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Abstract: Crop yield forecasting before harvesting is critical for the creation, implementation, and
optimization of policies related to food safety as well as for agro-product storage and marketing. Crop
growth and development are influenced by the weather. Therefore, models using weather variables
can provide reliable predictions of crop yields. It can be tough to select the best crop production
forecasting model. Therefore, in this study, five alternative models, viz., stepwise multiple linear
regression (SMLR), an artificial neural network (ANN), the least absolute shrinkage and selection
operator (LASSO), an elastic net (ELNET), and ridge regression, were compared in order to discover
the best model for rice yield prediction. The outputs from individual models were used to build
ensemble models using the generalized linear model (GLM), random forest (RF), cubist and ELNET
methods. For the previous 21 years, historical rice yield statistics and meteorological data were
collected for three districts under three separate agro-climatic zones of Chhattisgarh, viz., Raipur in
the Chhattisgarh plains, Surguja in the northern hills, and Bastar in the southern plateau. The models
were calibrated using 80% of these datasets, and the remaining 20% was used for the validation
of models. The present study concluded that for rice crop yield forecasting, the performance of
the ANN was good for the Raipur (R2

cal = 1, R2
val= 1 and RMSEcal = 0.002, RMSEval = 0.003) and

Surguja (R2
cal = 1, R2

val= 0.99 and RMSEcal = 0.004, RMSEval = 0.214) districts as compared to the
other models, whereas for Bastar, ELNET (R2

cal = 90, R2
val= 0.48) and LASSO (R2

cal = 93, R2
val= 0.568)

performed better. The performance of the ensemble model was better compared to the individual
models. For Raipur and Surguja, the performance of all the ensemble methods was comparable,
whereas for Bastar, random forest (RF) performed better, with R2 = 0.85 and 0.81 for calibration and
validation, respectively, as compared to the GLM, cubist, and ELNET approach.

Keywords: yield forecasting; SMLR; ANN; LASSO; ELNET; ridge regression

1. Introduction

Global food production needs to double by 2050 in order to meet the demand of the
rapidly growing population [1,2]. On the other hand, the current yield of growth rates
for the major cereals that are grown across the globe are not high enough to meet this
target [3]. Environmental changes, particularly global warming and climate variability, are
key concerns that have a negative impact on agriculture [4]. This may result in a decline
in crop production [5], making the world more food insecure. As the global population is
projected to reach 9 billion people by 2050, governments all over the world need to be well
prepared to deal with supply shocks of major cereals.

The FAO (Food and Agriculture Organization) reports that the demand for and con-
sumption of grains have grown significantly relative to production in developing nations
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such as India. From 1964 to 2030, there will have been an increase in demand for rice, wheat,
and other coarse grains [6]. Cereal imports in developing countries increased significantly
to meet the rising demand, growing from 39 million tons annually in 1970 to 130 million
tons annually by 1997–1999. The increase in imports is anticipated to continue and may
be accelerated in the upcoming years. These developing nations are predicted to import
265 million tons of grains by 2030, which is 14% of their total yearly consumption [6].
Nations that do not consider taking action to lessen their overall reliance on imports for
conventional crops could suffer greatly as a result of these conditions. Therefore, it is a
global challenge to alter the current situation in the future and make nations more and
more self-sufficient in meeting their food demands, which in turn requires accurate and
timely forecasting of crop yields. Crop yield prediction is one of the most difficult tasks in
precision agriculture. The ability to forecast crop yields enables the relevant authorities
to make appropriate decisions to ensure food security. In addition to soil, genotype, and
management techniques, weather conditions have a significant impact on crop yield [7].
Around 30% of annual production is lost due to unfavorable weather conditions all over
the world [8]. As a result, there is a significant demand for models that provide accurate
yield predictions before a harvest, which may be utilized by the government, policymakers,
and farmers to plan ahead of time.

One of the most important and difficult jobs in applied sciences is future prediction. It
requires computational and statistical approaches for identifying relationships between past
and short-term future values, as well as adequate strategies to deal with longer horizons,
in order to create effective predictors from historical data [9]. Every aspect of modern life is
being improved by the incorporation of machine learning, including marketing software,
equipment maintenance, health-monitoring systems, crop yield prediction, and the study
of soil. For example, Raja and Shukla [10,11] employed an extreme learning machine (ELM)
and hybrid grey wolf-optimized artificial neural network models to obtain a more realistic
prediction of the ultimate bearing capacity and settlement of a geosynthetic-reinforced
sandy soil. Machine learning is adding intelligence to the newest generation of items almost
everywhere we look [12].

Traditionally, a crop-cutting experiment was used to measure crop production. How-
ever, this takes a long time and requires more human work. Crop yield estimation via crop
yield models, which may be constructed using multiple statistical techniques, is another
alternative to this old method. Presently, prediction of crop yields using artificial neural
networks (ANN), the least absolute shrinkage and selection operator (LASSO), and elas-
tic net (ELNET) is receiving a lot of attention using the relationship of crops to weather
datasets [13–17]. Das et al. [14] developed multiple rice yield forecast models for the four-
teen different districts on the west coast based on weekly weather indices using LASSO,
SMLR, principal component analysis combined with SMLR (PCA-SMLR), ELNET, PCA-
ANN, and ANN. Singh et al. [7] used the SMLR technique to develop a wheat yield forecast
model based on weekly weather indices and yield records for the Amritsar, Bhatinda, and
Ludhiana districts of Punjab. Based on a dataset of 40 farms in Canterbury, New Zealand,
Safa et al. [18] developed an ANN model for wheat yield production. Sridhara et al. [19]
used the LASSO, ENET, PCA, ANN, and SMLR techniques to forecast the sorghum crop
yield at the district level. The researchers discovered that the constructed ANN model
could accurately estimate the wheat yield.

Unfortunately, up to today, little scientific effort has been made to develop the yield
forecast model using machine learning techniques for the Chhattisgarh region. The majority
of research so far relies on predictions based on traditional statistical models. Therefore,
in the present research, an attempt has been made to provide a pre-harvest forecast of the
rice crop for the Raipur, Surguja, and Bastar districts of Chhattisgarh using SMLR, ANN,
LASSO, ELNET, and ridge regression, and a comparison was made among these techniques
to select the best model that can be used to provide rice crop yield forecasts for the districts
of Chhattisgarh.
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2. Materials and Methods

Among the districts of Chhattisgarh, three major districts representing three agro-
climatic zones were considered in this study, i.e., Raipur (21◦15′ N, 81◦37′ E) from the
Chhattisgarh plains, Surguja (23◦6′ N, 83◦11′ E) from the northern hills, and Bastar (19◦4′ N,
82◦1′ E) from the southern plateau (Figure 1).

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 18 
 

 

ANN, LASSO, ELNET, and ridge regression, and a comparison was made among these 

techniques to select the best model that can be used to provide rice crop yield forecasts for 

the districts of Chhattisgarh. 

2. Materials and Methods 

Among the districts of Chhattisgarh, three major districts representing three agro-

climatic zones were considered in this study, i.e., Raipur (21°15′ N, 81°37′ E) from the 

Chhattisgarh plains, Surguja (23°6′ N, 83°11′ E) from the northern hills, and Bastar (19°4′ 

N, 82°1′ E) from the southern plateau (Figure 1). 

Weather data included maximum temperature (Tmax), minimum temperature 

(Tmin), rainfall, relative humidity at 7:20 am (RH I) and 2:20 pm (RH II), and sunshine 

hours of twenty-one years (1998–2018) for all three districts, which were taken from the 

local observatory situated at the respective districts. The crop yield data for these districts 

was taken from the Directorate of Economics and Statistics, the Ministry of Agriculture, 

and Farmers Welfare [20]. Out of the total dataset, 80% of the data was used for calibration, 

and the remaining 20% was used for the validation of the developed models. 

 

Figure 1. Location map of the study area consisting of different districts in Chhattisgarh. 

We used the district-level yield data, for which biophysical factors and farming prac-

tices are not uniform all over the region, and it is very hard to track the farming practice 

of each and every field of the districts. Hence, in the present study, we assume that in such 

a large area as a district, these factors will be either constant, or spatio-temporal variabil-

ities are nullified by each other. For example, if the sowing of a crop in x region of a district 

is delayed and of y region is advanced, each will neutralize each other’s effect/impact on 

district-level crop productivity. Therefore, inter-seasonal variability in crop yield at the 

Figure 1. Location map of the study area consisting of different districts in Chhattisgarh.

Weather data included maximum temperature (Tmax), minimum temperature (Tmin),
rainfall, relative humidity at 7:20 am (RH I) and 2:20 pm (RH II), and sunshine hours
of twenty-one years (1998–2018) for all three districts, which were taken from the local
observatory situated at the respective districts. The crop yield data for these districts was
taken from the Directorate of Economics and Statistics, the Ministry of Agriculture, and
Farmers Welfare [20]. Out of the total dataset, 80% of the data was used for calibration, and
the remaining 20% was used for the validation of the developed models.

We used the district-level yield data, for which biophysical factors and farming prac-
tices are not uniform all over the region, and it is very hard to track the farming practice of
each and every field of the districts. Hence, in the present study, we assume that in such a
large area as a district, these factors will be either constant, or spatio-temporal variabilities
are nullified by each other. For example, if the sowing of a crop in x region of a district is
delayed and of y region is advanced, each will neutralize each other’s effect/impact on
district-level crop productivity. Therefore, inter-seasonal variability in crop yield at the
district level is largely influenced by the weather variables. The yield data were detrended
prior to data analysis, since it is possible that climatic variability as well as technology
differences can affect the trend in the yield data over the long term. However, time is also
included as an independent variable in this study. It would be pertinent to mention that
time is an important factor in deciding yield at the district level or in a large geographical
region due to the fact that time represents cumulative technological advancement (includ-
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ing improvement in variety, machinery, disease, insect and weed control measures, etc.)
and is a gradual and forward-moving phenomenon. Therefore, considering time as an
independent parameter is logical and justifiable. To evaluate the importance of time during
model development, these models were redeveloped using only time as an independent
variable and without using time as an independent variable. The daily weather data were
used to generate the weekly averages. The weighted and unweighted weather indices
were then calculated using these average values with the help of formulas provided by
Das et al. [13]:

Unweighted weather indices:

Zij = ∑n
w=1 Xiw, Zii′j = ∑n

w=1 XiwXi′w, (1)

Weighted weather indices:

Zij = ∑n
w=1 rj

iwXiw, Zii′j = ∑n
w=1 rj

ii′wXiwXi′w, (2)

Here, Z represents the weather index, n is the week of the forecast, Xiw/Xi′w is the
value of the ith/i′th weather variable, the value of j is 0 for all unweighted indices and 1 for
all weighted indices, and rj

iw/rj
ii′w is the value of the correlation coefficient of the detrended

yield with the ith weather variable/ product of the ith and i′th weather variables in the
wth week.

By following the above procedure, 42 weather indices were generated, as shown in
Table 1. The steps involved in model development are shown in Figure 2 [14].

Table 1. Weighted and unweighted weather indices for development of multivariate models.

Parameter Unweighted Weather Indices Weighted Weather Indices

Tmax 1 Z10 Z11
Tmin 2 Z20 Z21
Rainfall Z30 Z31

Sunshine Hour Z40 Z41
Relative Humidity I Z50 Z51
Relative Humidity II Z60 Z61

Tmax × Tmin Z120 Z121
Tmax × Rainfall Z130 Z131

Tmax × Sunshine Hour Z140 Z141
Tmax × Relative Humidity I Z150 Z151
Tmax × Relative Humidity II Z160 Z161

Tmin × Rainfall Z230 Z231
Tmin × Sunshine Hour Z240 Z241

Tmin × Relative Humidity I Z250 Z251
Tmin × Relative Humidity II Z260 Z261

Rainfall × Sunshine Hour Z340 Z341
Rainfall × Relative Humidity I Z350 Z351
Rainfall × Relative Humidity II Z360 Z361

Sunshine Hour × Relative Humidity I Z450 Z451
Sunshine Hour × Relative Humidity II Z460 Z461

Relative Humidity I × Relative Humidity II Z560 Z561

1 Tmax = maximum temperature, 2 Tmin = minimum temperature.

2.1. Multivariate Techniques Involved in Model Development

In the present study, we employed statistical (stepwise multiple linear regression
(SMLR) and machine learning techniques, such as penalized regression (LASSO, ELNET,
ridge regression) and an artificial neural network (ANN). The SMLR is a conventional
standard regression model, which is compared with other advanced approaches, and
the penalized models address some of the limitations of standard regression for high-
dimensional data. LASSO, ELENT, and ridge regression provide shrinkage, which enforces
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sparsity, that is, many of the parameter estimates are shrunk to exactly zero. Sparse models
have several advantages over traditional regression, such as reduced overfitting (which
improves prediction), the accommodation of multicollinearity, and a better ability to fit.
They can also be used for variable reduction, where a zero-parameter estimate indicates
that the variable is not an important predictor. Another model that we used is the ANN,
which is a well-documented AI model inspired by the framework of biological human
neurons. It has been successfully applied to numerous problems in different disciplines. In
essence, it is a powerful tool for finding a relationship between independent and dependent
variables. Hence, in addition to the statistical and shrinkage model, we also included the
ANN to establish the association of weather variables with crop yield.
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Stepwise Multiple Linear Regression (SMLR)

The simplest technique to generate a yield forecast based on a dataset of yield and
weather parameters is stepwise multiple linear regression (SMLR). This strategy helps to
select the best predictors from a huge number of predictors through a series of automated
steps [7,14]. At every stage, the significance of the new variable included in the subsequent
step is examined, typically using the t statistics and p-value.

2.2. Shrinkage Regression Models (LASSO, ELNET, and Ridge Regression)

In a situation in which the number of variables in a dataset exceeds the number of
samples, the standard linear model typically performs poorly. A more effective alternative
to this situation is penalized regression, in which the number of variables in the model
is penalized by adding a constraint to the equation. The process of reducing the original
size is also known as shrinkage or regularization. The regularization process permits the
coefficients of the less important variables to be near to or equal to zero. The penalized
regression methods considered in the present study include ridge regression, LASSO,
and ELNET.

2.2.1. Least Absolute Shrinkage and Selection Operator (LASSO)

The LASSO technique shrinks the coefficients of correlated terms to zero, which
ensures that correlated features are included when developing the data-driven model, in
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order to prevent overfitting and ensure generalization. In LASSO modeling, correlated
features are penalized by reducing their coefficients to zero. The objective function that is
minimized by the LASSO algorithm is expressed as [21]:

Llasso
(

β̂
)
= ∑n

i=1

(
yi − x′i β̂

)2
+ λ ∑m

j=1

∣∣β̂ j
∣∣. (3)

where β is the regression coefficient associated with the input parameters of the LASSO
model; x and y are the input and output, respectively, n is the number of samples in the
training dataset, and the hyper-parameter λ is the penalty parameter.

2.2.2. Ridge Regression

Ridge regression is a technique for reducing data overfitting by adding a small degree
of bias to regression predictions. The major goal of using ridge regression is to obtain
more accurate outcomes. The method allows for the estimation of coefficients in multiple
regression models when a high correlation exists between the predictor variables [22].
Ridge regression may perform slightly poorly on the training set, but overall, it performs
consistently well. The L2 regularization approach is used in ridge regression. The loss in
ridge regression is defined as:

Lridge
(

β̂
)
=

n

∑
i=1

(
yi − x′i β̂

)2
+ λ

m

∑
j=1

β2
j = y− Xβ̂2 + λβ̂2 (4)

where x and y are the input and output vector, respectively, n is the number of samples in
the training dataset, β is the regression coefficient, and λ is the penalty parameter.

2.2.3. Elastic Net (ELNET)

In ELNET, the penalty of ridge regression and LASSO, i.e., shrinkage and sparsity,
are combined to reap the benefits of both ridge regression and LASSO [23]. The elastic net
estimator minimizes

Lenet
(

β̂
)
=

∑n
i=1
(
yi − x′i β̂

)2

2n
+ λ

(
1− α

2

m

∑
j=1

β̂2 + α
m

∑
j=1

∣∣β̂ j
∣∣), (5)

where x and y are the input and output, respectively, n is the number of samples in the
training dataset, β is the regression coefficient, λ is the penalty parameter, and α is the
mixing parameter between ridge (α = 0) and LASSO (α = 1).

2.3. Artificial Neural Network (ANN)

An artificial neural network (ANN) is a type of non-linear machine learning technique.
It has three interconnected layers, viz., input (nodes or units), hidden (one to three layers
of neurons), and the output layer of neurons. Each connection is associated with a numeric
number known as weight. The output hi of neuron i in the hidden layer is [24]:

hi = σ
(
∑N

j=1 Vijxj + Thid
i

)
, (6)

Here, σ is the activation function, N is the number of input neurons, Vij is the weight,
xj is the input to the neurons, and Thid

i is the threshold term of the hidden neurons.

2.4. Ensemble Models

Various researchers [25,26] have compared conventional machine learning models
with modified and improved ensemble models. Keeping this in mind, the outputs from
individual models, namely, SMLR, LASSO, ridge, ELNET, and ANN, were used as inputs,
and the observed yield was used as the target variable to build the ensemble models. The
ELNET model was optimized through 10-fold cross-validation with 5 repetitions using the
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“caret” [27] and “glmnet” [28] packages in R. Ensemble models provide highly accurate
predictions, since multiple versions of a single model are combined to arrive at a final
prediction by aggregating the prediction of multiple base learners [29]. In the present study,
we have used four techniques to create an ensemble model, namely, the generalized linear
model (GLM), random forest (RF), cubist, and ELNET methods.

Ensemble predictors such as random forest are known to have greater accuracy, though
it is difficult to understand their “black-box” prediction. In contrast, a generalized linear
model (GLM) is fairly interpretable, especially when forward feature selection is employed
to build the model [29]. ELNET is a type of linear regression with regularization to
help prevent overfitting and built-in variable selection. On the other hand, Quinlan [30]
proposed a prediction-oriented regression model known as the cubist model. The key
benefit of the cubist method is the addition of multiple training committees to balance
case weights.

2.5. Evaluation of Model Performance

The performance of the models was evaluated using the R2, the root mean square
error (RMSE), the normalized root mean square error (nRMSE), the mean biased error
(MBE), the mean absolute error (MAE) and the concordance correlation coefficient (ρc).
A value of R2 and ρc close to 1 and of RMSE, MBE, and MAE near to 0 indicates better
model performance. The positive and negative values of the MBE indicate over- and
underestimation, respectively. In addition to this, the model performance is considered
as excellent, good, fair, or poor based on the value of the nRMSE lying between 0–10%,
10–20%, 20–30%, or >30%, respectively.

The formulas of the model evaluation measures are shown below:

RMSE =

√
∑n

i=1 (yi − ŷi)
2

n
, (7)

nRMSE =

√
∑n

i=1 (yi − ŷi)
2

n
× 100
−
A

, (8)

R2 =


1
n ∑n

i=1

(
yi −

−
y
)(

ŷi −
−
ŷ
)

σyσŷ


2

, (9)

MBE =
1
n ∑n

i=1(yi − ŷi) (10)

MAE =
∑n

i=1|yi − ŷi|
n

, (11)

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)
2 , (12)

Here, yi is the observed value, and ŷi is the predicted value for i=1, 2, . . . . . . , n. σy

and σŷ are the standard deviation of actual and predicted observations, respectively.
−
y and

−
ŷ denote the average of the observed and predicted values, µx and µy are the means for the
observed and predicted values, and ρ is the correlation coefficient between the observed
and predicted values.

3. Results
3.1. Evaluation of the Model Performance

The results pertaining to all models’ performances and equations developed using
these models are shown in Tables 2 and 3, respectively. The weighted indices, which were
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calculated based on the correlation of the weather variables with the dependent variable,
have more importance, and it can be seen here that the inclusion frequency of the weighted
weather indices was much higher than that of the simple weather indices in all the models
for all three locations. This fact can be seen in the developed equations (Table 3), which
signifies the impact of the weighted weather indices.

Table 2. Comparison of different models for rice yield in training and testing datasets.

Criteria/Model SMLR 1 LASSO 2 Ridge 3 ELNET 4 ANN 5

Raipur Calibration

R2
cal 0.89 0.974 0.715 0.99 1.00

RMSEcal 0.142 0.069 0.25 0.041 0.002

nRMSEcal 10.62 5.191 18.741 3.089 0.155

MBEcal 0.757 0.00 0.00 0.00 0.00

MAEcal 0.75 0.05 0.18 0.03 0.001

Validation

R2
val 0.16 0.395 0.801 0.46 1.00

RMSEval 0.647 0.632 1.019 0.633 0.003

nRMSEval 28.368 27.709 44.633 27.748 0.167

MBEval −0.063 −0.393 −0.906 −0.417 −0.0019

MAEval 0.28 0.39 0.91 0.43 0.003

Surguja Calibration

R2
cal 0.89 0.938 0.732 0.92 1.00

RMSEcal 0.113 0.089 0.21 0.103 0.004

nRMSEcal 9.86 7.787 18.501 9.023 0.326

MBEcal −0.017 0.00 0.00 0.00 −0.0007

MAEcal 0.09 0.07 0.18 0.08 0.003

Validation

R2
val 0.07 0.158 0.007 0.002 0.99

RMSEval 0.206 0.235 0.292 0.191 0.004

nRMSEval 14.104 16.079 19.778 13.072 0.318

MBEval 0.135 0.193 −0.246 0.100 0.002

MAEval 0.19 0.19 0.25 0.17 0.004

Bastar Calibration

R2
cal 0.70 0.93 0.769 0.90 0.74

RMSEcal 0.227 0.096 0.21 0.127 0.214

nRMSEcal 19.79 8.385 19.09 11.09 18.568

MBEcal −0.126 0.00 0.00 0.00 0.033

MAEcal 0.19 0.08 0.19 0.11 0.19

Validation

R2
val 0.31 0.568 0.242 0.48 0.0009

RMSEval 0.435 0.322 0.294 0.255 0.199

nRMSEval 29.764 22.043 20.130 17.444 13.645

MBEval −0.381 0.158 −0.244 0.053 −0.143

MAEval 0.38 0.26 0.25 0.21 0.17
1 SMLR = stepwise multiple linear regression, 2 LASSO = least absolute shrinkage and selection operator,
3 Ridge = ridge regression, 4 ELNET = elastic net, 5 ANN = artificial neural network.

3.1.1. Stepwise Multiple Linear Regression (SMLR)

The performance of SMLR was good at the calibration stage for all the three districts,
with a R2 value of 0.89 for Raipur and Surguja and 0.70 for Bastar with a RMSE of 0.142,
0.113, and 0.227 t/ha respectively. The nRMSE values for the calibration stage were also
less than 20%, indicating good model performance, though at the validation stage, the
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performance of SMLR was poor for all three districts, with R2 values of 0.16, 0.07, and
0.31 for Raipur, Surguja, and Bastar, respectively. In addition to this, the nRMSE value at the
validation stage indicated good model performance for Surguja (nRMSE = 14.10%) and fair
performances for Raipur (nRMSE = 28.37%) and Bastar (nRMSE = 29.76%). The MBE value
indicates that the model underestimated the crop yield for the Raipur (MBE = −0.063 t/ha)
and Bastar (MBE = −0.381t/ha) districts, and for the Surguja (MBE = 0.135 t/ha) district,
it was slightly overestimated at the validation stage. The MAE values also suggest better
model performance for Surguja and Bastar as compared to the Raipur district.

Table 3. Equations developed by different models for rice yield forecasting.

Model District Equation

SMLR 1

Raipur Yield = 1.562 + 0.06 × Time + 0.043 × Z61 + 0.001 × Z361

Surguja Yield = 0.46 + 0.04 × Time + 0.0000908 × Z131

Bastar Yield = 1.16 + 0.005 × Z261 − 0.001 × Z361 + 0.000037 × Z240

LASSO 2

Raipur
Yield = 1.339 + 0.274 × Time + 0.025 × Z20 + 0.107 × Z41 + 0.038 × Z120 −

0.027 × Z140 + 0.063 × Z141 + 0.002 × Z230 + 0.063 × Z361 − 0.058 × Z560 +
0.051 × Z561

Surguja Yield = 1.15 + 0.214 × Time + 0.087 × Z131 + 0.025 × Z151 − 0.005 × Z160 +
0.005 × Z340 + 0.039 × Z351 + 0.013 × Z451 + 0.05 × Z461 − 0.027 × Z560

Bastar Yield = 1.15 + 0.193 × Time + 0.007 × Z11 + 0.001 × Z40 + 0.072 × Z41 − 0.175
× Z160 − 0.021 × Z360

Ridge Regression

Raipur

Yield = 1.339 + 0.027 × Time − 0.006 × Z10 + 0.011 × Z11 + 0.006 × Z20 +
0.001 × Z21 + 0.013 × Z30 + 0.006 × Z31 + 0.005 × Z40 + 0.013 × Z41 − 0.004
× Z50 + 0.001 × Z51 − 0.008 × Z60 + 0.013 × Z61 + 0.005 × Z120 + 0.006 ×

Z121 + 0.015 × Z130 + 0.006 × Z131 − 0.001 × Z140 + 0.01 × Z141 − 0.004 ×
Z150 − 0.002 × Z151 − 0.008 × Z160 + 0.013 × Z161 + 0.015 × Z230 + 0.006 ×
Z231 + 0.011 × Z240 + 0.004 × Z241 + 0.002 × Z250 + 0.002 × Z251 − 0.007 ×
Z260 + 0.013 × Z261 + 0.014 × Z340 + 0.006 × Z341 + 0.010 × Z360 + 0.002 ×
Z361 − 0.001 × Z450 + 0.002 × Z451 − 0.008 × Z460 + 0.013 × Z461 − 0.012 ×

Z560 + 0.009 × Z561

Surguja

Yield = 1.150 + 0.023 × Time − 0.002 × Z10 + 0.005 × Z11 − 0.007 × Z20 −
0.003 × Z21 − 0.003 × Z30 + 0.012 × Z31 + 0.015 × Z40 + 0.014 × Z41 + 0.002
× Z50 + 0.007 × Z51 − 0.007 × Z60 + 0.009 × Z61 − 0.005 × Z120 + 0.007 ×

Z121 − 0.003 × Z130 + 0.013 × Z131 + 0.009 × Z140 − 0.002 × Z141 − 0.001 ×
Z150 + 0.007 × Z151 − 0.006 × Z160 + 0.009 × Z161 − 0.005 × Z230 + 0.011 ×
Z231 − 0.002 × Z240 − 0.001 × Z241 − 0.006 × Z250 − 0.008 × Z260 + 0.011
× Z261 − 0.002 × Z340 + 0.012 × Z341 − 0.004 × Z360 + 0.006 × Z361 + 0.006

× Z450 + 0.009 × Z451 − 0.004 × Z460 + 0.008 × Z461 −0.007
× Z560 + 0.010 × Z561

Bastar

Yield = 1.150 + 0.020 ×Time − 0.003 × Z10 + 0.008 × Z11 − 0.001 × Z20
−0.001 × Z21 + 0.004 × Z30 + 0.002 × Z31+ 0.006 × Z40 + 0.006 × Z41 − 0.002
× Z50 − 0.001 × Z51 − 0.014 × Z60 + 0.014 × Z61 − 0.001 × Z120 +0.002 ×

Z121 + 0.003 × Z130 + 0.001 × Z131 + 0.006 × Z140 + 0.008 × Z141 − 0.004 ×
Z150 − 0.002 × Z151 − 0.016 × Z160 + 0.014 × Z161 + 0.004 × Z230 + 0.002 ×
Z231 + 0.005 × Z240 + 0.003 × Z241 − 0.003 × Z250 − 0.002 × Z251 − 0.017 ×
Z260 + 0.017 × Z261 + 0.004 × Z340 + 0.002 × Z341 + 0.003 × Z350 +0.001 ×
Z351 − 0.008 × Z360 − 0.003 × Z361 + 0.001 × Z450 + 0.001 × Z451 − 0.014 ×

Z460 + 0.015 × Z461 − 0.014 × Z560 + 0.011 × Z561

ELNET 3

Raipur Yield = −6.069 + 0.049 × Time + 0.004 × Z20 −0.001 × Z40 + 0.045 × Z41

Surguja Yield = 0.044 + 0.036 × Time + 0.002 × Z41

Bastar Yield = 1.547 + 0.028 × Time
1 SMLR = stepwise multiple linear regression, 2 LASSO = least absolute shrinkage and selection operator,
3 ELNET = elastic net. All the other abbreviations are available in Table 1.
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The use of both weighted and unweighted weather indices could lead to a strong
multicollinearity problem. All the models except SMLR can deal with the multicollinearity
problem. The three models, viz., LASSO, ELNET and ridge regression, are designed
in such a way that they can deal with the multicollinearity problem [31,32]. In ANN
too, multicollinearity might be not a problem, as it uses non-linear activation functions.
Collinearity would be an issue when there is no regularization scheme and non-linearity.
Hence, to check the multicollinearity problem for SMLR, the variance inflation factor (VIF)
was calculated for all three locations. The results are included in Table 4. The results
revealed no or moderate multicollinearity, with VIF values < 5 [33].

Table 4. Rice yield prediction models using SMLR.

Districts Predictor Variables Coefficient VIF R2
val RMSEval

Raipur

Constant 1.562 0.75 0.647
Time 0.06 1.262
Z61 0.043 1.595

Z361 0.001 1.583

Surguja
Constant 0.46 0.07 0.206

Time 0.04 1.035
Z131 0.00009 1.035

Bastar

Constant 1.16 0.31 0.435
Z261 0.005 1.390
Z361 −0.001 1.581
Z240 0.000037 1.184

3.1.2. Least Absolute Shrinkage and Selection Operator (LASSO)

The results of the LASSO analysis revealed that the value of R2 ranged from 0.93 to
0.97. The highest R2 was observed for the Raipur district (R2 = 0.97), with a RMSE value
of 0.069 t/ha, followed by Surguja (R2 = 0.94) and Bastar (R2 = 0.93), with RMSE values
of 0.089 t/ha and 0.096 t/ha, respectively. On the other hand, in the validation stage, the
R2 value ranged from 0.158 to 0.568. The highest R2 was observed for Bastar (R2 = 0.57),
with RMSE 0.322 t/ha, whereas the lowest R2 was observed for Surguja (R2 = 0.158), with
RMSE 0.235 t/ha. Moreover, at the validation stage, the performance of the LASSO model
was good for Surguja (nRMSE = 16.08%) and fair for Raipur (nRMSE = 27.71%) and Bastar
(nRMSE = 22.04%). Hence, the LASSO model can be used to forecast the rice yield for
the Bastar district. Despite good model performance at the calibration stage, the MBE
value indicated underestimation of the crop yield for the Raipur (MBE = −0.393) district
and overestimation for Surguja (MBE = 0.193) and Bastar (MBE = 0.158) at the validation
stage. The variable importance developed using LASSO is shown in Figure 3. During the
calibration stage, MAE values were near to zero for all three locations (0.05, 0.07, and 0.08),
suggesting excellent model performance, and during the validation stage, MAE values
were found to be 0.39, 0.19, and 0.26 for Raipur, Surguja, and Bastar, respectively.

3.1.3. Ridge Regression

For ridge regression, at the calibration stage, the maximum R2 value was found for
the Bastar (0.769) district, with a RMSE of 0.21 t/ha, and the minimum R2 was recorded
for Raipur (0.715), with a RMSE of 0.25 t/ha. In addition to this, the value of the nRMSE
showed good model performance (nRMSE < 20%) for all the districts. The RMSE statistic
for the validations showed that the performance of the ridge regression model was good
for Surguja (nRMSE = 19.978%), fair for Bastar (nRMSE = 20.130%), and poor for Raipur,
(nRMSE = 44.633%). Contrary to this, at the validation stage, the value of R2 was good for
Raipur (R2 = 0.80) and poor for Surguja (R2 = 0.01) and Bastar (R2 = 0.24). The MBE value
indicated underestimation of the crop yield for all three districts of Chhattisgarh at the
validation stage. The MAE values were found to be 0.18 for both Raipur and Surguja, and
0.19 for the Bastar district at the calibration stage. During validation, the MAE was found to
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be 0.91 for Raipur and 0.25 for both Surguja and Bastar, suggesting poor model performance.
Therefore, overall, ridge regression is not a good choice to provide the rice yield forecast
for all three studied districts of Chhattisgarh. The variable importance developed using
ridge regression is shown in Figure 4.
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3.1.4. Elastic Net (ELNET)

For the ELNET model, the values of the R2, RMSE, nRMSE, and MBE were excellent
for all the districts considered in the study. The value of R2 was 0.99, 0.92, and 0.90 for the
Raipur, Surguja, and Bastar districts, respectively, at the calibration stage. The RMSE of
calibrated data ranged from 0.041 to 0.127 t/ha. During the validation stage, the value of R2

was good for Raipur (R2 = 0.46, nRMSE = 27.75%) and Bastar (R2 = 0.48, nRMSE = 17.44%),
whereas it was poor for Surguja (R2 = 0.002, nRMSE = 13.07%). The MBE values also
indicated underestimation for the Raipur (MBE = −0.417 t/ha) district and overestimation
for the Surguja (MBE = 0.100 t/ha) and Bastar (MBE = 0.053 t/ha) districts. Excellent MAE
values were noticed during the calibration stage of the ELNET model, i.e., 0.03 for Raipur,
0.08 for Surguja, and 0.11 for Bastar. During the validation stage, the values of the MAE
were 0.43, 0.17, and 0.21 for Raipur, Surguja, and Bastar, respectively. The overall findings
concluded that the ELNET model can be used for the rice yield forecasting of Bastar. The
variable importance developed using ELNET is shown in Figure 5.

3.1.5. Artificial Neural Network (ANN)

The results of the analysis showed that the performance of the artificial neural network
(ANN) was excellent for the Raipur and Surguja districts, with a R2 value of 1.00 and
a RMSE of 0.002 and 0.004 t/ha, respectively, during calibration. Meanwhile, during
validation, the R2 was 1.00 and 0.99 with a RMSE 0.003 and 0.004 t/ha, respectively, for



Sustainability 2023, 15, 2786 12 of 18

these locations. In addition to this, the value of the nRMSE for the Raipur and Surguja
districts was less than 10% for the calibration as well as the validation stage, indicating
excellent model performance. Although for Bastar, the model performance was good at
the calibration stage (R2 = 0.74, nRMSE = 18.57%), during validation, the model gave a
poor performance (R2 = 0.00). The MBE values for Raipur and Surguja were close to zero.
For Bastar (MBE = −0.143 t/ha), an underestimation of the rice yield at the validation
stage was indicated. The MAE values also indicated the best ANN model performance
was for the Raipur district, with 0.001 and 0.003 for the calibration and validation stages,
respectively. Comparatively higher values of the MAE were noticed for the Bastar district,
i.e., 0.19 and 0.17, for the calibration and validation stages, respectively. Therefore, for
Raipur and Surguja, the ANN is a good choice for rice yield forecasting. The weights and
biases for the developed ANN models can be found in Tables S1–S3 for Raipur, Surguja and
Bastar respectively. Structure of neural network for developed ANN models illustrated in
Figure S1 for Raipur, Figure S2 for Surguja and Figure S3 for Bastar. The variable importance
developed using the ANN is shown in Figure 6.
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Another comparison was made between the developed models to check the impor-
tance of time as a factor. Hence, we ran all the models for each location by (1) using time as
the only independent factor and (2) using only weather variables as independent variables.
It the first case, only two models could be developed, viz., SMLR and ANN. The other three
models (LASSO, ELENT, and ridge regression) need more than one independent variable
to predict yield. Hence, in using time only, these three models could not be developed.
The results of the two cases and improvements are provided in the Table 5. In the first
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case, both the SMLR and ANN models showed poor performance based on the R2 value.
On the other hand, when time was excluded, the performances of the models during the
calibration stage were found to be either similar or decreased based on the R2 value.

Table 5. Comparison of models based on R2 value for calibration stage.

Location Model Only Time as Factor Time Excluded as a Factor
Both Time

and Weather
Variables Included

Improvement in Time
and Weather Variables

Raipur

SMLR 0.57 0.68 0.89 30.88%
LASSO - 0.67 0.97 44.78%
Ridge - 0.60 0.71 18.33%
ELNET - 0.65 0.99 52.31%
ANN 0.57 0.78 1.00 28.21%

Surguja

SMLR 0.50 0.69 0.89 28.99%
LASSO - 0.69 0.94 36.23%
Ridge - 0.66 0.73 10.61%
ELNET - 0.66 0.92 39.39%
ANN 0.50 0.57 1.00 75.44%

Bastar

SMLR 0.29 0.71 0.70 −1.41%
LASSO - 0.75 0.93 24.00%
Ridge - 0.71 0.77 8.45%
ELNET - 0.75 0.90 20.00%
ANN 0.39 0.66 0.74 12.12%

3.2. Ensemble Models

In order to improve the accuracy of predictive analytics, ensemble modeling involves
running two or more separate but related analytical models, synthesizing their results, and
then aggregating them. In the present study, we used the GLM, RF, cubist, and ELNET
approaches to form an ensemble model by using the output of individual models, i.e.,
SMLR, LASSO, ANN, ELNET, and ridge regression. The results of the ensemble model are
demonstrated in Table 6. The findings show that for all the locations, the performance of the
ensemble model was better as compared to the individual models. For Raipur and Surguja,
the performances of all the ensemble methods was comparable, whereas for Bastar, random
forest (RF) performed better as compared to the GLM, cubist, and ELNET approaches.

Table 6. Comparison of different ensemble models for rice yield in training and testing datasets.

Ensemble Methods
Raipur Calibration Raipur Validation

R2
cal ρcal RMSEcal R2

val ρval RMSEval

GLM 1 0.999 0.941 0.002 0.999 0.749 0.001
RF 2 0.926 0.890 0.183 0.955 0.731 0.107

Cubist 0.999 0.941 0.002 0.999 0.749 0.001
ELNET 0.999 0.941 0.018 0.999 0.749 0.014

Surguja calibration Surguja validation

GLM 1 0.999 0.941 0.002 0.999 0.749 0.003
RF 2 0.978 0.927 0.055 0.906 0.703 0.128

Cubist 0.999 0.749 0.003 0.999 0.749 0.005
ELNET 0.999 0.941 0.01 0.999 0.749 0.014

Bastar calibration Bastar validation

GLM 1 0.561 0.676 0.262 0.529 0.516 0.364
RF 2 0.855 0.839 0.163 0.806 0.641 0.222

Cubist 0.523 0.634 0.274 0.809 0.651 0.202
ELNET 0.521 0.609 0.276 0.823 0.635 0.205

1 GLM = general linear model, 2 RF = random forest.
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4. Discussion
4.1. Influence of Weather Parameters on Rice Crop

There is a profound influence of weather parameters on rice yield, and there is ex-
tensive literature available on the effect of temperature on rice yield [34–36]. The mean
weekly temperature for the study regions during the rice-growing season varied from
23.7 to 31.0 ◦C, 21.2 to 29.6 ◦C, and 21.2 to 28.9 ◦C for Raipur, Surguja, and Bastar, respec-
tively, which is quite close to the ideal temperature needed for rice growth i.e., 15–18 to
30–33 ◦C [37]. However, the maximum temperature sometimes exceeded 35 ◦C, and these
extreme temperatures have a negative impact on rice yield and growth [38]. The rate
of photosynthesis, respiration, spikelet sterility, and length of the growing season are all
impacted by temperature, which also has an impact on crop yield [39,40]. Higher tempera-
tures have been observed to shorten the grain filling time, which reduces crop yield as well
as the grain quality. Moreover, rice yield is positively influenced by solar radiation, as it
directly affects biomass accumulation [40]. Reduced sun exposure, especially during the
reproductive and ripening stages, results in a reduction in the crop yield [41].

Temperature, relative humidity, and solar radiation were the major weather parameters
with the maximum impacts on the rice yield. Solar radiation was selected to be an important
variable for rice yield using the ANN and LASSO models for the Raipur and Bastar
districts, respectively, which is in agreement with previous studies [42], and the maximum
temperature and relative humidity was found to be the most significant predictors of rice
yield for the Surguja district.

4.2. Model Cross-Comparison

In the face of climate change, population growth, and food demand, timely, accurate,
and reliable crop yield estimation is much more important than ever before in crop man-
agement, food security assessment, and policymaking. In the present study, an attempt
has been made to discover the best prediction model for rice yield forecasting for three
districts of different agro-climatic zones of Chhattisgarh, India. By combining the weather
data with publicly available agricultural production data, a comparison was made among
the models developed using multiple approaches, including SMLR, ANN, LASSO, ELNET,
and ridge regression. Different statistical measures were used to capture the performance
of each model.

The finding showed that based on the value of the coefficient of determination (R2),
SMLR performed well at calibration, whereas at validation, it performed poorly for all the
districts, which might be due to the overfitting of data at the calibration stage. On the other
hand, the performance of LASSO was good at calibration for all three districts, whereas
it was poor at validation for Raipur and Surguja. The LASSO technique was found to be
the most accurate for rice yield forecasting for the Bastar district at both the calibration
and validation stages. This finding is consistent with the findings of Kumar et al. [43],
Singh et al. [44], and Parul et al. [45], who observed that LASSO performed better than
SMLR to some extent. The performance of LASSO was good, as the model used the
shrinkage technique to deal with the issue of multicollinearity, thus keeping only the most
significant variable in the study.

Moreover, for ridge regression, the performance of the model was good at the calibra-
tion stage, whereas it was poor at the validation stage for all three districts based on the
value of the R2 and nRMSE. For the ELNET model, at the calibration stage, the value of
the R2, RMSE, nRMSE, and MBE was excellent for all the districts considered in the study.
However, during the validation stage, model performance was good for Raipur and Bastar
and poor for Surguja. The overall findings concluded that the ELNET model can be used
for the rice yield forecasting for Bastar. The good performance of ELNET may be due to
the inclusion of Lasso and ridge penalties, so the model hypothesis space is much broader
with ELNET.

Likewise, the ANN works in a non-linear fashion, having a potential advantage in
the analysis of variables with complex correlations compared to regression models. The
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performance of the ANN was excellent for the Raipur and Surguja districts during the
calibration as well as the validation stage. Meanwhile, for Bastar, the model performance
was good at the calibration and poor at validation stage. Therefore, for Raipur and Surguja,
the ANN is a good choice for rice yield forecasting. The results supported the study
by Aravind et al. [16], which demonstrated that the ANN performed better than SMLR,
LASSO, and ELNET in the Patiala district of Punjab.

It is worth noticing that different weighted and unweighted climatic indices were
selected in different models and districts. All the three districts of the state are part of three
different climatic zones of Chhattisgarh state (India), and their climatic conditions are very
different from each other. Surguja belongs to the northern hilly region, Raipur is part of the
central plains, and Bastar is part of the southern plateau. Hence, it is understandable that
different climatic variables could affect the rice yield in different regions.

4.3. Limitations

Many times, commonly used linear regression models to predict crop yields such as
SMLR, LASSO, ridge, and ELNET fail to fit complex nonlinear relationships between crop
yield and weather data. The poor performance of ridge regression compared to LASSO
and ELNET may be due to the inclusion of all predictor variables in the final model. In the
case of multiple highly collinear variables, LASSO regression randomly selects one of them,
which can lead to incorrect interpretation. The alternative to these mentioned approaches is
an ANN, but the ANN is not perfect when it comes to learning patterns, since crop yield is
affected by a variety of factors, which are unpredictable and inconsistent. Additionally, we
used a single hidden layer for ANN fitting. The inclusion of multiple hidden layers with a
large amount of training data may further improve the predictability of the ANN model.
Furthermore, an attempt was also made to form an ensemble model. The performance of
the ensemble model may not be better than the best individual model, as the ensemble
model is built using the individual models only. However, it will definitely be better than
the individual model having the worst performance. The biggest limitation of the present
study was the unavailability of long-term rice yield and weather data.

5. Conclusions

In the present study, five different methods, viz., SMLR, LASSO, ELNET, ridge regres-
sion, and an ANN, were used to study the relationship of yield to weather parameters
for three districts of Chhattisgarh, India. The overall ranking based on the RMSE and
nRMSE values during validation revealed that the ANN performed the best for the Raipur
(R2 = 1) and Surguja (R2 = 1 and 0.99) districts as compared to other models, and for the
Bastar district, LASSO (R2 = 0.93 and 0.57) and ELNET (R2 = 0.90 and 0.48) performed
better compared to other models included in the study. The study also showed that the
performance of SMLR, LASSO, ELNET, and ridge regression was good during calibration
but not during the process of validation, which may be due to overfitting. In the ensem-
ble model, the performance was found to be better compared to the individual models.
For Raipur and Surguja, the performance of all the ensemble methods was excellent and
comparable, whereas for Bastar, random forest (RF) performed better, with R2 = 0.85 and
0.81 for calibration and validation, respectively, as compared to the GLM, cubist, and
ELNET approaches.

Future Research

There is no doubt that deep learning has rapidly expanded in the field of agriculture
since 2019, including the prediction of crop yields. In future studies, focus should be placed
on some deep learning techniques, such as CNN, DNN, RNN, LSTM, MLP, R-CNN, and
faster R-CNN, both individually as well as in different combinations.
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