanism of inhibitor molecules on the mild steel surface. A match between the
experimental and theoretical findings was evidenced.

Keywords: mild steel; corrosion inhibition; hexadecyltriphenylphosphonium bromide; molecular
simulation; electrochemistry

1. Introduction

Mild steel is widely applied in the construction, food processing, gas storage tanks, vehi-
cles, bridge fields on account of its excellent mechanical strength, ductility, easy production,
and low cost [1,2]. However, the structure and functionality of mild steel will be altered by
corrosion. In extreme circumstances, they will cause the material’s surface to crack. This kind
of cracking can occasionally result in significant financial losses and casualties [3]. Therefore, it
is urgent to prevent mild steel from corrosion. In recent years, various anti-corrosion strategies
emerged, mainly including adding corrosion inhibitors, coating isolation, alloying, metal
surface modification [4,5]. Compared with other strategies, the application and addition of
inhibitor has become the simplest and economical approach [6–8]. Inhibitors are chemicals
that adhere to the surface of metal to produce a barrier that prevents corrosion on mate-
rials [9–11]. Without affecting the original performance of metal materials, adding a little
amount of corrosion inhibitor can dramatically lower the rate of corrosion of materials in the
environmental medium.

Sustainability 2023, 15, 3103. https://doi.org/10.3390/su15043103 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15043103
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-7849-9583
https://orcid.org/0000-0002-5427-5216
https://doi.org/10.3390/su15043103
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15043103?type=check_update&version=2


Sustainability 2023, 15, 3103 2 of 13

Seeking a corrosion inhibitor that can be widely used in industry is urgent, especially
in high-risk fields such as the metal pickling and acidization treatment. Recently, ionic liq-
uids, particularly the four varieties depicted in Figure 1, have become increasingly popular
due to their distinctive properties, which include low toxicity, high polarity, low cost, non-
flammability, low vapor pressure, excellent solubility, and thermal stability [12–14]. The
researchers discovered that many kinds of ionic liquids can effectively suppress metal corro-
sion. For example, Ech-chihbi and co-workers investigated the anti-corrosion properties of
three imidazolium-based ionic liquids on mild steel in 1 M HCl solution [15]. According to
the research, these synthesized ionic liquids exhibited excellent corrosion inhibiting property
>90%. According to Liu et al., three imidazole ionic liquids can reduce the corrosion rate
of N80 steel at high temperatures and high acid concentrations [16]. They verified that the
longer the alkyl chain of the three investigated corrosion inhibitors, the more effective they
were at inhibiting corrosion. Furthermore, Zheng and colleagues reported a new benzimi-
dazole derivative, i.e., 1-butyl-3-methyl-1H-benzimidazolium iodide (BMBIMI), as inhibitor
for mild steel in 0.5 M H2SO4 solution, and they confirmed that their own iodide ion and
BMBIMI cations have a synergistic inhibitory effect, which enhances the overall corrosion
inhibition performance [17]. On this basis, we introduced a newly generated terminology, viz.,
homologous self-synergistic inhibition effect, for ionic liquid-based corrosion inhibitors.
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Regrettably, neither the inhibition mechanism nor the conformational relationship
between inhibition efficacy and molecular structure are fully understood, which still needs
further experimental confirmation. Therefore, as a phosphorus-based ionic liquid, hexade-
cyltriphenylphosphonium bromide (HPP) was selected as a potential corrosion inhibitor
for mild steel in HCl solution in this study. Electrochemical experiments were adopted to
assess its inhibition performance. The present work offers a workable strategy for devel-
oping novel sustainable corrosion inhibitors and aids in understanding the anticorrosive
mechanism of related ionic liquid-based inhibitors.

2. Experimental
2.1. Materials and Reagents

Mild steel sheets (purchased from Shanghai Ronghan Industrial Co., Shanghai, China)
were used and the chemical composition is as follows: 0.04% S, 0.04% P, 0.13% Mn, 0.18%
Si, 0.17% C, and Fe for balance. HPP (purity, 98%) was supplied by Shanghai Aladdin In-
dustrial Corporation (Shanghai, China). HCl (purity, 37%) was purchased from Sinopharm
Chemical Reagent. Concentrated HCl and ultrapure water were used to prepare corrosive
medium (1 M HCl). HPP with concentrations of 0.01, 0.03, 0.05, 0.07, and 0.09 mM were
selected. All chemicals and solvents were used as received without any further purification.
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2.2. Electrochemical Measurements

Electrochemical experiments were implemented using a typical three-electrode system
by CHI660E electrochemical workstation with its own software, which was purchased from
Shanghai Chenhua Instrument Co., Ltd. It consists of a platinum sheet, a saturated calomel
electrode (SCE), and mild steel, which were employed as the counter, reference, and work-
ing electrodes, respectively. A block of mild steel was made that was 1 cm × 1 cm × 1 cm,
then sealed with epoxy resin (exposed area of 1 cm2), which as the working electrode. Be-
fore each experiment, the steel sample was polished and with polishing paper of different
roughness (120 #, 240 #, 400 #, 600 #, 800 #, 1000 #), cleaned in the distilled water, then
degreased with ethanol and dried at room temperature. Firstly, the working electrode’s
open circuit potential (EOC) was tested. Then, testing of the electrochemical impedance
curve continued with a consistent open circuit value using the same working electrode.
The impedance test applied a frequency range of 100~0.1 Hz with 10 mV amplitude and
used ZsimpWin software to analyze the obtained impedance data. Finally, potentiody-
namic polarization measurement was conducted scanning within −250 mV to 250 mV
potential range at 0.02 mV/s versus EOC. In order to reduce experimental error, all tests
were conducted three times.

2.3. Surface Analysis

The surface morphology and elemental composition of mild steel immersed in inhib-
ited and uninhibited HCl solution for 6 h at 298 K was tested via SEM-EDS (JEOL-JSM-
7800F) operated at 20 kV accelerating voltage. SEM examined the morphological changes,
EDS, and elemental mappings analysis furnished the composition of the steel surface after
dipping into test solutions with and without HPP. To guarantee the accuracy and reliability,
all samples were washed with absolute ethanol and ultrapure water, and then dried in a
vacuum oven.

2.4. UV-Visible Analysis of the Solution

The UV-vis curves of mild steel after soaking in blank solution and in solution with
optimal concentration of HPP inhibitor for 6 h were studied. After that, the resultant
solution was examined using a TU-1901 spectrophotometer with a quartz tube. Specifically,
this technique was intended to determine whether the inhibitor and Fe forms a complex.

2.5. Computational Methodology
2.5.1. DFT Calculations

To investigate the electronic structures of HPP inhibitor, quantum chemistry calculations
were adopted by DFT with the GGA-BLYP exchange correlation function using the Dmol3

module of Material Studio (MS) software (BIOVIA Company, San Diego, CA, USA) [18]. In
addition, it is emphasized that a double numeric quality and polarization (DNP) basis set was
used with the COSMO implicit solvent model (dielectric constant of water: 78.54), where the
reliability of this level of theory in studying organics has been confirmed [19,20]. Vibration
analysis was conducted in the test to make the structure reach the minimum point of potential
energy surface after optimization. The convergence thresholds for energy, displacement, and
force were 1 × 10−5 Ha, 5 × 10−3 Å, 2 × 10−3 Ha/Å, respectively.

2.5.2. Molecular Dynamics Simulation

The Forcite module of the MS software was used to explore the adsorption mechanism
of HPP on the surface of mild steel [21]. Fe(110) crystal slab was selected as a represen-
tative of the steel surface because of its proven most favorable configuration based on
the combined factors such as facet area, surface energy, and coordination numbers [22].
The geometry of the cleaved surface was optimized using COMPASSII (condensed phase
optimized molecular potentials for atomistic simulation studies II) force field and subse-
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quently enlarged to a 10 × 10 supercell. The nonbond interaction energy of COMPASSII is
calculated by the following formula, which is an ab initio force field [23]:

Enonbond = ∑
i,j

εij

2

(
r0

ij

rij

)9

− 3

(
r0

ij

rij

)6
+ ∑

i,j

qiqj

rij
(1)

where εij is the energy parameter between atoms i and j, r0
ij means the dimension parameter,

rij represents the distance between particles i and j, and qi and qj are the charges of i and j
atoms, respectively. The Andersen thermostat was used to control the system temperature
of 298 K, and a simulation box with periodic boundary conditions with dimensions of
24.8 × 24.8 × 39.1 Å3 was employed. The step size was set to 1 fs, and the total simulation
time was 1000 ps.

3. Results and Discussion
3.1. Open Circuit Potential and PDP Analysis

The variation in the EOC values of the mild steel electrode with immersion time is
analyzed. As depicted in Figure 2a, in comparison to the EOC of the sample submerged in
the corrosion solution without HPP, Figure 2a shows a consistent declining trend when HPP
inhibitor is introduced to the corrosion solution. This event demonstrates that the formation
of a stable protective film on the metal surface following the addition of HPP inhibitor.
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Figure 2. (a) Open circuit potential and (b) polarization curves of mild steel in 1 M HCl solution with
and without HPP inhibitor.

The PDP curve is one of the most frequently used techniques to explore the corrosion
kinetics. The potentiodynamic polarization curves of mild steel electrode in 1 M HCl
solution containing different concentrations of HPP inhibitor were shown in Figure 2b.
As can be observed, the addition of HPP has no discernible impact on the cathode and
anode branch shapes of the polarization curve, indicating that the investigated inhibitor
does not alter the reaction mechanism of mild steel in 1 M HCl solution [24]. It is generally
recognized that the inhibitor molecules mainly inhibit the corrosion process by preventing
mild steel from coming into direct contact with the corrosive liquid. Compared with the
blank solution, the Tafel curves after adding HPP inhibitor moved to the direction of low
current density. The polarization parameters including corrosion current density (icorr),
cathode Tafel slope (βc), anode Tafel slope (βa), and corrosion potential (Ecorr) were collected
via the Tafel extrapolation method [25]. The inhibition efficiency (ηPDP) is measured by the
following equation [26]:
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ηPDP% =
icorr,0 − icorr

icorr,0
× 100 (2)

where icorr,0 and icorr stand for the corrosion current densities without and with the HPP
inhibitor, respectively.

As obtained in Table 1, the corrosion potential of the blank condition was −0.426 V,
which gradually changed to −0.489 V with the addition of HPP, and the potential change
was significantly less than 85 mV. The slopes of anodic and cathodic Tafel lines (βa and βc)
were lightly varied with the increasing of HPP concentration. This indicates that HPP is a
mixed-type inhibitor, suppressing both anodic dissolution of iron and cathodic evaluation
of hydrogen gas [27,28]. As can be seen, the inhibition rate at 0.09 mM was lower than
0.07 mM, indicating that 0.07 mM was the optimal inhibition concentration of HPP. The
molecular concentration will achieve saturation at concentrations greater than 0.07 mM,
generating competitive adsorption that will accelerate the corrosion of mild steel. We can
see that when HPP concentration was 0.07 mM, the corrosion current density decreased to
15.79 µA/cm2, and the ηPDP value was up to 97.6%.

Table 1. Tafel polarization results of mild steel in 1 M HCl solution with different HPP concentrations.

C (mM) Ecorr (V/SCE) icorr (µA/cm2) βc (mV/dec−1) βa (mV/dec−1) ηPDP (%)

Blank −0.426 669.2 −115 82 /
0.01 −0.427 77.39 −105 104 88.4
0.03 −0.464 38.63 −136 134 94.2
0.05 −0.472 21.41 −161 165 96.8
0.07 −0.489 15.79 −176 155 97.6
0.09 −0.477 26.37 −129 177 96.1

3.2. EIS Measurement

The impedance technique has been validated as an effective way for evaluating the
performance of inhibitors. Herein, in order to investigate the corrosion of mild steel in
1 M HCl in the absence and presence of varying amounts of HPP, EIS measurements were
conducted. The Nyquist and Bode plots were obtained and are presented in Figure 3.
As depicted in Figure 3a, all the Nyquist curves exhibited similar shape behavior in the
inhibited and uninhibited system. Nyquist plots all maintained a consistent shape for all
concentrations and show as a single oblate capacitive loop, indicating that the corrosion
inhibiting effect in 1 M HCl is controlled by the charge transfer mechanism [29]. The unique
depressed capacitive loop results from the influence of frequency dispersive impacts, which
can be caused by the electrode surface’s roughness and inhomogeneity [30,31]. Bode
diagrams in Figure 3b,c show a one-time constant in all HPP concentrations, indicating that
charge transfer is the only relaxation process. Based on the Bode diagram for phase angle
vs. logf the phase angle curves were significantly widened and significantly increased with
increasing inhibitor concentration at 0.01−0.07 mM.
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Figure 3. (a) Nyquist, (b) Bode modulus, and (c) Bode phase curves for mild steel in 1 M HCl solution
without and with different concentrations of HPP inhibitor.
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EIS data was further analyzed by fitting the equivalent circuit model shown in Figure 4.
In the equivalent circuit diagram, Rs, Rf, Rct, CPEf, and CPEdl represent solution resistance,
corrosion product resistance, charge transfer resistance, constant phase angle element, and
constant phase angle element of double-layer capacitance, respectively. The impedance
function of CPE is described by the following equation [32,33]:

ZCPE = Y−1
0 (jω)−n (3)

where Y0 denotes the proportional factor, ω means the angular frequency, j stands for
the imaginary unit, n represents a measure of non-uniform current distribution due to
surface heterogeneity and its value lies between 0 and 1. When n = 0, CPE behaves as
resistor; an ideal capacitor when n = 1 [34]. The inhibition efficiency (ηEIS) and double-layer
capacitance (Cdl) were obtained from the following formula [35,36]:

ηEIS% =
Rct − R0

ct

R0
ct

× 100 (4)

Cdl = Y0

(
R1−n

p

) 1
n (5)

where R0
ct and Rct are the charge transfer resistance without HPP inhibitor and with HPP

inhibitor, respectively. f max refers to the maximum frequency at which the imaginary part
of the impedance has a maximum value. The fitting degree between experimental data and
the simulated results obtained by the proposed equivalent circuit was evaluated by the
chi-square (χ2) parameter, which is defined as [37]:

χ2 =
n

∑
i=1


(

Z′i
(

ωi,
⇀
p
)
− ai

)2

a2
i + b2

i
+

(
Z′′i
(

ωi,
⇀
p
)
− bi

)2

a2
i + b2

i

 (6)

wherein, ωi, ai, bi are experimental data points,
⇀
p is a factor connected with the proposed

model, Z′i and Z′′i are expected data points. The results incorporated in Table 2 show that the
values χ2 are of the order of 10−3, indicating the accuracy of the equivalent circuit model.
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Table 2. Corrosion data of mild steel in HCl solution with and without HPP inhibitor.

C (mM) Rs
(Ω cm2)

CPEf Cf
(µF cm−2)

Rf
(Ω cm2)

CPEdl Cdl
(µF cm−2)

Rct
(Ω cm2)

χ2

(10−3)
θ ηEIS (%)

Y0 (10−5 S S
n cm−2) n1 Y0 (10−5 S S

n cm−2) n2

Blank 1.003 5.177 1.000 51.7 3.92 415.60 0.686 1241.0 17.1 8.22 / /
0.01 0.832 4.336 1.000 43.3 13.90 24.74 0.644 45.0 185.2 2.17 0.907 90.7
0.03 1.171 42.20 1.000 422.0 12.07 6.39 0.689 14.8 612.6 2.88 0.972 97.2
0.05 1.106 64.20 0.999 639.2 19.50 4.82 0.664 12.4 1412.0 5.43 0.988 98.8
0.07 0.877 50.59 1.000 505.9 25.56 5.44 0.633 15.0 1986.0 8.10 0.991 99.1
0.09 0.919 78.92 1.000 789.2 17.24 8.19 0.582 16.6 1351.0 9.61 0.987 98.7

As shown in Table 2, the Rct is 17.1 Ω cm2 for the blank condition. However, after
the addition of HPP inhibitor, the values of Rct increased gradually. When the inhibitor
concentration reached 0.07 mM, the value of Rct was changed to 1986.0 Ω cm2, and the
corresponding inhibition efficiency was as high as 99.1%. However, we also recognize
that the value of Cdl decreased compared with blank solution. This phenomenon can be
explained by the Helmholtz model [38,39]:

Cdl =
ε× ε0

d
S (7)

where ε and ε0 are the local dielectric constant and the permittivity of vacuum, respectively;
S refers to the surface area of working electrode; and d represents the thickness of the
protective layer. The inhibitive adsorption was occurred at the steel/solution interface,
which hindered the direct contact between metal and corrosive solution, thus reducing the
exposed surface area of electrode and/or increasing the thickness of double electrode layer,
and finally reducing the value of Cdl [40].

3.3. Adsorption Isotherm

The crucial adsorption information of HPP inhibitor on mild steel surface was dis-
cussed by adsorption isotherms. The isotherm was determined using the correlation
coefficient (R2) that best matches the acquired investigation data. Different adsorption
models, including the Freundlish, Tempkin, and Langmuir isotherms were assessed, and
the best fit was found to be the Langmuir isotherm [41]:

C
θ
=

1
Kads

+ C (8)

where C represents the concentration of HPP, Kads delegates the equilibrium adsorption
constant, θ means the degree of surface coverage, and the θ values were obtained from
Table 2.

As shown in Figure 5, a straight line of C versus C/θ is found with the R2 value close
to 1, indicating that the fitting result is reliable. Moreover, the Gibbs free energy (∆G0

ads)
can be described by the following equation [42]:

∆G0
ads = −RT ln(55.5Kads) (9)

where 55.5 is the concentration of water molecules in the solution, T is the temperature, and
R stands for the universal gas constant. The calculated value of ∆G0

ads is −25.692 kJ/mol,
which is between −40 and −20 kJ/mol, indicating that the adsorption of inhibitors at the
steel/solution interface is a spontaneous process, which belongs to the mixed chemisorption
and physisorption process [43].
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3.4. SEM-EDS Analysis

We observed the surface morphology of mild steel by SEM after immersing it in the
test solution for 6 h. As given in Figure 6a, the polished steel surface was smooth and clean.
The surface of mild steel in blank condition was very rough and severely corroded, forming
corrosion products such as chloride and oxide, which accumulate on the metal substrate
(Figure 6b). As a result of adding HPP inhibitor to the corrosive solution, the surface
of mild steel was smoother than it had been before (Figure 6c). This phenomenon was
further verified by EDS mapping and point analysis (Figure 6d–i). Br and P elements were
observed in the inhibited solution, while the composition of O element was significantly
lower than in those without corrosion inhibitor. According to this observation, we can
confirm the HPP molecules have been adsorbed onto the surface of the steel.
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3.5. UV-Visible Spectroscopy Study

As shown in Figure 7a, the peaks of 204 nm and 250 nm were observed when the mild
steel was soaked in blank HCl solution for 6 h, which might be caused by the reaction of
Fe with HCl while producing anionic chloride [44]. Additionally, the inhibitor-containing
absorption band exhibits the peaks of 231 nm and 274 nm, demonstrating the π-π* electron
transition with charge transfer characteristics has taken place (Figure 7b). The change
of absorption band positions indicated that HPP and Fe2+ may form a complex in acidic
solution [45].
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3.6. Computational Perspectives

To evaluate the relationship between HPP molecular structure and inhibitory perfor-
mance, a quantum chemical computation was performed. Figure 8 depicts the optimized
molecular structure of HPP, its highest occupied molecular orbital (HOMO), and lowest
unoccupied molecular orbital (LUMO) densities, as well as the molecular electrostatic
potential (ESP) map. A closer look at the distributions shows that most of the HOMOs and
LUMOs are located around the triphenyl group. HOMO and LUMO densities relate to
portions of a molecule that might possibly contribute to electron-donating and electron-
accepting abilities, respectively [46]. The triphenyl moiety is richer in electrons thanks to
its phenyl rings. When these rings interact with steel surfaces, their reactive sites act as
adsorption centers.
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Figure 8. Optimized molecular structure, HOMO, LUMO, and molecular electrostatic potential of
HPP inhibitor.

In recent years, MD simulations have become a standard tool alongside experiments
to understand the anti-corrosion mechanism at an atomic scale, which can bring valu-
able information to interpret experimental data. Therefore, it is sometimes referred to as
“computational microscopy” because of the ability to see like through a microscope the
interactions between molecules and metal substrate. Herein, we performed MD simulations
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with varying numbers of HPP molecules on Fe(110) substrate in aqueous environment. As
can be seen from Figure 9, the polar triphenyl groups and bromide ions are tightly attached
to the metal surface, while the hydrophobic alkyl chains are tipsily placed in aqueous
solutions. Adsorption energy (Eads) was determined using the following equation in order
to measure the strength of the inhibitor adsorbed onto the metal surface [47]:

Eads = Etotal − (Esurf+solu + Einh+solu) + Esolu (10)

wherein, Etotal means the total potential energy of the system, which include metal crystal,
the adsorbed inhibitor molecule as well as medium solution; Esurf+solu represents the total
energy of metal surface and solution without the inhibitor; Einh+solu stands for the total
energy of the inhibitor and solution; and Esolu represents the potential energy of the solvent
molecules. It is commonly accepted that a larger adsorption strength between an inhibitor
molecule and metal surface is indicated by a more negative value of Eads [48]. When
the number of HPP molecules is 1, 2, 3, and 4, the corresponding adsorption energies are
−345.2,−655.5,−994.1, and−1347.3 kcal/mol, respectively. These negative values indicate
that the adsorptive system is stable and spontaneous adsorption can occur, which confirms
the experimental finding that the corrosion inhibition efficiency increases with increasing
inhibitor concentration within a certain range.
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3.7. Analysis of Anticorrosive Mechanism

A clear explanation of HPP inhibitor’s anti-corrosion mechanism in 1 M HCl solution
is provided in this section. As shown in Figure 10, below is a description of the anodic
dissolution process of steel [49]:

Fe + Cl− → (FeCl)ads + e− (11)

(FeCl)ads →
(
FeCl+

)
+ e− (12)

FeCl+ → Fe2+ + Cl− (13)
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The electrons flowed to the cathode where hydrogen evolution reaction occurred [50]:

2H+ + 2e− → H2 ↑ (14)

Earlier in this paper, we speculated that adding HPP to HCl solution would decrease
corrosion rates, since HPP formed a barrier film on the steel surface through the adsorption
of functional groups. Langmuir adsorption and MD simulations results showed that the
hydrophilic part was spontaneously moved to the steel surface during the adsorption
process. However, most of the hydrophobic tail was placed in the solution, resulting in
the physisorption of the molecules. On the other hand, as a surfactant, HPP possesses an
excess of bromine ions, which can accumulate on the steel surface to influence the inhibition
process, resulting in a negatively charged metal surface. Afterwards, the positively charged
HPP cation was electrostatically attracted to the negatively charged steel surface. Moreover,
iron atoms on the steel surface would generate 3d empty orbitals, while electrons on
HPP could be transferred to Fe orbitals for chemisorption. Therefore, physisorption and
chemisorption occurred simultaneously in the adsorption process due to the self-synergistic
inhibition effect, and a self-assembled barrier film was formed to mitigate the corrosion of
mild steel.

4. Conclusions

Overall, HPP exhibited an excellent corrosion inhibition performance on mild steel
in 1 M HCl solution due to the adsorption effect. The Rct value and inhibition efficiency
increased with the increase of corrosion inhibitor concentration at 298 K, and the inhibition
efficiency was up to 99.1% in 0.07 mM HPP. PDP analysis showed that with the increase in
HPP, the initial potential became more negative, βa and βc were shifted, which proved that
the reaction was a complex of physical (electrostatic interaction) and chemical adsorption.
SEM-EDX and UV-visible spectroscopy analysis revealed the formation of self-assembly
HPP layer on the metal surface. Furthermore, we deduced that the electron donor and
acceptor characteristics play a key role in the inhibition process, and the corrosion inhi-
bition performance is further enhanced by the self-synergistic inhibition effect of the ionic
liquid itself.
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