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Abstract: This study considers a parallel dedicated machine scheduling problem towards minimizing
the total tardiness of allocated jobs on machines. In addition, this problem comes under the category
of NP-hard. Unlike classical parallel machine scheduling, a job is processed by only one of the
dedicated machines according to its job type defined in advance, and a machine is able to process at
most one job at a time. To obtain a high-quality schedule in terms of total tardiness for the considered
scheduling problem, we suggest a machine scheduler based on double deep Q-learning. In the
training phase, the considered scheduling problem is redesigned to fit into the reinforcement learning
framework and suggest the concepts of state, action, and reward to understand the occurrences
of setup, tardiness, and the statuses of allocated job types. The proposed scheduler, repeatedly
finds better Q-values towards minimizing tardiness of allocated jobs by updating the weights in
a neural network. Then, the scheduling performances of the proposed scheduler are evaluated by
comparing it with the conventional ones. The results show that the proposed scheduler outperforms
the conventional ones. In particular, for two datasets presenting extra-large scheduling problems, our
model performs better compared to existing genetic algorithm by 12.32% and 29.69%.

Keywords: machine scheduling; deep reinforcement learning; parallel dedicated machines; sustain-
able manufacturing; total tardiness objective

1. Introduction

The parallel dedicated machine scheduling (PDMS) problem is of paramount impor-
tance both for academic researchers and practitioners, as scheduling is getting important,
especially in large-scale industrial manufacturing, such as shipbuilding and aircraft [1,2].
In particular, since this scheduling problem is associated with the photolithography stage,
which is a key point for enhancing productivity in semiconductor manufacturing, an
effective scheduling method has been recently required [3]. Unlike a parallel machine
scheduling problem, the jobs processed by a machine are limited according to job types in
a PDMS problem [4]. A setup task is necessary on a machine before it processes a job with
a different job type compared to that of a job processed just before on the machine.

For the PDMS problem considered in this study, each job is associated with a job
type, processing time, and due date, and it can be processed by only one of the dedicated
machines to its job types defined in advance. A dedicated machine is able to process one
job at a time at most.

It is a challenging problem to develop a scheduling method to minimize the tardiness
and the number of setups of jobs at the same time. The minimization of the total tardiness
objective is a well-known NP-hard scheduling problem [5] and is often considered the most
important performance measure in the manufacturing environment since the products
should be released before their due dates, which are set by customers [6]. Allocations of
jobs on machines that only consider minimizing tardiness may utilize whole machines and
tend to process jobs with various types. In that case, the available capacity loss of machines
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increases from 20 percent to 50 percent, which caused by unnecessary setups [7]. On the
contrary, as available machines in terms of setup state are not enough at a particular time,
jobs with identical job types might be allocated on a limited number of machines, which
results in the tardiness of these allocated jobs and is likely to be increased eventually.

Several priority rule-based algorithms have been studied to minimize total tardiness
for parallel machine scheduling problems [4,8–10]. Recently, a variable neighborhood
search algorithm was applied to search for a schedule to minimize total weighted tardiness
in a parallel machine scheduling problem with eligibility constraints, and it is better than
a mixed integer linear programming and existing models [11]. However, the scheduling
performances of these algorithms are not guaranteed in a real manufacturing environment
since they simply consider the preference of jobs and machines in a myopic manner. In
the meantime, meta-heuristics, such as the genetic algorithm, tabu search, ant colony, and
simulated annealing, were proposed [12–15]. In addition, a hybrid evolutionary algorithm
has been recently proposed to resolve a parallel machine scheduling problem with resources
constrained with setup times [16]. Although such methods successfully search for a near-
optimal schedule, they may also not be practical due to the exhaustive computation time
for yielding schedules.

Some supervised learning-based schedulers using a neural network (NN) were suggested
to yield a superior schedule by exploring wider solutions in the training phase [17]. For the
parallel machine scheduling problem with sequence-dependent setups that have different
setup times depending on the pair of a job type and a machine [18], an NN-based scheduler
was proposed, and its scheduling performances outperform the heuristic schedulers by 6%.
Although NN-based schedulers are much more effective compared to heuristic schedulers in
a fast manner, the obtained schedule may not be satisfactory since a neural-network-based
scheduler only uses the training instances acquired from a simple heuristic scheduler.

In recent years, Q-learning techniques have been adopted to obtain high-quality schedules
in terms of minimizing total tardiness for parallel scheduling problems [19,20]. Q-learning-based
schedulers are designed to choose one of the priority rules as an action that determines the allo-
cation of a job on a machine. They exhibit better performances compared to the several heuristic
schedulers. More recently, deep Q-network-based schedulers were suggested for semiconduc-
tor manufacturing applications [21,22]. A deep deterministic policy gradient (DDPG)-based
scheduler was also proposed to minimize weighted tardiness in the stochastic parallel machine
scheduling problem [23]. Unlike [19,20], these studies developed multi-agent approaches where
each agent considers the allocation of a job on a machine, and they successfully improved
performances by reducing the learning complexity.

However, such methods still have some limitations when solving the scheduling prob-
lem considered in this paper. The well-known overestimation problem of deep Q-network
causes allocation uncertainty on one of the dedicated machines or increasing tardiness of
allocated jobs [24]. Designing actions based on widely known priority rules is also difficult
considering the allocation of the jobs on one of the dedicated machines due to allocation
uncertainty problem. The allocation uncertainty indicates that a machine is not able to
accommodate job types that are not being pre-designed in advance.

Therefore, to overcome the limitations mentioned above, we newly propose a sched-
uler, called the DDQN scheduler, based on double deep Q-learning to address the PDMS
problem with a sequence-independent setup time to minimize the total tardiness of allo-
cated jobs. The proposed scheduler searches for the allocation patterns between jobs and
machines to minimize the tardiness of a job for the PDMS problem during the training.

Specifically, a state is designed to represent the relationships between the possible
allocations of candidate jobs and machines in terms of occurrences of setup and tardiness.
By using this state design, the proposed model is capable of determining allocation based
on how much this allocation possibly contributes to the tardiness caused by candidates in
the future. The reward is set to be a negative value based on tardiness and the allocation
possibility of jobs on machines to both minimize tardiness and ensure the allocation of
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jobs to machines. The training algorithm is also designed to stably learn by overcoming an
infeasible action problem [25].

Some novelties of our study and the research gap are the following:

(1) A new state and reward are designed to capture the allocation impact for the candidates
in the future and ensure the allocation of jobs on machines in the PDMS problem;

(2) Unlike existing deep Q-learning methods, the proposed scheduler is able to success-
fully train by overcoming an infeasible action selection problem causing an overfitting
problem by the suggested training algorithm;

(3) The numerical experiments are conducted by using eight datasets consisting of small,
medium, large, and extra-large scheduling problems demonstrate that the proposed
scheduler outperforms the previous ones in terms of total tardiness. In particular, for
the dataset including extra-large scheduling problems, our scheduler obtains quite
effective performances compared to existing scheduling methods.

The rest of this article is organized as follows. In Section 2, the considered PDMS
problem is defined. Section 3 introduces the proposed framework, the training, and the
scheduling phases. Next, numerical experiments are conducted to compare the scheduling
performances between the proposed scheduler and the conventional schedulers. Finally, in
Section 5, the conclusion and some future directions are discussed.

2. Problem Definition

A PDMS problem composed of NJ jobs, where the jth job is denoted as Jj. Jj consists
of job type ej, processing time pj, and due date dj. Uj is a set of dedicated machines that
can allocate job Jj. Each job is processed by one of NM machines where the ith machine is
denoted as Mi.

When the processing of job Jj is completed on machine Mi, its completion time is
denoted as cj. Furthermore, when the processing of a job on a machine is completed after its
due date, the tardiness of the job occurs. Specifically, the tardiness of job Jj on machine Mi,
τj is defined as Equation (1). Finally, for a PDMS problem, the total tardiness of a schedule
is calculated by summing each tardiness of allocated jobs obtained by using Equation (1).

τj = max(cj − dj, 0) (1)

The mathematical formulation is provided to explain the PDMS considered more clear
based on the previous research [26]. Two decision variables, such as xi,l,j and xi,0,j, are
required. If job Jj is processed after job Jl on machine Mi, xi,l,j is one, otherwise, it is zero. If
job Jj is the first or last job to be processed on machine Mi, xi,0,j is one, otherwise is zero.

Minimize ∑
NJ
j=1 τj

Subject to
n

∑
l=0
l 6=j

m

∑
i/∈Uj

xi,l,j = 1, ∀j = 1, 2, . . . , NJ (2)

n

∑
l=0
l 6=j

m

∑
i/∈Uj

xi,l,j = 0, ∀j = 1, 2, . . . , NJ (3)

n

∑
l=0
l 6=b

xi,l,b −
n

∑
j=0
j 6=b

xi,b,j = 0, ∀b = 1, 2, . . . , NJ and i = 1, 2, . . . , NM (4)

cj ≥ cl +
m

∑
i=1

xi,l,j·
(

sl,j + pj

)
+ T·

(
m

∑
i=1

xi,l,j − 1

)
, ∀l = 0, 1, . . . , NJ and j = 1, 2, . . . , NJ (5)

n

∑
j=0

xi,0,j = 1, ∀i = 1, 2, . . . , NM (6)
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xi,l,j ∈ {0, 1}, ∀l = 0, 1, . . . , NJ , j = 0, 1, . . . , NJ , and i = 1, 2, . . . , NM (7)

c0 = 0 (8)

cj ≥ 0, ∀j = 1, 2, . . . , NJ (9)

The objective is to minimize the total tardiness of allocated jobs on machines. Con-
straints (2) and (3) restrict that each job should be processed on a dedicated machine. Each
job must neither be preceded by more than one job according to Constraint (4). From
Constraint (5), the completion time of a job on each machine must be at least larger than
or equal to the sum of completion time of the previous job, setup time between two jobs,
and processing time of the job. T is very large value. Constraint (6) restricts the number of
jobs processed, only one job should be processed first at each machine. Constraints (7–9)
indicate the conditions of decision variables. Particularly, Constraint (9) initializes the
completion time of a dummy job to be zero.

3. Proposed Machine Scheduler
3.1. Research Framework

The differences between deep learning and reinforcement models are the following
points. First, the deep learning model requires many training instances, but the reinforce-
ment learning model is able to train without them. Second, the deep learning model utilizes
a supervised learning mechanism to find hidden patterns between input and output values,
but reinforcement learning trains through trial and error by searching for a policy able to
obtain maximized rewards. Finally, while the design of input and output values is required
for the training of a deep learning model, state, action, and reward are needed for the
training of a reinforcement learning model.

The overall framework of the proposed scheduler, which is based on double deep
Q-learning, is presented in Figure 1. It consists of two phases, the training and scheduling
phases. In the training phase, many PDMS problems each of which contains NJ jobs with
job types, processing times, and due dates are prepared. The initial setup status of each
machine is set randomly.
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Figure 1. Overall framework of the proposed scheduler.

In the training phase, for a given PDMS problem, the job selector chooses a job by
using the heuristic rules combined with the least slack time (Slack) and the earliest due
date (EDD) is applied to simply determine the selected job for each time [27]. A simulator
plays an environment role in the proposed framework. Whenever a job is selected by the
job selector, the simulator provides a state to the Q-network of the proposed scheduler.
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Then, the simulator receives an action determined by the Q-network and allocates the job
on a machine based on the action.

After allocation, the next state and a reward are observed. The reward is designed to
consider both the allocation preference of a job on a machine and its possible tardiness. If
the allocation of a job on a machine is infeasible, the reward is calculated based on both
this status and the tardiness of the allocated job; otherwise, it is obtained based on only
tardiness. The set of allocation transitions, which consist of state, next state, action, and
reward, are stored in a scheduling history buffer and utilized to alleviate the correlations
for training purposes [28].

Several sets of allocation transitions are randomly selected. By using the selected
allocation transitions, the Q-network of the proposed scheduler attempts to search for the
optimized weights in terms of the rewards by gradually updating and cyclically replicating
the target Q-network of the proposed scheduler as suggested in [29].

In the scheduling phase, the trained Q-network of the proposed scheduler is only
utilized without the target Q-network. Given a PDMS problem, this scheduler acts to
allocate each selected job by the job selector on one of the machines. The schedule is
obtained after finalizing the allocations of all the jobs considered, and the performance of
each schedule is then evaluated in terms of total tardiness.

3.2. State, Action, and Reward

A state consists of the details of the current snapshot regarding to candidate jobs
and machines, as shown in Table 1. Here, the state is designed to capture the potential
impact caused by all the possible pairs of k candidate jobs and NM machines. This state is
beneficial to accurate observation and the action of maximizing reward since it contains all
the combinations of pairs between k candidate jobs and NM machines in terms of setup,
allocation possibility, and expected tardiness.

Table 1. Features of a state.

Notation Descriptions Dimension

fk,NM

Occurrences of setups between
k candidate jobs for NM machines Rk×NM

vk,NM

Statuses of allocations between
k candidate jobs and NM machines Rk×NM

Specifically, the first feature in Table 1 represents whether a setup occurs or not for each
pair of a job and a machine comprising k candidate jobs and NM machines as fk,NM . If a
setup is conducted, its value is one, otherwise, it is zero. This feature enables the proposed
scheduler to understand a possible setup expected in the next step when a particular
allocation is determined. Next, the allocation availabilities for each pair of k candidate
jobs and NM machines are considered and denoted as vk,NM . Based on this feature, the
proposed scheduler captures possible allocations of k candidate jobs and NM machines.
Finally, the expected tardiness for each pair of k candidate jobs and NM machines is utilized
and denoted as uk,NM . The feature helps the proposed scheduler understand possible
occurrences of tardiness when a particular allocation is conducted. The dimension of each
feature is Rk×NM .

For job Jj, its state is denoted as state sj, the possible action set for the state is defined as
A
(
sj
)
, where ai ∈ A

(
sj
)

means that machine Mi is selected for the job. After the allocation
is conducted, next state sj+1 for a job considered in the next step and reward rj are updated.
Finally, sj, sj+1, ai, and rj are stored as a set of allocation transitions in the scheduling
history buffer.

Reward rj is designed to consider allocation possibility and minimize the tardiness of
a job, defined as follows:

rj =

{
−τj − T, Jj /∈ Uj
−τj, otherwise

(10)
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The total reward is defined by the summing up of the rewards of all the jobs considered,
as follows:

R = −(∑NJ
j=1 ∑NM

i=1 τj + T) (11)

Note that maximizing R is equal to minimizing the rewards of NJ jobs on NM ma-
chines [28].

3.3. Archetecture of the Proposed Scheduler

A deep neural network consisting of an input, five hidden, and an output layers in a
Q-network is applied, as shown in Figure 2. The input values of the proposed Q-network
are a state as presented in Table 1. The output value is the predicted Q-value for an
allocation of a job on a machine. The proposed scheduler is able to produce a schedule
regardless of any number of jobs and processes since it is independently related to the job
and process.

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 15 
 

Table 1. Features of a state. 

Notation Descriptions Dimension 

𝑓𝑘,𝑁𝑀
 

Occurrences of setups between  

𝑘 candidate jobs for 𝑁𝑀 machines 
ℝ𝑘×𝑁𝑀 

𝑣𝑘,𝑁𝑀
 

Statuses of allocations between  

𝑘 candidate jobs and 𝑁𝑀 machines 
ℝ𝑘×𝑁𝑀 

Specifically, the first feature in Table 1 represents whether a setup occurs or not for 

each pair of a job and a machine comprising 𝑘 candidate jobs and 𝑁𝑀 machines as 𝑓𝑘,𝑁𝑀
. 

If a setup is conducted, its value is one, otherwise, it is zero. This feature enables the pro-

posed scheduler to understand a possible setup expected in the next step when a particu-

lar allocation is determined. Next, the allocation availabilities for each pair of 𝑘 candidate 

jobs and 𝑁𝑀 machines are considered and denoted as 𝑣𝑘,𝑁𝑀
. Based on this feature, the 

proposed scheduler captures possible allocations of 𝑘 candidate jobs and 𝑁𝑀 machines. 

Finally, the expected tardiness for each pair of 𝑘 candidate jobs and 𝑁𝑀 machines is uti-

lized and denoted as 𝑢𝑘,𝑁𝑀
. The feature helps the proposed scheduler understand possi-

ble occurrences of tardiness when a particular allocation is conducted. The dimension of 

each feature is ℝ𝑘×𝑁𝑀. 

For job 𝐽𝑗, its state is denoted as state 𝑠𝑗, the possible action set for the state is defined 

as 𝐴(𝑠𝑗), where 𝑎𝑖 ∈ 𝐴(𝑠𝑗) means that machine 𝑀𝑖 is selected for the job. After the allo-

cation is conducted, next state 𝑠𝑗+1 for a job considered in the next step and reward 𝑟𝑗 are 

updated. Finally, 𝑠𝑗 , 𝑠𝑗+1, 𝑎𝑖 ,  and 𝑟𝑗  are stored as a set of allocation transitions in the 

scheduling history buffer. 

Reward 𝑟𝑗 is designed to consider allocation possibility and minimize the tardiness 

of a job, defined as follows: 

𝑟𝑗 = {
−𝜏𝑗 − 𝑇, 𝐽𝑗 ∉ 𝑈𝑗
−𝜏𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (10) 

The total reward is defined by the summing up of the rewards of all the jobs consid-

ered, as follows: 

𝑅 = −(∑ ∑ 𝜏𝑗 + 𝑇
𝑁𝑀

𝑖=1
)

𝑁𝐽

𝑗=1
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (11) 

Note that maximizing 𝑅 is equal to minimizing the rewards of 𝑁𝐽 jobs on 𝑁𝑀 ma-

chines [28]. 

3.3. Archetecture of the Proposed Scheduler 

A deep neural network consisting of an input, five hidden, and an output layers in a 

Q-network is applied, as shown in Figure 2. The input values of the proposed Q-network 

are a state as presented in Table 1. The output value is the predicted Q-value for an allo-

cation of a job on a machine. The proposed scheduler is able to produce a schedule re-

gardless of any number of jobs and processes since it is independently related to the job 

and process. 

 

Figure 2. Q-network structure of the proposed scheduler. 

Input layer

Hidden layers

Output layer

102 ×  12
 12 × 2  

2  × 12 

  ×  2
12 ×   

Figure 2. Q-network structure of the proposed scheduler.

Although a Q-network of the DDQN method is similar to the DQN method, the
DDQN method is of more benefit than the DQN method when a model trains since it is
successful to prevent the overestimation problem for the action values [30]. Therefore, the
proposed scheduler is able to stably train for the considered scheduling problem through
the training algorithm of the DDQN method.

In detail, the rectifier linear unit is applied in each hidden layer as an activation
function to overcome the gradient vanishing and radiant exploding problems [31]. Linear
units are used in the output layer of both the proposed Q-network and target Q-network
since the output value is approximating a negative value for each action. RMSProp is
adopted as an optimizer to adjust the weights of the proposed Q-network during the
training [32].

In the reinforcement learning mechanism, the training performances may change
according to hyper-parameter settings such as the number of neurons, learning rate, and
scheduling history buffer size. Accordingly, the random search is implemented to find
optimal hyper-parameters that yield the best performances [33]. The details for hyper-
parameter settings are introduced in Section 4.

3.4. Training and Scheduling Phase

The overall training process of the proposed scheduler is conducted by using Algorithm 1.
Through Algorithm 1, the proposed scheduler is successful in training by overcoming the in-
feasible action problem. We prepared a Q-network with random weights w, target Q-network
with weights ŵ, and scheduling history buffer B with the size of g. Each scheduling problem
is considered an episode, and the algorithm is repeatedly conducted until σ episodes.
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Algorithm 1 Training procedure of the proposed scheduler

Input: PDMS problem
Output: Q-network
1: Initialization: Q-network with random weight w, target Q-network with weight ŵ = w, the
number of episodes σ, and scheduling history buffer B with size g
2: for each o in σ do
3: execute job selector
4: for each j in NJ do
5: calculate sj
6: get ai and machine i based on Algorithm 2
7: if ai is infeasible then
8: get rj
9: sj+1 = sj
10: store set (sj, ai, rj, sj+1) in B
11: select sets randomly (sn, an, rn, sn+1) ∈ B
12: calculate qn = Q(sn, an; w)

13: calculate yn = rn + γ argmax
a

Q̂
(

sn+1, argmax
a

Q(sn+1, a; w); ŵ
)

14: calculate loss L from Equation (12)
15: update weight w by RMSProp and L
16: j← j + 1
17: Else
18: get rj and sj+1
19: store set (sj, ai, rj, sj+1) in B
20: select sets randomly (sn, an, rn, sn+1) ∈ B
21: calculate qn = Q(sn, an; w)

22: calculate yn = rn + γ argmax
a

Q̂
(

sn+1, argmax
a

Q(sn+1, a; w); ŵ
)

23: calculate loss L from Equation (12)
24: update weight w by RMSProp and L
25: end for
26: Replicate ŵ from w
27: end for
28: return Q-network

Given a PDMS problem, the proposed job selector chooses a job by considering the
priorities of jobs (line 3). Then, the allocation task is conducted based on state sj by using
Algorithm 2 that determines an action with the ε-greedy strategy, which is broadly applied
in deep Q-learning [22,34]. This ε-greedy strategy is able to ensure an active distribution of
the adequate exploration during the training of the proposed scheduler [35]. In Algorithm 2,
if random value z is lower than epsilon value ε, action ai is randomly selected; otherwise,
action ai is determined based on the maximum Q-value for action set A

(
sj
)

(lines 3–6).

Algorithm 2 Allocation decision with ε-greedy strategy

Input: State sj
Output: Action ai and machine Mi
1: Sample a random value z ∈ [0, 1]
2: If z < ε then

3: Select action ai randomly from A
(

sj

)
4: ε = ε ∗ θ

5: Else

6: ai = (argmax
a∈A(sj)

Q
(

sj, a; w
)
)

7: Return Action ai and machine Mi
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Based on the current allocation status calculated from action ai, it is checked whether
this action is feasible or not. If action ai for job Jj is infeasible, the proposed Q-network
and target Q-network train until they find the weights able to select the feasible action
for job Jj while considering the tardiness (lines 7–16). Otherwise, they train by the typical
training algorithm of the DDQN method (lines 18–24). In lines 10 and 19, the size of sets
is checked on whether it is g or not. If it equals size g, a new transition set replaces the
oldest transition set. To update weights w, n transition sets are randomly selected, where n
is the number of transition sets, and loss value L is calculated using Q-value qn and target
value yn (lines 11–15 and lines 20–24). Here, γ is defined as a discount factor and used to
consider the uncertainty of future allocation [36]. In detail, mean squared error is used for
loss value L, which is calculated by using Equation (12).

L =
1
n

n

∑
n=1

(qn − yn)
2 (12)

Based on loss value L, the RMSProp optimizer adjusts weight w for n transition sets.
Whenever an episode is completed, weights ŵ of the target Q-network are updated by
replicating weights w of the Q-network for ensuring stable training [29]. The training phase
is completed after processing σ episodes, and the trained scheduler that exhibits the best
scheduling performances in terms of total tardiness is then used in the scheduling phase.

In the scheduling phase, based on the trained scheduler, only lines 3–6 in Algorithm 1
are utilized to produce a schedule for a PDMS problem. The allocation of a job for a machine
is decided by the action, which is determined based on the maximum Q-value without
random action selection in Algorithm 2.

4. Experiments
4.1. Experiment Settings

Eight datasets were prepared varying the number of jobs, the range of processing times,
and the range of due dates, as shown in Table 2. The processing times and due dates for the
jobs are determined by the uniform distribution. The problem size of each dataset was set
to be small, medium, large, and extra-large according to the number of jobs. The number of
job types and machines was 13 and 18, respectively, for the all datasets. Setup time was
2 regardless of a pair of a job type and a machine. Experiments were conducted on a Ryzen
3900X-3.8-GHz (AMD, Santa Clara, CA, USA) PC with 32-GB memory (manufacturer,
location) and GPU-2080 (NVIDIA, Santa Clara, CA, USA).

Table 2. Datasets used in this study.

Datasets Number of
Jobs

Distribution of
Processing Times Distribution of Due Dates

1 30 (2,6) (2,8)
2 50 (2,6) (2,12)
3 70 (2,6) (2,16)
4 100 (2,6) (2,25)
5 30 (4,10) (4,14)
6 50 (4,10) (4,25)
7 70 (4,10) (4,39)
8 100 (4,10) (4,50)

To examine the effectiveness of the DDQN scheduler, conventional rule-based sched-
ulers, such as Slack-EDD, apparent tardiness cost with setup (ATCS), and cost over time
(COVERT) were implemented for reasons of comparison. These rules show good schedul-
ing performances to minimize total tardiness [37,38]. Additionally, deep Q-learning- and
meta-heuristic-based schedulers, named TPDQN [21] and GAS [39], were implemented to
compare the scheduling performances. The state and reward of TPDQN were designed
to be equal to those of the proposed scheduler, but the hyper-parameters and training
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algorithm were the same as it in [21]. For the development of GAS, the hyper-parameters
settings, i.e., the number of generations, the ratios of mutation and crossover, were set to
be identical to the original version. Although a schedule in the real-world environment is
typically generated on an hourly basis, GAS was set to terminate within one hour [40].

The scheduling performances between schedulers were relatively compared by using
relative percentage deviation (RPD) defined as Equation (13), where OBJbest and OBJ are
the best schedule for a scheduling problem in terms of total tardiness and the total tardiness
obtained by the considered scheduler, respectively [41]. The results 0 and 100 were the best
and the worst, respectively.

RPD =
OBJ −OBJbest

OBJbest
× 100 (13)

4.2. Hyper-Parameter Settings

To determine the best hyper-parameters, a random search was conducted according
to the number of hidden layers and neurons, learning late, and scheduling buffer size B by
referring to [28]. Other hyper-parameters included in the number of episodes σ, optimizer,
loss function, decay factor θ, discount factor γ, and epsilon value ε were identical to the set
by 2000, RMSProp, mean squared error, 0.999, 0.99, and 1.0, respectively, through repeat
experiment trials.

Figure 3a-for the structures of a network (500, 200) and (1024, 256, 32), total tardiness
changes sensitively until 100 episodes, but it becomes similar after 1000 episodes. The total
tardiness of others continuously decreases.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 15 
 

Figure 3a-for the structures of a network (500, 200) and (1024, 256, 32), total tardiness 

changes sensitively until 100 episodes, but it becomes similar after 1000 episodes. The total 

tardiness of others continuously decreases. 

Figure 3. Changes of total tardiness according to hyper-parameters settings: (a) Number of hidden 

layers and neurons; (b) Learning late; (c) Scheduling buffer size. 

Figure 3b,c indicates that total tardiness tends to gradually decrease regardless of 

parameter settings. When the learning rates and scheduling buffer sizes are high, the 

training performances are much better. The performance difference between learning 

rates 0.0001 and 0.0002 and between buffer sizes 50,000 and 60,000 are not significant, re-

spectively. Yet, when learning late 0.0002 and buffer size 50,000 are applied, the best train-

ing performance is observed. Therefore, based on the results, we determined the structure 

of a network, learning rate, and scheduling buffer size by (1024, 512, 256, 128, 32), 0.0002, 

and 50,000, respectively. 

4.3. Experiment Results 

The scheduling performances of the schedulers considered in this study were com-

pared in terms of total tardiness for each dataset. Figure 4 shows RPD achieved by all the 

schedulers for each dataset, and Table 3 summarizes the average RPD of each model. The 

proposed scheduler provides better scheduling performances than the other schedulers 

for most datasets. It means that our model is successful in providing schedules able to 

minimize total tardiness regardless of the number of jobs and process. In particular, this 

scheduler outperforms the others as the problem size becomes bigger, as shown in Figure 

4 and Table 3. Among the baselines, GAS shows outstanding scheduling performances 

and gives better scheduling performances compared to the proposed scheduler for Da-

tasets 1 and 6. The scheduling performances of ATCS are slightly better than COVERT. 

   
(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 

0

1000

2000

3000

4000

5000

T
o

ta
l 

ta
rd

in
es

s

0

200

400

600

800

T
o

ta
l 

ta
rd

in
es

s

0

200

400

600

800

T
o

ta
l 

ta
rd

in
es

s

400 800 1200 1600 2000

(500, 200)

(1024, 256, 32)

(512, 256, 128, 64, 32)

(1024, 512, 256, 128, 32)

(a)

0.001

0.002

0.0001

0.0002

400 800 1200 1600 2000

(b)

400 800 1200 1600 2000

(c)

30,000

40,000

50,000

60,000

0

100

200

300

400

C
O

V
E

R
T

A
T

C
S

S
la

ck
-E

D
D

G
A

S

T
P

D
Q

N

O
ur

s

300

250

200

150

100

50

0

C
O

V
E

R
T

A
T

C
S

S
la

ck
-E

D
D

G
A

S

T
P

D
Q

N

O
ur

s

300

250

200

150

100

50

0

C
O

V
E

R
T

A
T

C
S

S
la

ck
-E

D
D

G
A

S

T
P

D
Q

N

O
ur

s

Figure 3. Changes of total tardiness according to hyper-parameters settings: (a) Number of hidden
layers and neurons; (b) Learning late; (c) Scheduling buffer size.

Figure 3b,c indicates that total tardiness tends to gradually decrease regardless of
parameter settings. When the learning rates and scheduling buffer sizes are high, the
training performances are much better. The performance difference between learning
rates 0.0001 and 0.0002 and between buffer sizes 50,000 and 60,000 are not significant,
respectively. Yet, when learning late 0.0002 and buffer size 50,000 are applied, the best
training performance is observed. Therefore, based on the results, we determined the
structure of a network, learning rate, and scheduling buffer size by (1024, 512, 256, 128, 32),
0.0002, and 50,000, respectively.

4.3. Experiment Results

The scheduling performances of the schedulers considered in this study were com-
pared in terms of total tardiness for each dataset. Figure 4 shows RPD achieved by all the
schedulers for each dataset, and Table 3 summarizes the average RPD of each model. The
proposed scheduler provides better scheduling performances than the other schedulers
for most datasets. It means that our model is successful in providing schedules able to
minimize total tardiness regardless of the number of jobs and process. In particular, this
scheduler outperforms the others as the problem size becomes bigger, as shown in Figure 4
and Table 3. Among the baselines, GAS shows outstanding scheduling performances and
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gives better scheduling performances compared to the proposed scheduler for Datasets 1
and 6. The scheduling performances of ATCS are slightly better than COVERT.
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Figure 4. RPD obtained by all the schedulers for each dataset (horizontal axis: schedulers, vertical
axis: RPD).

Table 3. Average RPD obtained by the schedulers for each dataset.

Datasets COVERT ATCS Slack-EDD GAS TPDQN

1 75.71 128.98 85.46 5.70 237.01
2 152.36 141.17 125.09 13.88 257.84
3 113.15 117.94 101.88 17.36 226.22
4 191.89 190.05 162.45 16.78 80.02
5 85.14 68.11 55.36 22.74 161.21
6 171.81 129.39 100.44 12.46 144.81
7 146.00 201.15 208.91 36.17 555.95
8 226.93 273.95 205.54 38.96 253.291
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Specifically, Figure 5 visualizes the improvement ratio of the proposed scheduler com-
pared to GAS, TPDQN, and best rule presenting the best scheduling performances among the
rules in terms of tardiness. For all the datasets, the DDQN scheduler enhances the schedul-
ing performances by 155.605% compared to TPDQN in the best case of Dataset 7. In the
worst case, the DDQN scheduler underperforms GAS by -12.21% in Dataset 1. In particular,
Datasets 4 and 8 represent extra-large problems, the DDQN scheduler also better performs
compared to TPDQN and GAS by 51.39% and 12.32%, 129.01% and 29.69%, respectively.
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Figure 5. Improvement ratio of the proposed scheduler compared to GAS, TPDQN, and best rule in
terms of tardiness.

It is interpreted that the proposed scheduler successfully finds the weight values of
the Q-network able to determine one of the machines minimizing the tardiness of allocated
jobs for PDMS problems through the proposed training phase [24]. The previous training
strategy applied to TPDQN tends to fail to search for the effective weight values minimizing
the tardiness of allocated jobs in the PDMS. GAS produces less tardiness for the small-size
problem, but it is likely to be ineffective for large and extra-large problems since GAS
requires more computational time when the size of problems is larger [42].

Finally, to compare the scheduling performances in terms of statistics, further ex-
periments are conducted; we paired t-test with both the proposed scheduler and the
conventional schedulers for each dataset. Table 4 depicts ρ-value results achieved by con-
ducting the t-test between the proposed scheduler and the others considered at the 5%
level of significance. The ρ-value of the proposed scheduler is less than 0.05 except for GAS
against all datasets. Note that the DDQN scheduler significantly outperforms COVERT,
ATCS, Slack-EDD, and TPDQN for all the datasets in terms of statistics, but it is better than
GAS for some datasets in terms of statistics.

Table 4. ρ-values for tardiness difference between the proposed and the other schedulers.

Datasets COVERT ATCS Slack-EDD GAS TPDQN

1 1.82−7 5.01−20 8.81−10 0.06 1.89−35

2 3.44−16 1.25−17 2.54−11 0.04 3.55−45

3 1.04−31 4.60−29 5.69−20 0.03 1.44−57

4 2.59−13 9.08−19 6.37−12 0.21 2.53−16

5 2.54−15 4.39−11 3.35−9 0.09−2 1.39−30

6 7.47−13 1.28−9 8.39−12 0.33 6.48−21

7 1.14−13 1.38−16 4.20−17 0.11 5.42−54

8 3.08−8 9.58−11 2.95−7 0.20 4.27−9

5. Discussion

To investigate the robustness of the proposed scheduler, eight datasets are prepared,
as shown in Table 2. The conventional ones, such as Slack-EDD, ATCS, and COVERT, are
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implemented. The meta-heuristic- and deep-Q-learning-based schedulers, named GAS
and TPDQN, are additionally implemented, respectively. In terms of RPD, the proposed
scheduler has the best performances for all the datasets, as presented in Figure 4 and
Table 3. In particular, the proposed scheduler produces a schedule with quite less total
tardiness for the large and extra-large problems, as shown in Figure 5. On the other hand,
TPDQN shows ineffective scheduling performances for particular testing datasets. This
might be related to the fact that it fails to find better Q-values for minimizing tardiness
in the training phase. GAS gives effective schedules for small and medium scheduling
problems, but it produces much tardiness for large and extra-large scheduling problems. It
is interpreted that GAS is likely to fail in searching for better schedules within the limited
computational time when the size of the scheduling problem grows. Finally, Table 4 depicts
the results of the statistical analysis for each dataset. The results in Table 4 imply that
the scheduling performances of the proposed scheduler are significant compared to the
conventional schedulers except for GAS.

6. Conclusions

In this paper, we suggest a novel machine scheduler based on double deep Q-learning,
called DDQN scheduler, to address a PDMS problem with sequence-independent setup
time towards minimizing total tardiness. To avoid the allocation uncertainty of allocated
jobs for dedicated machines and minimize the tardiness of allocated jobs, novel state,
reward, and training algorithm are applied. The proposed scheduler successfully prevents
the overestimation problem for the action values; this scheduler successfully acts an action
for ensuring allocation certainty and minimizing the tardiness of allocated jobs.

An enhanced scheduling method able to provide a schedule for minimizing total
tardiness within a short time has been required in modern manufacturing as effective
scheduling results are directly related to the revenue of manufacturing companies [42].
Recently, many companies have been turning their attention to developing deep learning
and reinforcement learning techniques. However, in the PDMS problem, the deep learning
technique does not fit for the following two reasons. First, the deep learning technique
requires huge training instances generated by optimized schedules, which are difficult to
collect [28]. Further, it is very hard to design a relationship between a job and a machine as
an output value.

From this viewpoint, reinforcement learning is more useful since it attempts to search
for a better schedule through repeated trial and error processes in the training without
training instances. In this study, reinforcement learning is adopted, and its scheduling
performances are better than existing methods. Moreover, the proposed scheduler gives
better schedules for the large and extra-large scheduling problems. This research provides
a guideline for applying a reinforcement learning algorithm to the PDMS problem and
encourages attempts to apply this algorithm in a practical environment.

The future direction is the following. When the dedicated machines change and the
number of machines increases, re-training is necessary. To overcome this limitation, we
plan to design a new state and action that is not necessary, re-training the Q-network. In
addition, since the action is only designed to select a machine, the proposed scheduler
may try to find a good schedule within a limited solution space. Thus, future work tries to
redesign actions to consider all the possible pairs of jobs and machines. It also applies other
methods, such as deep deterministic policy gradient and proximal policy optimization
algorithms, to improve scheduling performances.
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