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Abstract: To tackle ecological problems, many ecological restoration projects have been implemented
in northern China. Identifying the drivers of vegetation change is critical for continued ecological
engineering. In this study, three typical ecological reserves in the Three-North Shelter Forest Program
Region (TNSFR) were selected to identify their vegetation development characteristics and driving
mechanisms using the normalized difference vegetation index (NDVI), climate factors, and land
use data. The results show that (1) NDVIs increased in the range of human activities of all of the
three ecological reserves, indicating an obvious effect of the vegetation restoration projects. (2) In
the planting period, vegetation restoration was mainly correlated with human activities. After
entering the tending period, the impact of climate changes on vegetation dynamics was enhanced.
(3) Temperature and precipitation provided approximate driving effects on vegetation dynamics
in Region I, while vegetation dynamics in Regions II and III were more strongly correlated with
precipitation. (4) The proportion of areas with ecological measures exceeded 50% in all three regions.
In short, ecological projects in the three ecological reserves dominated the quantity of vegetation
restoration, while climate changes influenced the quality of vegetation restoration.

Keywords: vegetation dynamics; climate factors; human intervention; national key ecology project;
ecological restoration

1. Introduction

Vegetation is the manifestation of the ecological environment and a crucial factor
in the development of a ground landscape system [1,2]. It not only takes part in the
land–atmosphere energy cycle and coupled carbon–water cycle but also is an impor-
tant component in ecological projects to curb desertification and conserve water and
soil [3,4]. Existing research considers that vegetation dynamics are under the dual action of
climate conditions and human activities [5,6]. Therefore, it is very important to study the
response of vegetation dynamics to climate change and human activities for evaluating
the implementation effects of ecological projects. However, it is necessary to select an
appropriate vegetation index to reflect vegetation dynamics. The normalized difference
vegetation index (NDVI) can reflect the growth status of plants [7]. NDVIs are widely
applied to monitor vegetation dynamics due to their wide coverage, long data collection
time, and high observation accuracy [8–10].

Vegetation dynamics directly reflect the implementation effect of ecological restoration
projects, so identifying driving mechanisms of vegetation dynamics is significant for the
continuous implementation of ecological projects. With the background of the increasingly
clear impact of climate changes, quantifying the relative contributions of climate changes
and human activities to vegetation dynamics has become a critical link in identifying the
driving mechanisms of vegetation dynamics. Plenty of relevant studies on quantifying
vegetation drivers have been conducted [11–13]. The commonly used methods include the
regression model, geographical detector model, and biophysical model. Therein, residual
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trend analysis (Restrend) constructs fitting equations based on meteorological factors to
simulate vegetation indices. Then, the change trends of the simulated and measured values
are compared, and the impacts of human activities on vegetation are separated, so as to
assess the relative effects of climate changes and human activities on vegetation dynamics.
Restrend has become a common method to quantify the impacts of climate changes and
human activities on vegetation due to its convenience and universality [14,15].

Previous studies have determined that meteorological factors such as temperature and
precipitation are the controlling factors of global vegetation change, and human activities
such as agriculture and urbanization also have an impact on vegetation dynamics [16–19].

The Three-North Shelterbelt Project has been carried out for many years. Existing
research shows that the greening effect of vegetation in the TNSFR is smaller than that in
other ecological project areas, which may be limited by water resources [20,21]. However,
the TNSFR covers a vast area, and the research is mostly carried out within the whole
project area [21,22]. It needs to be divided into sub-regions for deep research to obtain a
more accurate dynamic driving force of vegetation.

The aim of ecological engineering is to restore vegetation and improve the ecological
environment. However, due to the impact of various factors on the vegetation dynamics,
the effect of the ecological restoration project is different from the expected. It is necessary
to determine the effect of ecological engineering in a changing environment. Therefore, the
purposes of this study are as follows: (1) analyze the spatiotemporal distribution of vegeta-
tion in the ecological reserves; (2) quantify the relative contributions of climate changes and
human activities to vegetation dynamics; and (3) explore the driving mechanisms of climate
factors and human activities for vegetation dynamics. Based on vegetation conditions in
different ecological reserves, the research intended to evaluate the implementation effect of
the ecological restoration project and provide a scientific basis for strategy formulation on
the basis of maintaining the implementation effects of existing ecological projects, further
enhancing the ecological benefits, and realizing the harmonious coexistence of humans
and nature.

2. Materials and Methods

The complete framework of this study is shown in Figure 1. First of all, this paper
analyzes the spatiotemporal characteristics of the NDVI to identify the vegetation dynamics
with change-point analysis and linear trend analysis. Then, the impacts of human activities
and climate changes on vegetation dynamics are separated based on the residual method to
quantify their individual contributions to vegetation dynamics. Finally, the driving effects
of climate changes and human activities on vegetation dynamics are explored separately.
The impact of climate changes on vegetation is analyzed by calculating partial correlations
of climate factors such as temperature and precipitation with the NDVI. Using land cover
data, the intensity index and the land-use type matrix are established to analyze the impact
of human activities on vegetation.

2.1. Overview of Research Areas

To deal with ecological problems, the Three-North Shelter Forest Program has been
implemented in China since 1978 to build a green barrier by planting vegetation so as to
restore regional ecological functions [23–25]. The TNSFR refers to the large-scale artificial
forestry project carried out in northeastern, northern, and northwestern China and covers
13 provincial-level administrative regions (73◦–130◦ E, 33◦–50◦ N). Multiple ecological
restoration projects in the Three-North Shelter Forest Program Region (TNSFR) have been
implemented to improve and protect local vegetation [26–29]. Information on the main
ecological projects is summarized in Table 1.
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Table 1. Summary of ecological projects in the TNSFR.

Ecological Projects Initial Time Area Affected Aims

1.Three-North Shelter
Forest Program 1978

13 provinces in northern,
northwestern, and
northeastern China

Curb desertification and
prevent soil erosion

2. Shelterbelt Construction
for Cropland Project 1987 Northern and northeastern

China
Resist desertification and

protect cropland
3.Natural Forest

Protection Program 1998 Western China Conserve key natural
ecosystems

4. Restoring Cropland to
Forest Program 1999 Western China Restrain soil erosion and

increase vegetation coverage
5. Sand Source

Controls Project 2000 5 provinces around Beijing Control land and protect
vegetation

The region spans a large geographical range from the eastern coastal areas to the north-
west inland, which features complex underlying surface conditions and meteorological
conditions. According to the geographical conditions and climate conditions of the TNSFR,
the Tarim River Basin Ecological Reserve (Region I), Loess Plateau Ecological Reserve
(Region II), and Beijing-Tianjin Sand Source Control Region (Region III) in the region were
selected as representative regions. The spatial distribution of the three ecological reserves
is illustrated in Figure 2.

In the three study areas, the main form of vegetation restoration activities is afforesta-
tion and grass planting. The Three-North Shelterbelt Project has a long period. In the early
stage of project implementation, large-scale vegetation planting is often the main focus and
is called the planting period; as the project continues, vegetation tending becomes the focus
of work and is called the tending period.



Sustainability 2023, 15, 3073 4 of 17Sustainability 2023, 15, x FOR PEER REVIEW 4 of 18 
 

 
Figure 2. Research regions. Region I (Tarim River Basin Ecological Reserve); Region II (Loess Plateau 
Ecological Reserve); and Region III (Beijing-Tianjin Sand Source Control Region). 

In the three study areas, the main form of vegetation restoration activities is affor-
estation and grass planting. The Three-North Shelterbelt Project has a long period. In the 
early stage of project implementation, large-scale vegetation planting is often the main 
focus and is called the planting period; as the project continues, vegetation tending be-
comes the focus of work and is called the tending period. 

2.2. Data Collection and Processing 
The NDVI data used in the research were derived from MOD13A3 datasets and 

GIMMS datasets [30]. Meteorological data including temperature and precipitation came 
from the CMFD dataset [31,32]. The boundaries of ecological reserves and land-use type 
data were collected from the Resource and Environment Science and Data Center. Because 
of the absence of land-use type data in 1982, those in 1980 were used to replace the land-
use types in 1982. Table 2 displays detailed information on the data used in this research. 

Table 2. Data sources and detailed information. 

Data Type Data Name Data Source Spatial 
Resolution 

Time 
Resolution 

Length of Time 

NDVI 
GIMMS 

National Tibetan Plateau 
Data Center 8 km Month 1982–2015 

MOD13A3 LAADS DAAC 1 km Month 2016–2018 
Temperature and 

precipitation CMFD 
National Tibetan Plateau 

Data Center 0.1° Year 1982–2018 

Land-use type LUCC 
Resource and Environment 

Science and Data Center 1 km Year 1980, 2010, 2018 

The time length of the GIMMS dataset is in the range of 1982–2015. To ensure con-
sistency in an NDVI series and meteorological data, the time of the NDVI data needs to 
be prolonged to 2018 by combining with another NDVI dataset. Existing research shows 
that GIMMS data are highly correlated with MODIS data, so MODIS data were adopted 
to prolong the GIMMS dataset [33–35]. Because of the lowest spatial resolution of CMFD 
data, NDVI data should be normalized to the resolution of CMFD data for the convenience 
of analysis, as shown below. 

Figure 2. Research regions. Region I (Tarim River Basin Ecological Reserve); Region II (Loess Plateau
Ecological Reserve); and Region III (Beijing-Tianjin Sand Source Control Region).

2.2. Data Collection and Processing

The NDVI data used in the research were derived from MOD13A3 datasets and
GIMMS datasets [30]. Meteorological data including temperature and precipitation came
from the CMFD dataset [31,32]. The boundaries of ecological reserves and land-use type
data were collected from the Resource and Environment Science and Data Center. Because
of the absence of land-use type data in 1982, those in 1980 were used to replace the land-use
types in 1982. Table 2 displays detailed information on the data used in this research.

Table 2. Data sources and detailed information.

Data Type Data Name Data Source Spatial
Resolution

Time
Resolution Length of Time

NDVI
GIMMS

National Tibetan
Plateau

Data Center
8 km Month 1982–2015

MOD13A3 LAADS DAAC 1 km Month 2016–2018

Temperature and
precipitation CMFD

National Tibetan
Plateau

Data Center
0.1◦ Year 1982–2018

Land-use type LUCC
Resource and

Environment Science
and Data Center

1 km Year 1980, 2010, 2018

The time length of the GIMMS dataset is in the range of 1982–2015. To ensure con-
sistency in an NDVI series and meteorological data, the time of the NDVI data needs to
be prolonged to 2018 by combining with another NDVI dataset. Existing research shows
that GIMMS data are highly correlated with MODIS data, so MODIS data were adopted
to prolong the GIMMS dataset [33–35]. Because of the lowest spatial resolution of CMFD
data, NDVI data should be normalized to the resolution of CMFD data for the convenience
of analysis, as shown below.

2.3. Methods
2.3.1. Annual Maximum Method

Because the NDVI is observed by using remote sensing satellites, the observation
quality is interfered with by many factors. The annual maximum method is commonly
used to reduce the influences of cloud and water vapor on NDVI observation values [36].
The calculation formula is as follows:

NDVIi= max
(

NDVI j
)

(1)
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where NDVIi represents the NDVI value in the ith year and NDVI j is the NDVI value in
the j th month of the ith year, and j is valued in the range of 1–12.

2.3.2. Heuristic Segmentation Algorithm

The heuristic segmentation algorithm is commonly used to calculate points with
abrupt changes in a non-stationary series [37]. By calculating the pooled deviation at each
point in the test series, the T statistical values are established, and statistical significance
p(T max) corresponding to Tmax is calculated. A critical value P0 is set. If p(T max) > p0,
the test series is segmented into two sub-series at that point; otherwise, the series is not
segmented. Herein, the critical value is set to 0.95. The above operation is repeated until
the length of the sub-series is shorter than or equal to l0 (the minimum segmentation scale
is valued to 25) when the segmentation stops. Under this condition, the segmentation point
is the point with abrupt changes in the testing series [38].

According to the year of abrupt changes, the research period is divided into two time
intervals. The time interval before the year of abrupt changes is the planting period, while
that after the year is the tending period.

2.3.3. Linear Trend Analysis

Trend analysis at the pixel scale can better reflect the development trend in the study
area. The linear regression equation can be used to evaluate the trend of the NDVI at the
pixel scale. [39]

θslope =
N×∑N

i−1 i× NDVI−∑N
i−1 i ∑N

i−1 NDVIi

N×∑N
i=1 i2 − (∑n

i=1 i)2 (2)

where θslope is the slope of the linear regression equation, which can represent the change
in NDVI during the research period. When θslope> 0, this shows that the NDVI has an
upward trend, and when θslope< 0, the NDVI has a downward trend. N is the total number
of years, and I represents the serial number of the year. The F test (p < 0.05) is used for the
significance test. If the significance test is passed, this indicates that the change trend of
NDVI is significant.

2.3.4. Calculating Contributions Based on the Residual Method

The residual analysis method is commonly used to calculate the relative contributions
of climate changes and human activities [40,41]. At first, a multiple linear regression
equation is constructed based on climate factors to predict the NDVIs only affected by
climate change. By analyzing the trends of measured NDVIs, NDVIs only affected by
climate changes, NDVIs only affected by human activities, and the relative contributions
of climate changes and human activities to vegetation development are quantified [42,43].
The NDVI values only impacted by human activities are calculated as follows [44,45]:

NDVIc= aT + bP + c (3)

εi= NDVIi − NDVIci (4)

where NDVIc is the simulated value of the multiple linear regression equation built based
on climate factors; a, b, and c are regression coefficients of temperature, precipitation, and
a constant term; εi is the residual between the measured NDVI and simulated NDVI in the
ith year; εi > 0 and εi < 0 separately indicate that human activities promote vegetation
improvement and vegetation degradation; NDVIi denotes the measured value in the ith
year; and NDVIci is a fitted value based on the impact of climate changes in the ith year.

The driving effects are divided into the human-activity-dominated (HA), the climate
change-dominated (CC), and both factors combined (BC) [46]. The three driving effects
are further divided into vegetation restoration (HAR, CCR, and BCR) and vegetation
degradation (HAD, CCD, and BCD) according to vegetation changes. The types of driving
mechanisms of vegetation dynamics are listed in Table 3.
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Table 3. Evaluation methods for dominated driving factors of vegetation dynamics.

Vegetation
Dynamics

Judgment Conditions Driving Mechanisms of
Vegetation DynamicsSlopeO SlopeH and SlopeC

Vegetation
degradation

SlopeO< 0
SlopeH> 0,SlopeC< 0 CCD

SlopeH< 0, SlopeC< 0
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2.3.5. Partial Correlation Analysis Method

When a certain variable is influenced by multiple factors, it is generally necessary to
perform a partial correlation analysis to the eliminate influences of other variables so as
to acquire correlations between two factors [47]. In this research, the partial correlation
coefficient was adopted to investigate the influences of temperature and precipitation on
the variation in the NDVI [48,49].

rxy,z =
rxy−rxzryz√(

1− r2
xz

)(
1− r2

yz

) (5)

where rxy,z denotes the first-order partial correlation coefficient between x and y after elim-
inating thew influences of factor z. rxy, rxz, and ryz represent the correlation coefficients
between x and y, between x and z, and between y and z, respectively.

2.3.6. Human Activity Intensity

Human activity intensity can be used to characterize land cover use of humans in
a region. According to different degrees of utilization for different ecological systems,
different conversion coefficients are assigned to finally calculate the human activity intensity
with the following formula [50]:

HAI = ∑N
i=1(SLi×CIi)

S
×100% (6)

where HAI denotes the human activity intensity; S is the total area of the region; SLi denotes
the area of the ith land cover type; and CIi is the conversion coefficient of the ith land cover
type. The conversion coefficients of different land cover types are listed in Table 4.

Table 4. Conversion coefficients of different land-use/cover types.

Land-Use
Type Unused Land Forest and

Grassland Cropland Water Urban

CI 0 0.133 0.2 0.6 1

According to dynamic changes in land cover types, human activities are classified
into ecological measures and development activities. The former mainly includes af-
forestation and grass planting, while the latter mainly includes agricultural reclamation
and urban expansion [51].
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2.3.7. Land-use Transition Matrix

The land-use transition matrix is commonly adopted to describe the transition and
changes in each land-use type in a certain period. It reflects the area and direction of the
transition in each land-use type [52,53]. The land-use transition matrix is expressed by the
following equation:

Aij =

A11 · · · A1n
...

. . .
...

An1 · · · Ann

 (7)

where Aij denotes the area of the ith land-use type transformed into the jth type, in which i
is the initial land-use type and j is the land-use type at the end of the research. Moreover, n
refers to the number of land-use types, and n is valued to be 6 in this research, including
cropland, forest, grassland, unused land, urban, and water.

3. Results
3.1. Temporal and Spatial Changes in NDVIs in Typical Ecological Reserves in 1982–2018
3.1.1. Spatial Characteristics of NDVIs

The mean NDVIs from Region I to Region III were 0.14, 0.43, and 0.54 in 1982–2018,
respectively. The spatial distribution of annual mean NDVIs in the three regions is shown
in Figure 3. The NDVI is low on the whole in Region I, which is dominated by very low
vegetation coverage and low vegetation coverage that separately account for 69% and
23%, and other vegetation coverage areas are interlaced in the middle-upper part. High,
medium, and low vegetation coverage areas are distributed from the south to north of
Region II, which separately account for 29%, 52%, and 19%. Region III mainly contains
medium and high vegetation coverage areas, which separately account for 31% and 60%.
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3.1.2. Temporal Characteristics of NDVIs

Figure 4 shows the temporal changes in the NDVIs of the research regions. NDVIs
always show an increasing trend, which indicates that vegetation coverage is improved
in all three regions on the whole. The heuristic segmentation reveals that the NDVI series
of the three regions changed abruptly, separately, in 2011 (Region I), 2008 (Region II), and
2011 (Region III). In the planting period of the Three-North Shelter Forest Program, the
average growth rates of the NDVIs from Region I to Region III were, separately, 2 × 10−4,
1.4 × 10−3, and 7 × 10−4. The growth rates rose significantly after entering the tending
period, and the average growth rates of the NDVIs from Region I to Region III were
1.1 × 10−3, 7.7 × 10−3, and 5.3 × 10−3, respectively.
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(b) Region II; and (c) Region III).

The linear change trend of NDVIs is calculated pixel by pixel, as displayed in Figure 5.
In Region I, different types of change trends of NDVIs are spatially interlaced, and the areas
with a significant drop, significant improvement, and without obvious changes account for
26%, 30%, and 44%, respectively.
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The NDVIs in Region II exhibit a significant improvement trend on the whole, which
accounts for 91%. In Region III, the changes in the NDVIs are mainly shown as a significant
improvement (50%) and without obvious changes (44%). Areas with significant improve-
ment in the NDVIs are mainly distributed in the middle and east of Region III; the west of
Region III mainly covers nearly unchanged areas.

3.2. Relative Contributions of Climate Changes and Human Activities to Vegetation Dynamics
3.2.1. Dominated Factors Causing Vegetation Restoration

The spatial distribution of the dominant driving mechanisms contributing to veg-
etation restoration was analyzed by combining with Figure 6. In the planting period,
vegetation restoration in Regions III and I was mainly regulated by human activities, which
dominated 72% of the vegetation restoration in Region I. Vegetation restoration in Region
II was mainly affected by BCR and HAR. In Region III, 64% of the vegetation restoration
was controlled by human activities, which were mainly concentrated in the east.

In the tending period, the impact of climate changes on vegetation restoration was
enhanced in all three regions. In Region I, the proportions of CCR and BCR areas separately
increased by 24% and 19%. In Region II, CCR and BCR areas collectively accounted for
80%, and except for the southeast where vegetation restoration was dominated by human
activities, vegetation restoration in other areas was affected by climate changes. In Region
III, the proportion of the HAR area shrank by 28%, and more vegetation restoration was
impacted by climate changes.
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3.2.2. Dominant Factors Causing Vegetation Degradation

Figure 7 shows the relative contributions of climate changes and human activities
to vegetation degradation. In the planting period, vegetation degradation areas were
concentrated. The driving mechanisms of vegetation degradation in Region I are listed
in a descending order as CCD (49%), HAD (34%), and BCD (17%). In Region II, the main
driving mechanism of vegetation degradation was CCD, which was mainly distributed
in the south of the region. Vegetation degradation in Region III was mainly affected by
human activities, in which the total proportion of HAD and BCD was 85%, and HAD was
mainly concentrated in the west of the region.
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After a year of abrupt changes, vegetation degradation spread in the space. The
proportion of BCD enlarged by 26% in Region I, in which vegetation degradation areas
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were interlaced with restoration areas. Vegetation degradation in the north of Region II was
mainly dominated by climate changes, and areas at the southern margin were dominated
by human activities. The impacts of climate changes began to be prominent in Region III.
In Region III, vegetation degradation in the southwest was mainly influenced by human
activities, while that in the north was mainly under the impact of climate changes.

3.3. Correlations of Vegetation Dynamics with Climate Changes

The partial correlation coefficients were selected to show correlations of NDVIs with
temperature and precipitation in the three ecological reserves, and the spatial distribution is
displayed in Figure 8. In Region I, temperature and precipitation differ slightly in the spatial
distribution of correlations with NDVIs. In Region II, areas showing positive correlations
between NDVIs and precipitation account for 89%, in which 42% of areas have partial
correlation coefficients larger than 0.5; areas where temperature shows positive correlations
with NDVIs account for 77%, in which only 17% of areas have partial correlation coefficients
larger than 0.5. Region III mainly covers areas without correlations and with positive
correlations between temperature and NDVIs. In Region III, the precipitation is mainly
positively correlated with NDVIs and accounts for 66% and is mainly distributed in the
west and northeast of the region. In summary, temperature and precipitation exert basically
approximate influences on vegetation in Region I, while correlations of vegetation with
precipitation are stronger than those with temperature in Regions II and III.
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3.4. Evaluation of Human Activities in Typical Ecological Reserves of TNSFR
3.4.1. Human Activity Intensity

The variation in human activities in typical ecological reserves of the TNSFR is shown
in Table 5. Human activity intensity gradually rose from Region I to Region III. Human
activity intensity decreased at first and then increased in Region I. Regions II and III both
showed enhanced human activity intensity. In Region II, the human activity intensity grew
rapidly from 15.8% to 16.5% in 2010–2018. The human activity intensity rose by 0.6% in the
planting period, while it increased by 0.3% in the tending period in Region III.
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Table 5. Human activity intensity and its variation in typical ecological reserves of TNSFR.

Region Intensity Variation
1980 2010 2018 1982–2010 2010–2018 1982–2018

I 8.1 7 7.3 −1.1 0.3 −0.8
II 15.7 15.8 16.5 0.1 0.7 0.8
III 16.1 16.7 17 0.6 0.3 0.9

3.4.2. Distribution of Human Activities

Figure 9a–c illustrate the spatial distribution of human activities in each region. In
Region I, human activities are mainly distributed near oases in the middle and north, while
they are sparse in the south (Figure 9a). Human activities are widely distributed in Regions
II and III, while the northwest of the two regions is slightly influenced by human activities
(Figure 9b,c).
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Figure 9. Spatial distribution of human activities in typical ecological reserves of TNSFR in 1980–2018
in Region I (a), Region II (b), and Region III (c); transition of land cover types under impacts of
human activities in Region I (d), Region II (e), and Region III (f); proportions of areas with different
types of human activities in Region I (g), Region II (h), and Region III (i). C (Cropland); F (Forest); G
(Grassland); UN (Unused land); UR (Urban and built-up); and W (Water).

As shown in Figure 9d–i, the dynamic changes in land-use types in the three typical
ecological reserves were closely related to human activities in 1982–2018. Because human
activities in Region I mainly included afforestation (42%), agricultural reclamation (29%),
and grass planting (29%), unused land in the region was transformed into grassland and
forest, while grassland was mainly transformed into forest and cropland. Agricultural
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reclamation and grass planting were the main human activities in Region II, and the two
were the main sources of transformation in each other. Changes in land-use types in
Region III mainly included transformation from cropland to grassland, transformation
from grassland to forest, and transformation of unused land to grassland.

Ecological measures accounted for more than 50% in all 3 typical ecological reserves.
Proportions of ecological measures and development activities varied slightly in different
periods in Region I. After entering the tending period, the proportion of agricultural
reclamation rose by 4% while that of grass planting reduced by 5% in Region II. In the
tending period, the proportion of agricultural reclamation decreased by 38% while that of
afforestation increased by 21% in Region III.

The comparison of the proportions of each type of human activity in different regions
reveals that the proportions of development activities gradually rose to 30%, 43%, and 50%
from Region I to Region III in 1980–2018, in which urban expansion accounted for 1%, 4%,
and 9%.

4. Discussion
4.1. Vegetation Dynamics in Typical Ecological Reserves of TNSFR

By combining the vegetation dynamics in Figures 4 and 9, it can be seen that NDVIs
mainly rose in the range of human activities in the three typical afforestation regions from
1982 to 2018, which is indicative of the restoration of vegetation in these regions. The
NDVI series changed in the three regions, with abrupt changes all around 2010, which
is approximate to results in other research [54–56]. In the planting period, vegetation
restoration in all of the three ecological reserves is distributed within the range of human
activities while accompanied by local degradation as well. After entering the tending
period, vegetation restoration was still maintained in each region, and vegetation was
improved with a rising rate, while the degradation also spread. This was probably caused
by the death of vegetation due to factors including inappropriate vegetation types, plant
diseases and insect pets, and water shortage [57–59].

4.2. Driving Mechanisms of Vegetation Dynamics

Figure 10 shows the proportions of different driving mechanisms (climate changes and
human activities) of vegetation dynamics in different periods in each region. In the planting
period, vegetation restoration in the three typical ecological reserves was dominated by
human activities, and the proportions of human activities from Region I to Region III were
36%, 33%, and 41%. This is mainly related to the ecological restoration projects implemented
in these regions [60,61]. After entering the tending period, the impact of human activities
on vegetation restoration reduced, and the proportions of HARs, separately, decreased by
23%, 16%, and 19% in Regions I, II, and III. This is probably because the focus of ecological
projects shifted from large-scale plantation to vegetation-tending [62]. In the meantime, the
driving effect of climate changes on vegetation dynamics was enhanced. The proportions
of the CCRs all rose, and they separately increased by 10%, 27%, and 10% from Region I to
Region III, probably because of changes in the growth conditions of the vegetation due to
climate changes [63,64].

4.3. Impact of Climate Changes on Vegetation

The research reveals that vegetation dynamics in Region I show approximate correla-
tions with two climate factors, namely, temperature and precipitation, which is because
Region I is located in the inland [65,66]. Meanwhile, because Region I is at the margin of
a desert, there are large areas of regions where NDVIs are uncorrelated with the climate
factors. Vegetation dynamics in Regions II and III are more closely correlated with pre-
cipitation, which is consistent with the conclusions of other research [20,67–69]. Changes
in climate factors induce variation in local hydrothermal conditions and thus affect the
growth process of plants [70].
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4.4. Impact of Human Activities on Vegetation

Various ecological projects implemented in the TNSFR determine the types of eco-
logical measures, which influence the vegetation in regions by changing the land cover
types [68]. The ecological projects implemented in the subregion are shown in Table 6.
For the purpose of curbing desertification and protecting cropland, ecological projects in
Region I are related to the forest, cropland, and grassland [2]. The main human activities
in Region II pertain to cropland and grassland, which is closely related to the Restoring
Cropland to Grassland Program and Cropland Protection Program implemented in the
region [71]. Ecological projects in Region III mainly include the Sand Source Controls
Project and Cropland Protection Program; therefore, cropland, grassland, and forest are
land-use types that are heavily affected by human activities in the region.

Table 6. Ecological projects implemented in different ecological reserves of TNSFR and affected land
cover types.

Region Ecological Projects Affected Land Cover TypesTNSFP SCCP NFPP RCFP SSCP

I
√ √ √ √

Forest, Cropland, Grassland
II

√ √ √
Cropland, Grassland

III
√ √ √ √

Forest, Cropland, Grassland

4.5. Limitations and Prospects

This research investigated the driving mechanisms of vegetation dynamics in three
ecological reserves of TNSFR. Although the three sub-regions were divided, the research
regions still contain a large area of non-ecological engineering and increase the certainties.
Therefore, they can be more finely divided according to administrative boundaries. With re-
gard to research time periods, the research period was 1982–2018, limited by the time length
of data selected. In future research, a longer time period can be adopted by prolonging the
time of data, and, at the same time, more time periods can be divided to analyze the driving
mechanisms of vegetation dynamics. In the analysis process of driving mechanisms, due to
the specificity of each ecological reserve, the selection of the same meteorological factors
may bring some uncertainties; types of human activities can be further refined to accurately
identify the influences of human activities on regional vegetation dynamics.

5. Conclusions

The vegetation dynamics and their driving mechanisms were analyzed by using the
NDVI series of the TNSFR in 1982–2018. The following conclusions are drawn:

(1) The NDVIs in the range of human activities of the three typical ecological reserves mainly
showed an increasing trend in 1982–2018, suggesting the restoration of vegetation.

(2) In the planting period of the TNSFR, vegetation restoration in each region was mainly
attributed to human activities. After a year of abrupt changes, the impact of climate
changes on vegetation dynamics was enhanced in all regions.
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(3) Ecological projects in the three ecological reserves dominated the quantity of vegeta-
tion restoration, while climate changes influenced the quality of vegetation restoration.
With the continuous implementation of ecological projects, the impact of climate fac-
tors on vegetation should be considered, and ecological measures need to be constantly
adjusted so as to weaken the adverse effects of climate changes on vegetation and
better maintain the effects of ecological projects.
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