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Abstract: Extracting buildings and water bodies from high-resolution remote sensing images is of
great significance for urban development planning. However, when studying buildings and water
bodies through high-resolution remote sensing images, water bodies are very easy to be confused
with the spectra of dark objects such as building shadows, asphalt roads and dense vegetation. The
existing semantic segmentation methods do not pay enough attention to the local feature information
between horizontal direction and position, which leads to the problem of misjudgment of buildings
and loss of local information of water area. In order to improve this problem, this paper proposes
a local feature search network (DFSNet) application in remote sensing image building and water
segmentation. By paying more attention to the local feature information between horizontal direction
and position, we can reduce the problems of misjudgment of buildings and loss of local information
of water bodies. The discarding attention module (DAM) introduced in this paper reads sensitive
information through direction and location, and proposes the slice pooling module (SPM) to obtain a
large receptive field in the pixel by pixel prediction task through parallel pooling operation, so as to
reduce the misjudgment of large areas of buildings and the edge blurring in the process of water body
segmentation. The fusion attention up sampling module (FAUM) guides the backbone network to
obtain local information between horizontal directions and positions in spatial dimensions, provide
better pixel level attention for high-level feature maps, and obtain more detailed segmentation output.
The experimental results of our method on building and water data sets show that compared with the
existing classical semantic segmentation model, the proposed method achieves 2.89% improvement
on the indicator MIoU, and the final MIoU reaches 83.73%.

Keywords: semantic segmentation; building and water segmentation; local feature search; horizontal
direction; high-resolution remote sensing image

1. Introduction

Remote sensing image classification is an important link in the application of remote
sensing technology. With the progress of remote sensing data acquisition technology [1],
the information of high-resolution remote sensing images shows a trend of massive growth,
and the number and diversity of target samples also increase dramatically [2]. Early image
classification is mainly based on manually extracted image features. These methods mainly
rely on experts with a lot of professional knowledge and practical experience to design
various image features. Several of the most representative manual description features
include color histogram, texture feature, direction histogram and scale invariant feature
transformation. Although these classification methods are intuitive and easy to understand,
the description ability of these features is very limited when faced with complex images.
In recent years, machine learning methods [3] based on probability and statistics have
provided many feasible methods for remote sensing image classification. Typical machine
learning methods include classification methods such as support vector machine, decision
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tree, principal component analysis and k-means clustering. The classification methods
of machine learning mentioned above belong to shallow learning networks [4], and it is
difficult to establish complex function representations and cannot adapt to remote sensing
image classification of complex samples. The emergence of deep learning provides a new
method for land cover classification [5–7]. Deep learning is a kind of neural network with
deep structure, which can extract the features of remote sensing images better than models
with shallow structure such as artificial neural network and support vector machine [8].
Its motivation is to establish neural networks that simulate human brain for analysis and
learning. It can learn more useful features through massive training data and deep models
with many hidden layers, and ultimately improve the accuracy of classification.

With the rapid development of deep learning [9–11], many scholars have proposed
effective high-resolution remote sensing image segmentation methods [12–16] for remote
sensing image feature extraction [17–19]. In the process of image acquisition and processing,
image noise increases. Noise reduces the visibility of image edges, thus introducing false
edge information, resulting in poor segmentation performance of object contours. Full
convolution neural network FCN [20] makes image segmentation enter a new stage. These
pixels can not only classify objects according to their categories, but also improve the
accuracy of image segmentation. We found that the main problem based on the FCN
model at present is the lack of appropriate strategies to use global scene category clues.
For the understanding of typical complex scenes, in order to obtain global image level
features, the spatial pyramid pool is widely used, in which spatial statistics provide a
good descriptor for the overall scene interpretation. Different from these methods, in
order to combine appropriate global features, Zhao et al. proposed the Pyramid Scene
Parsing Net (PSPNet) [21]. It can embed the context features of difficult scenes into FCN’s
pixel prediction framework, fully understand the scene, and accurately predict each pixel
category, position and shape. The local and global information are fused together to make
the final prediction more reliable. Ronneberger et al. proposed a U-Net network [22]
for medical image processing, improved the feature fusion method based on the FCN
network framework, and fused features of different levels. The PAN [23] paper combines
the Attention mechanism with the pyramid structure, which can extract the relatively
low level precise dense features based on the high-level semantic guidance, replacing the
complex hole convolution and multiple codec operations in other methods, and jumping
out of the usual U-Net structure. Due to the large difference in the scale of the objects
contained in the remote sensing image and the complex boundary of the objects, it is
difficult to accurately extract the features of the remote sensing image, which makes it
difficult to accurately segment the remote sensing image. Chen et al. proposed a multi-level
aggregation network [15] for semantic segmentation of high-resolution remote sensing
images, which extracts depth global features by learning the relationship between all
positions in the context through a global dependency module, and filters redundant channel
information to optimize segmentation results. Xia et al. proposed a separable attention
network based on different size fusion [24]. The method uses residual neural network
as the backbone network to obtain the information features of rivers. Through attention
modules of different scales, the deep feature information and shallow feature information
of rivers are fused. The shallow features and large scale attention module are used to locate
the main position of the river, and the deep features and small scale attention module
are used to finely segment the river edge, so as to accurately extract the river from the
background. Thus, the problems that traditional detection methods cannot identify small
tributaries and the edge information is rough are solved.

The above network solves many problems of remote sensing image semantic segmen-
tation [25,26]. However, the existing semantic segmentation networks use more multi-scale
fusion of feature maps to enhance the effect of image segmentation [27], and pay less
attention to the horizontal direction information, resulting in misjudgment of buildings and
loss of local information of water bodies. Generally, the down sampling operation is used
to extract abstract semantic features, so high resolution details are easy to lose, and local
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details are inaccurate, edges are fuzzy, and buildings are misjudged in the segmentation
results.Therefore, the land cover classification model based on semantic segmentation
needs to be improved to extract feature information between the horizontal directions
of the image. In order to solve this problem, a local feature search network for building
and water area segmentation in high-resolution remote sensing images is proposed. The
network strengthens the semantic extraction of image horizontal direction and location
information, reads sensitive information through direction and location, enables the model
to more accurately locate and identify the target area, captures cross channel information,
and embeds location information into channel attention, To efficiently integrate the spatial
coordinate information, so as to improve the local information loss and misjudgment of
buildings in the process of building and water area segmentation, enhance the search ability
of local features of the network, and ultimately improve the semantic segmentation ability.

In our proposed local feature search network, ResNet18 is used as the backbone
network for feature extraction to obtain feature information with rich semantic information.
Then, a discarding attention module DAM is constructed to read sensitive information
through direction and location, discard irrelevant information, and make the model locate
and identify the target area more accurately. In addition, the SPM chip pooling module we
propose can acquire a large receptive field in pixel by pixel prediction tasks through parallel
pooling operation, and the network can capture a wide range of context information, thus
avoiding the establishment of most unnecessary connections between locations far away
from each other, so as to improve the ability to capture remote spatial dependencies and
utilize inter channel dependencies. The FAUM fusion attention up sampling module
proposed in this paper is used to guide the backbone network feature map to obtain the
feature information on the spatial dimension. Finally, the feature map is recovered through
up sampling, and the output result is a more detailed prediction image, while providing
better pixel level attention for high-level feature maps. Experiments on high resolution
remote sensing image semantic segmentation dataset show that the MIoU of the proposed
local feature search network, DSFNet, reaches 83.73%. Compared with the existing semantic
segmentation model, this model has the highest accuracy, which verifies the effectiveness
of this model.

Contributions of this paper are as follows:
1. This paper proposes a local feature search network for building and water area

segmentation in high-resolution remote sensing images. The Discard Attention Module
(DAM) reads sensitive information through direction and location, discards irrelevant
information, and enables the model to locate and identify the target area more accurately.
It can not only capture cross channel information, but also integrate spatial coordinate
information efficiently by embedding location information into channel attention, so that
mobile networks can obtain larger area information without introducing large overhead.
This method can better solve the problems of misjudgment of large areas of buildings and
edge blurring in the process of water area segmentation.

2. In the work, the Slice Pooling Module (SPM) is built to obtain a large receptive
field in the pixel by pixel prediction task through parallel pooling operation, so that the
network can capture a wide range of context information, and the range of slice pooling
considerations is long and narrow, rather than the entire feature map, thus avoiding the
establishment of most unnecessary connections between locations that are far away from
each other, to improve the ability to capture remote spatial dependencies and utilize inter
channel dependencies.

3. The Fusion Attention Upsampling Module (FAUM) built in the project is used to
guide the backbone network feature map to capture the feature information of remote spa-
tial dimensions and channels. The feature information of horizontal direction and position
is extracted from the discard attention module (DAM) and slice pooling module (SPM),
so as to efficiently integrate the spatial coordinate information and provide better pixel
level attention for high-level feature maps. It can effectively enhance the local information
search ability of the model and improve the segmentation accuracy.
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The rest of this article is organized as follows: Section 2 describes DFSNet and the
functions of each module. Section 3 describes the experimental setup and data details.
Section 4 summarizes the corresponding work of this paper and puts forward the future
research direction.

2. Network Structure

With the increase of remote sensing image resolution, the detailed information and
complex spatial information of remote sensing images have increased dramatically. The
current semantic segmentation model is not good at effective segmentation under complex
data sets. In complex spatial information, it is easy to have problems such as misjudg-
ment of buildings and loss of local information in water areas. The existing land cover
classification models still need to be improved in the extraction of horizontal direction and
location features. Therefore, a local feature search network (DFSNet) is proposed. The
overall framework of the network is shown in Figure 1. DFSNet is an end-to-end training
model, which is divided into a decoding network and a coding network. The encoding
network uses ResNet18 [28] as the backbone network for feature extraction. The decoding
network consists of discarded attention module (DAM), slice pooling module (SPM) and
fused attention upsampling module (FAUM). DAM module reads sensitive information
through direction and location, discards irrelevant information, so that the model can
more accurately locate and identify the target area, and enhance the search ability of local
information on the network. The SPM module obtains a large receptive field in the pixel by
pixel prediction task through parallel pooling operation, so that the network can capture a
wide range of context information, thus avoiding the establishment of most unnecessary
connections between locations that are far away from each other, so as to improve the
problem of large area misjudgment of buildings and fuzzy water edge information in
the whole network segmentation process. The FAUM module effectively integrates the
backbone network feature map and the feature information extracted by DAM and SPM to
guide the backbone network to obtain the semantic information on the spatial dimension,
thus improving the segmentation accuracy. Finally, bilinear interpolation and two times of
up sampling are directly used to obtain the segmented output results.

4×down 8×down 16×down

SPM

FAUM2×UP

DA

32×down

SPM SPM

FAUM FAUM

4×down 8×down 16×down

SPM

FAUM2×UP

DA

32×down

SPM SPM

FAUM FAUM

Figure 1. Local feature search network (DFSNet).

2.1. Encoding Network

This paper takes ResNet18 as the backbone network and extracts the network feature
layer. After the emergence of AlexNet [29], many excellent network models have emerged,
such as VGG [30] with deeper network layers, GoogleNet [31] with modular network
structure (Inception), lightweight network models, MobileNet [32] and ShuffleNet [33]
suitable for mobile devices, segmentation models FCN, UNet, etc. ResNet is proposed to
solve the problem of network degradation. VGG network studies the problem of increasing
network depth to improve classification accuracy, but deeper and wider networks can
mine more abstract feature representations in data to improve classification efficiency.
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However, too large network models will increase training consumption, reduce training
efficiency, and may also reduce the generalization of the network, resulting in over fitting,
ResNet can well use the residual network structure to build a deep network and solve the
degradation and gradient problems. After weighing the characteristics and accuracy of
the network, we chose ResNet18 as our backbone network. Layer by layer sampling can
obtain richer semantic information and be provided to the decoding network for semantic
information decoding.

Baseline

ResNet can alleviate the network degradation caused by network layer deepening
through residual structure. The introduction of residual structure is helpful to solve the
problems of gradient disappearance and gradient explosion. Let us not only train the
deeper network, but also ensure good information. Compared with the serial structure
of the ordinary network, as shown in Figure 2, the residual unit adds a jump mapping,
which directly adds the input and output to supplement the feature information lost in the
convolution process. For a stack layer structure, when the input is x, the special record
learned is F(x). Now add a branch and jump directly to the output of the stack layer. At
this time, the final output H(x) = F(x) + x.The detailed parameter settings of the entire
ResNet-18 are shown in Table 1.

weight layer

weight layer

relu

relu

x( )F x

( )F x x+

identity

Figure 2. Residual structure.

Table 1. Detailed parameter settings for ResNet-18.

Layer Name Output 18-Layer Stride Size

Layer-0 256× 256 7× 7, 64 2 1/2

Layer-1 128× 128
3× 3, maxpool, 64[

3× 3, 64
3× 3, 64

]
× 2

2 1/4

Layer-2 64× 64
[

3× 3, 128
3× 3, 128

]
× 2 2 1/8

Layer-3 32× 32
[

3× 3, 256
3× 3, 256

]
× 2 2 1/16

Layer-4 8× 8
[

3× 3, 512
3× 3, 512

]
× 2 2 1/32

2.2. Decoding Network

The decoding network is responsible for decoding the encoded information and
recovering the semantic information of the feature map. The decoding network is mainly
composed of discarded attention module (DAM), slice pooling module (SPM) and fused
attention upsampling module (FAUM). The DAM module reads sensitive information
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through direction and location, discards irrelevant information, and enables the model to
more accurately locate and identify the target area to reduce the loss of water area feature
information. The SPM module obtains a large receptive field in the pixel by pixel prediction
task through parallel pooling operation, so that the network can capture a wide range of
context information, and alleviate problems such as misjudgment of buildings and blurring
of water area edges. FAUM module extracts the feature information of horizontal direction
and position from DAM module and SPM module, so as to efficiently integrate the spatial
coordinate information, provide better pixel level attention for high-level feature map,
enhance the search ability of the network for target feature information, and improve the
segmentation precision.

2.2.1. Discard Attention Module

In land cover classification, the spectral information of the same object fed back from
different directions and positions is different. Therefore, the main work of this module
is to read the sensitive information through the direction and location [34], discard the
irrelevant information, make the model locate and identify the target area more accurately,
reduce the loss of building and water area feature information, and enhance the network
target location capability [35].

We consider the relationship between channels and the location information at the
same time. It can not only capture cross channel information, but also embed the location
information into the channel attention, so that the mobile network can obtain larger regional
information without introducing large overhead. In order to avoid the loss of location
information caused by the introduction of 2D global pooling, this paper proposes to
decompose channel attention into two parallel 1D feature codes to efficiently integrate
spatial coordinate information, namely our Discard Attention Module (DAM), as shown in
Figure 3. The DAM attention mechanism module aims to enhance the expression ability
of mobile network learning features. It can input X = [x1, x2, · · · , xc] ∈ RH×W×C to
any intermediate feature tensor in the network, and output tensor Y = [y1, y2, · · · , yc] ∈
RH×W×C of the same size after transformation.

Two 1D global pooling operations are used to pool the input features along the vertical
and horizontal directions to get two 1D vectors, Concat and 1× 1 Conv is used to compress
the channel, then BN and Non linear are used to encode the spatial information in the
vertical and horizontal directions, then split, and then 1× 1 Conv gets the same number of
channels as the input characteristic graph, and after splitting, it passes 1× 1 The convo-
lution obtains two attention information attention_h and attention_w respectively. After
discarding attention_h, the obtained attention_w captures the long-distance dependency
of the input feature map along a spatial direction. The location information is saved by
attention_w, and then attention_w is applied to the input feature map by multiplication to
emphasize the presentation of the attention region.

In order to obtain attention on image width and height and encode accurate position
information, DAM first divides the input feature map into height and width directions
for global average pooling, first uses the pooling cores of (H, 1) and (1, W) to encode
each channel along the horizontal and vertical coordinate directions, and then obtains the
feature map of channel c in width w and height h directions, as shown in the following
Equation (1):

gh
c (h) =

1
W ∑

0≤i≤W
xc(h, i),

gw
c (w) =

1
H ∑

0≤j≤H
xc(j, w).

(1)

The above two transformations aggregate features along two spatial directions re-
spectively to obtain a pair of direction aware feature maps. These two transformations
also allow the attention module to capture the long-term dependence along one spatial
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direction, and save the location information along the other spatial direction, which helps
the network locate the target of interest more accurately.

After the transformation of information embedding, this part will concat the above
transformation, and then use 1× 1 Conv. Convolution transformation function F1 is used
for transformation, δ is a nonlinear activation function, and η is an intermediate feature
mapping for encoding spatial information in horizontal and vertical directions, as shown
in Equation (2) below:

η = δ(F1([g
h, gw])). (2)

Then, along the spatial dimension, η is divided into two separate tensors ηh ∈ RC/r×H

and ηw ∈ RC/r×W , where r represents the down sampling ratio, and r = 8 in the experiment.
Reuse two 1× 1 Convolution Fh and Fw transform the characteristic graph ηh and ηw to
the same number of channels as the input characteristic graph x, and then generate two
attention weights zh and zw through the sigmod activation function, respectively, zh and
zw correspond to the attention_h and attention_w in the graph. σ is the sigmod activation
function. The calculation process is shown in Equation (3):

zh = σ(Fh(η
h)), zw = σ(Fw(η

w)). (3)

Residual

Re-weight

Conv2d

BN+ReLU

X Avg Pool Y Avg Pool

Concat + Conv2d

BatchNorm + Non-linear

Conv2d Conv2d

Sigmoid
Sigmoid

attention-h
attention-w

H W C 

1 W C 1H C 

H W C 

1H C 

1 W C 

1 W C 

1 ( ) /W H C r + 

1 ( ) /W H C r + 

Input

Output

Figure 3. Discard attention module.

Then the weights of zh and zw are expanded. During the training, zh , that is, atten-
tion_h, is discarded to emphasize the representation of the attention region. The DAM
module simultaneously completes the horizontal and vertical attention. At the same time,
the redundant information in the vertical direction is discarded during the training, which
enhances the network’s attention to the horizontal direction. Multiply the final weight by
the output of the left branch to calibrate the channel feature information, emphasize the
representation of the attention region, multiply the obtained attention weight zw by the
output of the left branch, and finally obtain the output of the DAM module as shown in
Equation (4):

yc(i, j) = xc(i, j)× zw
c (j), (4)

where,xc(i, j) is the output result of the left branch, and is the characteristic graph x passing
through 1× 1 After the convolution transformation function F1 is converted, it is obtained
through normalization and ReLu processing.β is normalized processing and γ is ReLU
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function to prevent gradient explosion caused by too deep network. The calculation process
is shown in Formula (5):

xc(i, j) = γ(β(F1(X))). (5)

2.2.2. Slice Pooling Module

The conventional receptive field is generally pooled in the conventional rectangular
area of N × N. By using parallel pooling operation to obtain large receptive fields in pixel
by pixel prediction tasks, the network can capture a wide range of context information [36],
and has proven its potential on multiple scene resolution benchmarks. However, due to
the shape of the square core, its ability to use context information is limited [37]. In this
chapter, a new pooling strategy is adopted, and the long strip slice pool core is used to
implement pooling operations. The pool core is redesigned as N × 1 and 1× N, so as to
build a slice pool module (SPM), as shown in Figure 4.

1
D 

Co
n
v

1
D
 
Co

n
v

S
ig

mo
dFusion

Slice pool

Slice pool

1H 

1W 

expand

expand

H W

H W H W

Conv2d

H W

Figure 4. Slice pooling module.

In the module reasoning process, a two-dimensional tensor with size of H ×W is
input, and the upper branch is operated by using the bar pool core with size of H × 1 and
1×W , averaging the element values in the pool core, and taking this value as the pool
output value. The calculation process is shown in Equation (6).

gh
i =

1
W ∑

0≤j≤W
xi,j, gz

j =
1
H ∑

0≤i≤H
xi,j. (6)

Note that the dimension of input x is C× H ×W , where C is the number of input
channels. x uses 1D Conv to expand the feature map up and down through the pooled
window (H, 1), where the core size is 3. x directly expands from left to right through the
pooled window (1, W). After the expansion, the corresponding elements at each location
are added to form a new feature map, defining gh

c,j ∈ RC×W , gz
c,j ∈ RC×W , and then

g ∈ RC×H×W can be expressed as Equation (7).

gc,i,j = gh
c,j + gz

c,j (7)

The original image passes through the one-dimensional convolution layer in the lower
branch, and its core size is 1, which is used to modulate the current position and its adjacent
features. The final output M can be expressed as Equation (8).

M = Multi(σ(x), σ(F1(g))), (8)

where Multi(·, ·) represents element multiplication by bit, σ represents sigmoid function,
and F1 represents 1× 1 convolution. Compared with global average pooling, slice pooling
considers a long and narrow range, rather than the entire feature map, thus avoiding
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the establishment of most unnecessary connections between locations that are far away
from each other, so as to improve the ability to capture remote spatial dependencies and
make use of inter channel dependencies, thereby further enhancing the ability to obtain
horizontal direction information of the network and obtain more local feature information.

2.2.3. Fusion Attention Upsampling Module

The main idea of the FAUM module is that it can integrate context information of
different scales [23,38], and at the same time, it can provide better pixel level attention [39]
for high-level feature maps, so as to enhance the local search ability of the horizontal
direction and location of the model, and enhance the local details of the building and water
body segmentation map. The whole module structure is shown in Figure 5.

3 3Conv 3 3Conv:1 1KF Conv :1 1VF Conv

 Batch Norm  Batch Norm

Re LU Re LU

Soft max

y x

:1 1QF Conv

q k v

H W d  H W d  H W d 

H W d 

* *H W H W
Tqk

* *H W H W H W d 

z
H W d 

p

H W d 

H W d 

Figure 5. Fusion attention upsampling module.

FAUM module is a unit used for decoding. Specifically, we perform 3× 3 convolution
operation on low level feature x to reduce the number of channels of CNN feature graph
and realize feature mapping x̂ of dimension H ×W × d. The calculation process is shown
in Equation (9) below.

x̂ = γ(β(F3(x))), (9)

where F3 is 3× 3 convolution,β is normalization, and γ is ReLU function. Then the attention
mechanism is introduced, and the advanced feature graph y predicts a channel mask Z
through attention. In order to reduce the calculation burden, three 1× 1 convolutions,
FQ , FK and FV , are defined in the initialization function. The whole attention prediction
is essentially an addressing process. Given a task related query vector q, the attention
distribution with the key value vector k is calculated and added to the value matrix vector
v to predict a channel mask Z. The correlation is calculated by calculating the dot product
of q and k, and the attention weight is calculated by softmax. The transposed k is multiplied
by q to obtain the attention matrix A ∈ R(H×W×d) between two pairs of each position, and
then the softmax operation is performed to obtain Â ∈ R(H×W×d), and finally the v matrix
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is multiplied to output the channel mask Z ∈ R(H×W×d). The whole calculation process is
shown in Equation (10).

Â = so f t max(A) = qkT , Z = vÂ (10)

Then the output vector Z is multiplied by the low level feature to obtain a new feature p,
namely p = x̂Z, p ∈ R(H×W×d). High level feature y goes through 3× 3 After convolution,
batch normalization and ReLU, realize feature mapping ŷ of dimension H×W × d, namely
ŷ = γ(β(F3(y))). Finally, the new feature p and the high level feature y are added and
gradually upsampled.

3. Experiment and Result Analysis

In order to verify the effectiveness of the local feature search network (DSFNet) pro-
posed in this paper, we conducted experiments on our own land cover dataset and Mas-
sachusetts Buildings Dataset to verify the accuracy and generalization of the model. The
quantitative analysis indexes of the experiment were pixel accuracy (PA), category av-
erage pixel accuracy (MPA), and average intersection to union ratio (MIoU). The model
proposed in this paper is compared with the current excellent semantic segmentation mod-
els BisenetV2 [40], ExtremeC3 [41], FCN8s, PAN, PSPNet, Unet, SegNet [42], EsNet [43],
EDANet [44], LinkNet [45], DeeplabV3plus [46], OcrNet [47], MSResNet [48]. The experi-
mental results show that the neural network model proposed in this paper is superior to
the comparison model in many evaluation indexes, which proves that the local feature
search network (DSFNet) proposed in this paper has better segmentation effect in remote
sensing image building and water body segmentation.

3.1. Datasets
3.1.1. Landcover Dataset

The main data set comes from Google Earth, which presents satellite photos, aerial
photos and GIS in the form of 3D models. Capture several images on Google Earth with a
resolution of 1500× 800. These large maps have a large space span and various shooting
angles. They roughly fall into the following categories: villas in North America, villages
and forests in Europe, Britain, France and Germany, and coastal rivers in China. To sum up,
the coverage of the data set, including many complex terrain environments, realistically
simulates the real land cover segmentation task scenarios, and fully examines the real
detection capability of the model. These pictures are manually marked as three types of
objects: buildings (white, RGB [255,255,255]), waters (blue, RGB [0,180,255]), and back-
grounds (black, RGB [0,0,0]). The dataset is composed of 2000 large 1500× 800 images cut
into 224× 224 images. The training data diagram is shown in Figure 6. The corresponding
colors of the categories in Figure 6 are shown in Table 2.

                             

( )a

( )b

:Legend Build Water Background

                             

( )a

( )b

:Legend Build Water Background

Figure 6. Examples from land cover images and labels. In row (a), the red circle area is water, and
the feedback spectrum of water body in different areas will be different. In line (b), the roads and
containers marked with yellow circles are easily misjudged as buildings.
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Table 2. The RGB values of dataset labels.

Class R G B

Void 0 0 0
Build 255 255 255
Water 0 180 255

The semantic segmentation of the dataset is difficult. In addition to the multi-resolution
and spatiotemporal span mentioned above, there are also strict definitions of three types of
objects. The height difference of buildings is large, and the shadow casting of high buildings
and trees will affect the edge contour segmentation of low buildings; Some waters will feed
back different spectral information in different spaces. These remote sensing images with
orthographic projection may cause indiscernibility in appearance. Objects circled by yellow
lines look like low buildings, but they are actually roads and rows of storage boxes. To
sum up, the entire dataset is complex and difficult to learn, and it is also difficult to make
extremely accurate land cover segmentation and perfect target classification. Therefore, the
proposed model has a better segmentation effect than the comparison model.

When processing this dataset, all images are segmented from left to right and from
top to bottom, and there is no regional overlap during segmentation. As a result, more
than 1500 images in total are selected for data enhancement [49] such as rotation and
folding of 200 more complex images. Re-clean the collected data set, remove the solid color
image with only black background in the label, and finally obtain the data set of more than
2000 images. Then they are randomly divided into training sets and test sets according to
the ratio of 7:3.

3.1.2. Massachusetts Buildings Dataset

To verify the generalization capability of the proposed model, we used the Mas-
sachusetts Building Data Set.The Massachusetts Building Data Set consists of 151 aerial
images of the Boston area, each with a pixel of 1500× 1500 and an area of 2.25 square
kilometers.Therefore, the entire dataset covers about 340 square kilometers. The target map
is obtained by rasterizing the building contour lines obtained from the OpenStreetMap
project. The Boston area selected in this paper is used for experiments. The data set is
named Boston-A, which contains 64 original images and an average size of 1500× 1500. A
in Figure 7 is the original image, and b in Figure 7 is the label. Boston—A consists of two
categories: architecture and background. See Table 3 for the corresponding colors of the
categories in Figure 7.

( )a ( )b

:Legend Build Background

( )a ( )b

:Legend Build Background

Figure 7. Boston—A data display; (a) Original image (b) Label image.
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Table 3. The RGB values of dataset labels.

Class R G B

Void 0 0 0
Build 255 255 255

Since the original image size of Boston A is too large to directly input model training,
we take the original data image (size 1500× 1500) cut into 256× 256 small size pictures,
2176 pictures obtained, of which the size is 256× 256. Finally, a new data set is obtained.
There are 1523 pictures in the training set and 653 pictures in the test set.

3.2. Implementation Details

We take pixel accuracy (PA), category average pixel accuracy (MPA), and average
intersection/merge ratio (MIou) as the evaluation indicators of the model. The network
training parameters are as follows: use a single GTX3070 graphics card on the Windows
platform for reasoning calculation. The model is built using the deep learning framework
pytorch. All models have been trained for 300 epochs, with an initial learning rate of 0.001
and a batch size of 3. Set the weight attenuation of Adam optimizer to 0.0001, and the other
parameters are the default values.

3.3. Ablation Study of Attention Module

In the ablation experiment, DAM modules are added to the second, third and fourth
layers of the decoding path, allowing the attention module to capture the long-term
dependence along one spatial direction and save the location information along the other
spatial direction, which helps the network locate the target of interest more accurately.
SPM module is added in the first layer to capture a wide range of context information. At
the same time, the fusion attention up sampling module FAUM is used as the decoding
block to fuse the details between channels, providing better pixel level attention for high-
level feature maps. In order to verify the effectiveness of the above modules, several
ablation experiments were carried out on the master dataset. As shown in Table 4, the
combination of different modules with ResNet18 as the baseline network significantly
improves the network performance. Specifically, compared with the baseline, only adding
FAUM modules has brought 8.16% improvement to MIoU. These results strongly prove the
advantages of decoding paths constructed with FAUM modules. Only adding SPM and
FAUM modules further improves the network performance, bringing 6.81% improvement
to MIoU, and only adding DAM and FAUM modules brings 6.36% improvement to MIoU.
After all the modules proposed in this paper are combined, compared with the best MIoU
results of other methods, the classification capacity is increased by 2.89%, with the highest
value reaching 83.73%.

Table 4. Performance Comparison of DSFNet (Ours) and Different Attention Modules in Evalua-
tion Indicators.

Method DA SPM FAUM MPA(%) PA(%) MIoU(%)

Baseline 83.75 86.21 72.68
Baseline+FAUM X 89.92 89.78 80.84
Baseline+SPM+FAUM X X 88.62 88.63 79.49
Baseline+DA+FAUM X X 89.25 88.69 79.04
DSFNet(Ours) X X X 91.52 91.03 83.73

In order to further analyze the impact of different modules, several representative
examples of land cover classification results are compared, as shown in Figure 8. The
baseline sensor without decoding path only gives the approximate location of the land
cover category, and it is difficult to identify small-scale ground objects (Figure 8b). As
a decoding module, FAUM module improves the ability of DSFNet to recognize spatial
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details, but it has poor performance in accurately obtaining building and water area edge
information (Figure 8c). SPM module and DA module improve the search ability with low
class variance characteristics (Figure 8d,e) to a certain extent, which proves their ability to
capture remote spatial dependencies and utilize inter channel dependencies. As shown in
Figure 8f, DSFNet with baseline and integration of all modules has significantly improved
in identifying the confusion features and spatial details between classes, and the local
feature information of buildings and water bodies is clearer. In general, each module used
in DSFNet enables the network to capture remote spatial dependencies, read local sensitive
information through direction and location, enable the model to more accurately locate and
identify the target area, and ultimately improve the classification capability.

(a)

(b)

(c)

(d)

(e)

(f)

:Legend Build Water Background

Figure 8. Comparison of visual effects of ablation experiment. (a) Overlay of original image
and label; (b) Baseline; (c) Baseline+FAUM; (d) Baseline+FAUM+SPM; (e) Baseline+FAUM+DAM;
(f) DSFNet (Ours).

Comparison of the Effects of Thermal Maps of Ablation Experiments

Figure 9 shows the comparison of thermographic effects of different modules added
in the ablation experiment. Orange red is the key part of the module, and yellow green and
blue are the secondary parts. The first behavior module of each sample focuses on the effect
of water, and the second behavior module focuses on the effect of buildings. It can be seen
from column (b) that only baseline can not pay enough attention to water and buildings.
After the FAUM module is added, the water area and building boundaries become clearer.
From column (d), it can be seen that after only the SPM module is integrated, the local
information of water area and buildings is supplemented. From column (e), it can be seen
that only the color of the focus area of the integrated DAM module is deepened, and the
water area and the interior of the building are supplemented. The method proposed in
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(f) makes the model pay more attention to the target area, especially the local information,
so that more accurate target location and boundary segmentation can be obtained.

( )a ( )b ( )c ( )d ( )f( )e

Figure 9. Comparison of the effects of thermal maps of ablation experiments. (a) Test image; (b) Base-
line; (c) Baseline+FAUM; (d) Baseline+FAUM+SPM; (e) Baseline+FAUM+DAM; (f) DSFNet (Ours).

3.4. Experimental Results and Visual Analysis on the Master Data Set

In order to verify the effectiveness of our model, we conducted experiments on the
land cover dataset, and the indicators on the test set exceeded the existing model. The
specific experimental results are shown in Table 5, and the visual contrast effect is shown in
Figures 10 and 11. The comparison models include BisenetV2, ExtremeC3, FCN8s, PAN,
PSPNet, Unet, SegNet, EsNet, EDANet, LinkNet, DeeplabV3plus, OcrNet, and MSResNet.
The backbone networks of FCN8s, PAN, DeeplabV3+, PSPNet and MSResNet are VGG16,
ResNet-50, ResNet-101, ResNet-50 and ResNet-34 respectively. The backbone networks
should be consistent with the original text as much as possible.

Table 5. Experimental results of land cover test set.

Method Backbone MPA (%) PA (%) MIoU (%)

FCN8s VGG16 80.99 81.71 65.35
SegNet - 87.06 87.78 75.23
LinkNet - 88.95 88.30 77.80
PAN ResNet-50 87.11 89.12 77.86
EDANet - 87.04 89.25 77.86
ExtremeC3 - 88.60 88.36 78.75
DeepLapV3+ ResNet-101 88.88 86.44 79.20
BiseNetV2 - 89.17 89.50 79.47
EsNet - 90.19 88.95 79.65
UNet - 90.46 89.35 79.98
OcrNet - 89.39 90.06 80.49
PSPNet ResNet-50 88.83 89.49 80.85
MSResNet ResNet-34 90.79 90.63 82.07
DSFNet(Ours) ResNet-18 91.52 91.03 83.73

It can be seen from Table 5 that the DSFNet, MPA, PA and MIoU proposed in this
paper obtain 91.52%, 91.03% and 83.74% respectively. The network proposed in this paper
strengthens the importance search between local features, effectively reads local information
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through direction and location, so that the model can more accurately locate and identify
the target area, thus reducing the misjudgment of buildings in remote sensing images
and the loss of water area information. All three indicators exceeded the comparison
network. The lowest index is the FCN-8s with VGG16 as the backbone network. The PA
and MIoU reach 81.71% and 65.35% respectively. Compared with FCN8s, the index of
SegNet obtained by modifying VGG-16 based on FCN has a certain improvement, with
PA of 87.78% and MIoU of 75.23%. LinkNet uses each encoder and decoder to connect
to recover the spatial information lost in the downsampling operation. Compared with
SegNet, the segmentation accuracy is improved to a certain extent. The PA and MIoU are
88.30% and 77.80% respectively. PAN uses the attention mechanism and spatial pyramid
structure to extract dense features. Compared with LinkNet, PA and MIoU have a certain
improvement, 89.12% and 77.86% respectively. The segmentation accuracy of EDANet
using asymmetric convolution is the same as that of PAN, which is not improved, but
slightly higher than that of PAN in PA. Compared with EDANet, ExtremeC3Net based on
improved C3 module has a certain improvement in segmentation accuracy, with a MIoU
of 78.75%.

DeepLabV3+uses expansion convolution to obtain larger receptive field, and the seg-
mentation accuracy MIoU is improved by 0.45% compared with ExremeC3Net. BiseNetV2,
which uses auxiliary loss to make the network converge better in shallow layers, has a
certain improvement in segmentation accuracy compared with DeepLabV3+in PA and
MIoU, which are 89.50% and 79.47% respectively. The nearly symmetric decoder encoder
architecture is adopted for the EsNet network, and the segmentation accuracy MIoU is
improved to a certain extent compared with BiseNetV2, with a MIoU of 79.65%. Compared
with EsNet, the segmentation accuracy of UNet on PA and MIoU has improved to a certain
extent, which are 89.35% and 79.98% respectively.

OcrNet uses the representation of corresponding object classes to calculate the repre-
sentation of object regions. Compared with UNet, the segmentation accuracy of PA and
MIoU has improved to a certain extent, 90.06% and 80.49% respectively. PSPNet uses
depth convolution network to extract advanced feature information, and uses pyramid
module for multi-scale fusion. Compared with OcrNet, the MIoU of segmentation accuracy
is improved to a certain extent, and the MIoU is 80.85%. The MIoU index of FENet on
the test set exceeds the 12 models compared, and the MIoU index is 2% higher than the
highest PSPNet.

In order to facilitate the visual comparison of model prediction results, we visualized
the prediction results of different models and obtained Figures 10 and 11. Figure 10 shows
a total of six prediction graphs, and each column in Figure 10 represents the prediction
graph of a model. Figure 10 has 8 columns in total. Column a is the superposition of
images and labels, and column b, c, d, e, f, g, h correspond to FCN8s, SegNet, LinkNet,
PAN, EDANet, ExtremeC3, DSFNet (Ours) respectively. From the column of b, we can
see that the neural network proposed in this paper has good performance in piecewise
noise control. The segmentation realizes the accurate extraction of houses and waters, and
greatly reduces the misclassification of houses and waters. This achievement is attributed to
DSFNet (ours), which makes up for the sensitive information of local locations that is easily
ignored by existing networks, and reads local sensitive information fully through directions
and locations, thus avoiding the establishment of most unnecessary connections between
locations that are far away from each other, so as to improve the ability to capture remote
spatial dependencies and make use of inter channel dependencies, and help to achieve
accurate classification. It is not difficult to see that there will be obvious misjudgments
from columns b, c, d, and e, The local feature search network (DSFNet) proposed by us can
overcome these difficulties and accurately classify the background and water. e. Although
the columns f and g basically realize the classification of background, water area and
buildings, their edges are blurry and water is wrongly identified as a building. From the
circles and boxes marked in the figure, we can see that DSFNet has better ability to express
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local details, thanks to the network’s ability to search for local features, thus giving mask
images more details.

( )a ( )b ( )c ( )d ( )e ( )f ( )g ( )h

:Legend Build Water Background

( )a ( )b ( )c ( )d ( )e ( )f ( )g ( )h

:Legend Build Water Background

Figure 10. Effect comparison of land cover test set; (a) Overlay of original image and label; (b) FCN8s;
(c) SegNet; (d) LinkNet; (e) PAN; (f) EDANet; (g) ExtremeC3; (h) DSFNet (Ours).

Figure 11 shows a total of six prediction graphs. Each row in Figure 11 represents the
prediction graph of a model. Figure 11 has 8 rows in total. Column a is the superposition
of images and labels, and columns b, c, d, e, f, g, h, and i correspond to DeepLapV3+,
BiseNetV2, EsNet, UNet, OcrNet, PSPNet, MSResNet, and DSFNet (Ours) respectively.
Because the models compared in Figure 11 want to improve the accuracy of the models
compared in Figure 10, the classification effect is a little better than that of the models
compared in Figure 10. However, lines b, d, and e still clearly misjudge the water area as a
building, lines b and c even judge the building as a water area, and line g misjudges the
water area as a background. Our local feature search network (DSFNet) model alleviates
these problems, The basic contours of buildings and water areas are basically extracted,
which effectively solves the problems of misjudgment of buildings and disconnection of
water areas, and endows the image with more detailed local features. This is the result of
the fusion of the direction and location feature information extracted by SPM and DAM
modules with the backbone network feature. The fused feature map contains not only rich
location information of the backbone network, but also more local features of horizontal
direction and location, The problem of unclear water area and buildings is effectively
improved. The DSFNet network proposed by us fully captures the horizontal direction and
local location information, provides rich semantic information feature maps, and realizes
the effective extraction of building and water area contours.
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( )i
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Figure 11. Effect comparison of land cover test set. (a) Overlay of original image and label;
(b) DeepLapV3+; (c) BiseNetV2; (d) EsNet; (e) UNet; (f) OcrNet; (g) PSPNet; (h) MSResNet;
(i) DSFNet (Ours).

Comparison of Thermodynamic Diagram Effects of Different Models

Figure 12 shows the comparison of the effects of thermal maps of different models.
The first line of each sample focuses on the water area, and the second line focuses on
the buildings. The orange red area is the focus of the model, and the yellow green and
blue are the secondary parts. According to the results of the thermal map, SegNet did
not pay enough attention to the water area and the internal information of the building,
which also led to the poor display effect. LinkNet, EDANet, EsNet and PSPNet pay more
attention to the target area, but pay less attention to the boundary and local information.
Our proposed local feature search network (DSFNet) can significantly enhance the focus on
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local and boundary information, so it can obtain more accurate target location and clearer
boundary segmentation.

( )a ( )b ( )c ( )d ( )f( )e ( )g( )a ( )b ( )c ( )d ( )f( )e ( )g

Figure 12. Comparison of thermodynamic diagram effects of different models. (a) Test image;
(b) SegNet; (c) LinkNet; (d) EDANet; (e) EsNet; (f) PSPNet; (g) DSFNet (Ours).

3.5. Massachusetts Building Data Set Generalization Experiment Results and Visual Analysis

Since it is difficult for a single data set to reflect the generalization performance of the
model, we use the Massachusetts building data set to test the generalization performance
of the model. The experimental results on the dataset are shown in Table 6. It can be seen
from Table 6 that the segmentation accuracy PA and MIoU of the neural network DSFNet
proposed by us reach 93.46% and 84.69% respectively. The above indicators exceed the
comparative models, proving the effectiveness and good generalization ability of the model
proposed in this paper.

Table 6. Experimental Results of Massachusetts Building Test Set.

Method Backbone PA (%) MIoU (%)

SegNet - 91.70 81.83
BiseNetV2 - 92.64 83.00
PAN - 92.83 83.08
PSPNet - 92.70 83.47
DeepLapV3+ ResNet-101 93.33 84.35
DSFNet(Ours) ResNet-18 93.46 84.69

In order to intuitively compare the segmentation effect of the model, we show the
effect picture in Figure 13. Through comparison, we can find that our proposed local
feature search network (DSFNet) fully captures the horizontal direction and local location
information, and greatly reduces the misclassification of buildings. Column g in Figure 13
is the effect picture of the building we predicted. It can be seen from the red circles and
boxes in the picture that compared with other comparison models, the local features of
the building we proposed are clearer, and there is no large area of misjudgment and
noise. This is due to the excellent search ability of the model for local features. This is the
result of the integration of the DAM module and SPM module with the backbone network
feature map through the FAUM module. The fused feature map contains not only the rich
location information of the backbone network, but also the horizontal direction and location
information of the hidden feature map, which realizes the effective extraction of building
contour and local features, and fully proves the effectiveness and good generalization
ability of the model proposed by us.
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( )a ( )b ( )c ( )d ( )e ( )f ( )g
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:Legend Build Background

Figure 13. Visual effect comparison of Massachusetts building test set. (a) Overlay of original image
and label; (b) SegNet; (c) BiseNetV2; (d) PAN; (e) PSPNet; (f) DeepLapV3+; (g) DSFNet (Ours).

4. Conclusions

This paper presents an application of local feature search network in the segmentation
of buildings and water bodies in remote sensing images.The experimental results of our
method on building and water data sets show that compared with the existing classical
semantic segmentation model, the proposed method achieves 2.89% improvement on
the indicator MIoU, and the final MIoU reaches 83.73%.Our network has the following
advantages: (1) A discarding attention module (DAM) is proposed, which reads sensitive
information through direction and location, discards irrelevant information, and enables
the model to locate and identify the target area more accurately. It can not only capture
cross channel information, but also integrate spatial coordinate information efficiently by
embedding location information into channel attention, so that mobile networks can obtain
larger regional information without introducing large overhead. So as to improve the
misjudgment of large area buildings and local information loss in the process of water area
segmentation. (2) The horizontal direction and position sensitive information extracted by
the discarded attention module (DAM) and the slice pooling module (SPM) are effectively
fused using the fused attention upsampling module (FAUM). This enables backbone
networks to avoid establishing most unnecessary connections between locations that are far
away from each other, so as to improve the ability to capture remote spatial dependencies
and utilize inter channel dependencies, enhance the search ability of local information
in the network, and ultimately improve the segmentation accuracy. (3) Several ablation
experiments under different combination settings were conducted on the land cover dataset.
The experimental results show that the introduced module can effectively improve the
classification performance, and the optimization strategy can improve the stability and
accuracy of the training process. To sum up, the network proposed by us has achieved good
performance in land cover classification. In the future, we will ensure the effectiveness
of network classification and effectively reduce the complexity of the network, so as to
achieve fast and accurate land cover classification.
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