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Abstract: The purification and concentration of orange juice are crucial to remove undesirable
materials, such as pectin, which is responsible for juice clouds; or limonene, which is responsible for
bitter taste. Membrane-based juice clarification is preferred due to its capability to separate specific
targeted molecules, while still maintaining the clarified juice’s nutritional content. In this study, a
novel designed bench-scale plate-and-frame membrane module composed of low fouling cellulose
acetate membrane sheets was manufactured to facilitate orange juice clarification. The experimental
results demonstrated the effectiveness of the developed module to be used for juice clarification. After
incorporating the functional and structural design parameters, the final module had the following
specifications: dimensions of 125 × 168 mm, an effective volume of 0.9–9.4 L, a total active membrane
area of 1088 cm2, and a transmembrane pressure of 0.3–0.55 MPa. The results of the juice clarification
show no difference in the value of pH, viscosity, total acid, water content, color L* (brightness), and
color a* (reddish) of the feed, the permeate, and the retentate streams. The clarified juice had slightly
higher total dissolved solids (◦Brix), ash content, vitamin C, and color (b* yellowish). Overall, our
findings demonstrated that the developed plate-and-frame module could effectively be used to clarify
orange juice without altering the quality, i.e., reducing the nutritional contents.

Keywords: composite membrane; anti-biofouling; plate-and-frame module; juice clarification; stability;
vitamin C

1. Introduction

Fruit juice is a drink made from the extraction of the natural liquid contained in fruit,
which contains vitamins and antioxidants that are beneficial for health [1]. A popular
example of fruit juice is orange juice, which contains several micronutrients, such as
vitamin C, folate, and polyphenols [2]. Orange juice is a natural source of antioxidants,
including flavonoids (hesperidin and naringenin predominantly as glycosides), carotenoids
(xanthophylls, cryptoxanthin, and carotenes), vitamin C, and folate [3].

Orange juice generally has a pale yellow color, and it contains pectic and cellulosic
substances that cause turbidity, which requires a clarification process [4]. Decantation is
a simple way to clarify an orange juice, but it is less effective because it requires a long
period [5]. Centrifugation is much faster than clarification, but it consumes high energy
and cost [6,7]. Filtration has gained attention in regard to orange juice clarification due to
its simple operation, and especially due to the ability to tune the filter’s pore size according
to the process objective [8,9]. The aroma of the fruit juice will not disappear during the
concentration process using a membrane [10]. Besides turbidity removal, juice clarification
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should also consider the possible removal of antimicrobial components of orange juice,
such as the essential oils present in the cloud fraction [11].

The quality of orange juice is influenced by several factors: low levels of compounds
that cause a bitter taste, soluble solids, acidity, Brix/acid ratio, color, and flavor [12]. In
fruit-juice processing, purification and concentration processes play essential roles that
dictate the characteristics of the produced fruit juices, such as texture, taste, color, solutes,
decreased water levels, and an increase in essential substances, such as vitamin C.

Membrane technology is a potent approach for clarifying and concentrating juices,
and it offers several advantages over traditional separation processes [13]. In the food-
processing industry, membrane technology has been widely applied, especially in clarifying
and concentrating agricultural-based beverages. Compared to other conventional technol-
ogy (such as evaporation), the membrane process offers improved product quality, requires
less energy, has a high efficiency, requires a short processing time, and operates in the ambi-
ent temperature. The concentration by evaporation process can reduce the quality of the
produced juice due to heat exposure, which damages the nutrition [14]. Ultrafiltration and
microfiltration membranes with tangential or crossflow filtration can replace conventional
filtration methods for clarifying fruit juices [15,16].

Membrane filtrations for clarification and concentration of fruit juices have been
carried out, e.g., orange juice with polymeric membranes (polyvinylidene difluoride/PVDF
and poly(methyl methacrylate)/PMMA) [17], bitter orange juice with mixed cellulose
ester membrane [18], apple juice with polysulfone and polyethyleneimine membranes [19],
pricky pear juice with polysulfone membrane [20], orange juice with polyether sulfone and
polysulfone membranes [21], passion fruit juice [8], commercial and pure orange juice [22],
and citrus lemon juice [23]. Membranes can be applied to clarify and concentrate apple,
strawberry, orange, black currant, pear, hawthorn, pineapple, and date juices. Clarification
by membrane produces high-quality products with low operating costs and minimum
use of an additive. However, clarification using the membrane suffered from membrane
fouling [24–26].

This study explores the design and application of a plate-and-frame membrane for
juice clarification. The plate-and-frame module was selected for its simplicity and facile
assembly from a flat sheet membrane. The elements of plate-and-frame membrane are
flat sheet membrane. The membrane used in this study was predeveloped from cellulose
acetate (CA) polymer and phenolic substances from garlic bulb to pose a low biofouling
vulnerability. Cellulose acetate membranes enriched with phenolic substances derived from
garlic bulbs have been prepared and showed low-fouling properties against bacterial adhe-
sion [27]. The module components include a support plate, spacer, and feed distribution
plate [28]. A plate-and-frame module configuration includes sets of two membrane sheets
sandwiching a spacer that acts as permeating channel. A plate-and-frame stack consists
of several membrane sets that are sealed by using rings and end plates [29]. The module
provides low packing density and easy assembly without requiring delicate gluing. A
plate-and-frame module is also superior to other modules in resisting particulate blocking
during filtration, considering the high concentration of particulates in orange juice [30].

The first commercially successful ultrafiltration systems were based on tubular mod-
ules and plate-and-frame modules. Plate-and-frame units compete with tubular units in
several applications. These modules are not as resistant to fouling as tubular modules but
are less expensive. Most consist of a flat membrane envelope with a rubber gasket around
the outside edge. The membrane envelope, together with the appropriate spacers, forms
the plates contained in stacks of 20–30 plates. Typical feed channel heights are 0.5–1.0 mm,
and the system operates under high-shear conditions [31].

The advantages of plate-and-frame systems are that they can be used for highly fouling
solutions and can operate at high temperatures with relatively aggressive feed solutions,
conditions under which spiral-wound modules might fail. Furthermore, it can also operate
at higher pressures than tubular or capillary modules—operating pressures up to 150 psi are
not uncommon. The compact design, small holding volume, and no stagnant areas make
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sterilization easy. For this reason, plate-and-frame units are used in several food-industry
operations, e.g., in the production of cheese, in the production of apples and other juices,
and more recently, in the production of beer and wine [32,33].

The drawbacks of plate-and-frame units are that they are expensive compared to
the alternatives and that there is leakage through the gaskets required for each plate,
creating a serious problem [31]. Moreover, the plate-and-frame membrane module requires
the product stream to spread across the entire surface of the individual sheets prior to
recirculation. This causes the flow path to be non-uniform and slower, thus accelerating
the occurrence of concentration polarization (laminar). Consequently, it is not directly
scalable [34]. In addition, the process of cleaning the plate-and-frame modules of the
membrane is quite time-consuming. Equipment needs to be removed to perform cleaning
of each membrane after the clarification process [35].

In this study, a plate-and-frame membrane module was selected and designed for
orange juice clarification. The optimal design of a plate-and-frame module is required
to enhance the filtration efficiency. The design of the plate-and-frame module in this
study uses ear bolts to facilitate the disassembling process when cleaning or changing the
membrane. On top of that, the design of this module is equipped with two straight-blade
impellers that provide radial flow to help spread the material across the membrane surface
and reduce the formation of fouling. The ease of manufacture and production is a distinct
advantage of such a straight-blade impeller when compared with other impellers [36]. The
scope of this study was limited to assessing the impact of the membrane-based clarification
on the quality of the produced orange juice. The hydraulic performance, especially related
to membrane fouling, was not addressed in this work.

2. Materials and Methods
2.1. Materials

A predeveloped CA-based flat-sheet membrane was employed in this study. The
membrane was optimized to minimize biofouling by incorporating phenolic substances
from garlic extract; the details can be found elsewhere [27]. Poly(methyl methacrylate)
plates were used as supported plate and frame, holding baffle, feed container, and electronic
control box (power supply 5 A, 12 V; potentiometer, on/off controlled system). Silicon
rubber was used as the rings and gasket for the membrane stack to prevent leakage. A
nylon-based 100 mesh spacer was used as a spacer to set two membrane sheets apart.

A straight-blade impeller was installed to induce fluid radial flow, provide fouling
control, and prevent sedimentation of juice component in the bottom of feed container. The
impeller was powered by a motor reduction gear turbine worm self-locking endorser signal
feedback with DC 12 V/150 rpm. A diaphragm vacuum pump (60 W, 12–24 V, 1.6–3.0 A,
max flow 3.6 L/min) was used to suck liquid from the feed juices, and vacuum suction
was measured by a manometer (vacuum: −1.5–0.5 bar pressure). All materials were of
food-grade quality.

2.2. Module Design

The plate-and-frame module was designed by using AutoCAD software (Autodesk,
San Rafael, CA, USA). Two design approaches, namely structural and functional, were
conducted. The functional states that a design is a function of its probability of successfully
achieving the required functional requirements and constraints. Figure 1 shows schematic
overview of the designed plate-and-frame module.

Meanwhile, the structural states that a design is a function of its representation and
provides quantitative measures [37]. The goal was to develop an effective instrument to
control, contain, and support the juice clarification process. Liquid–solid transfer, sterility,
applied pressure, and other practical considerations were considered. The module was
fabricated on a laboratory scale, considering the requirement for a proof of concept. Further
consideration is required to provide an upscaled membrane module customized for fruit
juice clarification.
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Figure 1. Schematic overview of the designed plate-and-frame membrane module.

2.2.1. Plate-and-Frame Elements

The plate-and-frame elements were from PMMA plate, with the size of 125 × 168 mm,
as shown in Figure 2. The size of the membrane frame was 125 × 168 mm, in rectangular
shape, and two holder plates were located on the side (Figure 2a). Two membrane sheets
were separated by a spacer sheet, also acting as the permeate flow channel (Figure 2b,d).
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Figure 2. Membrane plate-and-frame element: (a) front view, (b) side view, (c) isometric, and
(d) top view.

The active area of the membrane sheet and spacer sheet was 85 × 128 mm (Figure 3a,b).
The silicon rubber had a similar size, but only in the perimeter of the plate (Figure 3c). The
membrane element configuration was as follows: front plate–silicon rubber–membrane
sheet–spacer–silicone rubber–middle plate–silicon rubber–spacer–membrane sheet–silicon
rubber–rear plate (Figure 2c).

The front and the rear plates acted as the cover and the support for the configuration,
while the middle plate acted as the support for two 4 mm diameter outlet tubes, as shown
in Figure 4. The 4 mm diameter tube was connected to a 6 mm diameter tube to collect the
permeate from each membrane element. The plate-and-frame elements were fitted with
8 ear bolts.
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2.2.2. Membrane Module

As shown in Figure 2, five plate-and-frames were stacked, connected, and combined
into a module, as shown in Figure 5. The plate-and-membrane elements were placed in
the feed container. The membrane stack was fully immersed in the feed solution. The feed
container capacity was 9–12 L, with the dimension of 345 × 185 × 220 mm (Figure 5c).
The permeate tube was used to collect permeates from each plate-and-frame membrane
element (Figure 5d).
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Two straight-blade impellers, with a blade size of 60 × 20 mm thickness 1 mm and
height of 210 mm, were installed in the left and the right side of the module stack to
promote mixing and prevent decantation of the solid components in the bottom of the feed
container (Figure 6).
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2.3. Orange Juice Clarification

The plate-and-frame module was used to clarify the orange juice. Orange juice was
obtained from a local farmer in Malang city, East Java, Indonesia. The juice clarification
was conducted under dead-end mode, with a suction pressure of −0.2 bar, a feed volume
of 12 L, and 2 membrane elements (4 membrane sheets). The schematic diagram of the
orange-juice clarification process is shown in Figure 7.
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Figure 7. Schematic diagram of orange juice clarification and concentration using a plate-and-frame
ultrafiltration membrane system.

The orange juice clarification was conducted based on the modification of previous
research [38]. Some main parameters were assessed. They included water content, ash
content, pH (ph Meter, Crison type 20, Barcelona, Spain), viscosity (Vibro viscometer,
AND/SV-10, Tokyo, Japan), total soluble solids (◦Brix) with an Abbe digital refractometer
(WAY 2S, Wincom Company Ltd., Hunan, China), total acidity titrated (NaOH 0.1 N, with
phenolphthalein as an indicator), vitamin C (by using titration), and color with a color
reader (Minolta, Tokyo, Japan) [39].

3. Results and Discussion
3.1. Plate-and-Frame Module

Details of plate-and-frame membrane specifications are summarized in Table 1, and
the schematic of the plate-and-frame module and filtration membrane system is shown in
Figure 8.
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Table 1. Plate-and-frame membrane specification.

No. Instruments Specification Dimensions

1. Feed container Capacity: 12 L 345 × 185 × 220 mm

2. Membrane process Batch ultrafiltration using a submerged module -

3. Type of membrane Flat sheet Active area: 85 × 128 mm
Thickness: 0.3 mm

4. Membrane additive Phenolic compound from garlic extract -

5. Plate and frame 5 elements 125 × 168 mm with a thick cover
of 5 mm and the middle 10 mm

6. Food-grade nylon spacers 10 sheets 100 mesh (125 × 168 mm)
Thickness: 0.1 mm

7. Food-grade silicon rubber 20 sheets 125 × 168 mm
Thickness: 1 mm

8. Straight-blade impeller 2 pieces Blade: 60 × 20 mm
Height: 202 mm

9. Manometer 1 piece −1–0.5 bar

10. Diaphragm pump

Voltage: 12–24 V
Max Power: 60 W
Current: 1.6–3.0 A

Max Flow: 3.6 L/min
Max Pressure: 0.3–0.55 MPa

Max Liquid Temperature: 100◦

157 × 100 × 60 mm

11. Electronic box control

- Push ON/OFF AC: 1 piece
- Push ON/OFF DC: 3 pieces
- Potentiometer: 3 pieces
- LCD V/A: 3 pieces
- Power supply: 5 A; 12 V

280 × 240 × 100 mm
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3.2. Clarification of Orange Juice

Some of the molecular weights of the constituents of the orange-juice feed are sum-
marized in Table 2. The soluble solids in orange juice consisted of several components,
e.g., carbohydrates, 76%; organic acids, 9.6%; free amino acids, 5.4%; inorganic ions, 3.2%;
vitamins, 2.5%; liquid constituents, 1.2%; nitrogen-based and glutathione, 0.9%; flavonoids,
0.8%, volatile constituents, 0.38%; carotenoids, 0.38%; and enzymes, 0% [40]. The fruit juice
was clarified by using a predeveloped membrane detailed in the previous study [27].
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Table 2. Typical orange juice components and their molecular weight.

Orange Juice Content Molecular Weight Source

Pectin commercial (Hereford UK) 212,000 Da [41]
Pectin Methyl Ester 54,000 Da [42]

Protein 12–72 kDa [43]
Citric Acid 210.14 Da [44]
Citric Acid 192.12 Da [44]

Ascorbic Acid 176.12 Da [45]
Carotenoid 536.87 Da [46,47]
Malic Acid 134.09 Da [48]

Benzoic acid 122.22 Da [49]
Oxalic Acid 90.03 Da [50]

Tartaric Acid 150.09 Da [51]
Succinic Acid 118.09 Da [52]

Fructose 180.16 Da [53]
Sucrose 342.30 Da [53]
Glucose 180.16 Da [53]

3.3. pH Value

The measurement of the pH of the orange juice clarification by a plate-and-frame
membrane module is shown Figure 9. The pH values of the feed, the permeate, and
the retentate were similar. As reported elsewhere, the pH value and total acid did not
significantly change due to the filtering process that used an ultrafiltration membrane [21].
Acids’ molecules could pass through the pores of the membrane. Hence, the feed and the
permeate pH values were expected to be similar. In addition, the pH value increased due
to the higher acid value gained from long storage, as reported earlier [38].
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3.4. Viscosity

The measurement of the viscosity of orange juice clarified by the developed plate-and-
frame module is shown Figure 10. The viscosity value of the clarified juice decreased after
the clarification via ultrafiltration. The decrease in viscosity can be attributed to the removal
of suspended solids from the feed. On the other hand, the viscosity value increased with
the decreasing amount of water content (due to concentration). The decrease in viscosity
for the retentate stream can be attributed to the accumulated suspended solid in the system
or the attachment on the membrane surface.
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Table 2 shows that the molecular weight of the pectin in orange juice was 212,000
and 54,000 Da, and the protein was 12–72 kDa, while the pore size of the membrane and
MWCO was smaller. The rejection of pectin was then expected and caused a gel formation
on the surface of the membrane. In addition, the carbohydrate content (sucrose, glucose,
and fructose) could pass through the membrane pores.

The viscosity and density of the filtered juice (permeate) were significantly reduced
due to the membrane’s retention of the suspended solids, such as orange pulp and pectin
materials, as reported elsewhere [21,54]. The retention of some juice components on
the membrane increased the rejection by forming a dynamic membrane in the form of a
cake layer. The cake can later undergo gelation, induce concentration polarization, and
increase the filtration resistance [55]. The decrease in the permeate’s viscosity can enhance
the filtration’s hydraulic performance [56]. An addition of cyclodextrin can increase the
viscosity, while cellulose acetate decreases it. Cyclodextrin is soluble in the juice, while
cellulose acetate is insoluble

A previous study [57] employed two membranes with an MWCO of 30 and 100 kDa
to clarify pineapple juice in addition to an enzymatic. It was found that there was an
insignificant difference in the pH, acidity, total soluble solids, total solids, total sugar, and
reducing sugar between. However, the suspended solids, viscosity, and color decreased
significantly in the presence of enzymes [57]. The change in the property of the juice
product was due to the initial treatment of pineapple juice with enzymes, causing pectin
degradation and decreasing viscosity. The viscosity of the juice was almost constant when
the total soluble solids were increased as a result of membrane-based clarification [58].

3.5. Total Soluble Solid

The total soluble solids for the feed, permeate, and retentate streams during the orange
juice clarification by plate-and-frame membrane are shown Figure 11. The total soluble
solid of the retentate was the highest at 9.6 ◦Brix. This finding suggests that part of the
soluble solid was retained by the membrane, considering the formation of additional
dynamic layer on the membrane surface. The decrease in ◦Brix of the permeate would
slightly affect the taste of the juice product.
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The total carbohydrates in the orange juice had the highest value in the soluble fraction
of 76%, consisting of sucrose, glucose, and fructose (2:1; 1). It was known that the pore
size of the membrane was larger than the molecular weight of the carbohydrate materials
listed in Table 2, e.g., sucrose (342.30 Da), glucose (180.16 Da), and fructose (180.16 Da).
Those carbohydrates were expected to pass through the membrane pore. In addition, the
molecular weight of pectin and protein was around the pore size of the membrane; hence,
they were partly rejected (up to 90%) and accumulated in the retentate stream. Another
study reported that the ◦Brix value of an orange juice increased by a factor of two by
ultrafiltration and increased from 24 to 65 ◦Brix when using a direct contact membrane
distillation [58]. The ◦Brix of a clarified fruit juice can reach 25–30 through a concentration
process, using a reverse-osmosis membrane [59]. The increase in total soluble solids also
occurred due to reduced water content due to the clarification process with the membrane.
The ◦Brix in the clarified Valencia orange juice via ultrafiltration decreased slightly [21].
The soluble solids in the clarified orange prickly pear juice with ultrafiltration membrane
increased from 10.8 to 11.4 ◦Brix [20]. Pomelo fruit has a total soluble solids value of
7.14–9.10 ◦Brix [38].

3.6. Total Acid

Total acid is defined as the total amount of acid that can be titrated. The total acid
in orange juice was expressed as citric acid and measured using titration. Total acid has
an inverse relationship with pH and taste. The total acids of orange juice clarification
by plate-and-frame membrane in the feed, permeate, and retentate streams are shown in
Figure 12. The total acid in the retentate was lower than in the feed. The pH value of orange
juice greatly affected the total acid value, so the value remained constant or decreased.
Data in Table 2 show that several acid molecules were contained in the orange juice sample.
The size of citric acid molecules of 192.12 Da was slightly smaller than the nominal size
of the membrane pore of 210.14 Da. It was expected to be partly retained, considering the
presence of a dynamic cake layer on the membrane surface. Other acids, such as tartaric
(150.09 Da), oxalic (90.03 Da), benzoic (122.22 Da), and malic (134.09 Da), were expected
to pass through to the permeate stream because their sizes were far below the MWCO of
the membrane.
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The decrease in the total acid value of the retentate in this study was attributed mainly
to acids with small molecules thoroughly permeating through the membrane and that were
probably neutralized or oxidized. For instance, the total acid decreases under prolonged
heating at high temperatures due to the oxidation of ascorbic acid. The total acid value
(represented by citric acid) was about 0.54%, exceeding the minimum acidity content in
orange juice, i.e., 0.35%. Total acid content can affect the pH and the taste [56]. The total
acid content of orange juice increased with cyclodextrin and decreased with the addition
of cellulose acetate. The acidity of fruit juices in some countries determines fruit ripeness
because fruit color is an inferior and unreliable guide [40].

The literature reports on the effect of membrane-based juice clarification are incon-
clusive. A change in total acid value is affected by several factors, namely the pH value,
citrus variety, soluble solids content, season, and water content in the juice. In addition, the
pH and total acid (citric acid) might change over time due to neutralization or oxidation,
which unfortunately could not be confirmed in this study. Microfiltration can remove large
particles and reduce the turbidity and acidity of the juice that accumulates in the cake
layer [60]. The total acid and pH values remained constant with the filtering process with
polyether sulfone and polysulfone membranes [21]. Using an ultrafiltration membrane
with an MWCO of 30.50 and 100 kDa for treating orange juice, the pH and total acid were
slightly changed during the clarification [61]. Another study found that the ultrafiltration
membrane did not affect the pH and the total acid [57].

3.7. Vitamin C

The vitamin C content in orange juice was expressed as ascorbic acid and was mea-
sured by using the titration method, as shown in Figure 13. The vitamin C content in the
clarified orange juice was 31.85 mg/100 g, as the vitamin C content tends to increase in
the retentate. Table 2 shows that the molecular weight of vitamin C (ascorbic acid) was
176.12 Da, slightly lower than the MWCO of the applied membrane of 210.14 Da. Partial
retention of vitamin C was then expected and accumulated in the retentate. The formation
of a dynamic membrane on the membrane surface enhanced the vitamin C retention.

The findings show that the membrane-based clarification could slightly maintain > 75%
of the vitamin C content in the clarified orange juice. The nature of filtration in the ambient
temperature helped prevent vitamin C denaturation. In another report, clarification of bitter
orange via microfiltration, using a cellulose ester-based membrane, found that ascorbic
acid content (mg/100 g) and total acid in the permeate were lower than the feed due to
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sensitivity to the oxidation process [18]. Adding cyclodextrin could maintain vitamin C,
while adding cellulose acetate could preserve vitamin C [56].
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3.8. Water Content

The water content was measured to evaluate the concentration level of the fresh juice
via clarification, and the results are shown in Figure 14. The water content in the feed (fresh
orange juice), the permeate, and the retentate are relatively similar. The water content of
the clarified juice (the permeate) was slightly higher than the feed and the retentate due to
the retention of suspended solid remained.
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3.9. Ash Content

The ash compositions represent orange juice’s mineral content, and the analysis results
are shown in Figure 15. The ash content slightly increased in the retentate could be
attributed to a fraction of soluble solids retained by the membrane.
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The clarification increased the ash content due to the increase in viscosity and soluble
solids in the orange juice. The carbohydrate fractions in orange juice were in many forms,
such as sucrose, fructose, and glucose [40]. The retained pectin would increase the total
soluble solids value, eventually increasing the total ash value. In another study, clarification
of sugarcane juice via microfiltration resulted in the ash content ranging from 0.32 to 0.34%
for the three streams (feed, permeate, and retentate) [62]—not far from the ones obtained in
this work.

3.10. Color Space

The results of the CIELAB color space (L*, a*, and b*) orange juice measurement are
shown in Figure 16. The measurement was conducted based on the L* (perceptual lightness)
and the a* and b* (four unique colors of human vision: red, green, blue, and yellow) of
the orange juice. Overall, there was no change in color. The color b* (yellowish) slightly
increased. The L* color, representing the condition of pure orange juice, had a brightness
level of 34.35. The brightness value of the permeate was higher compared to the retentate.
It is due to the browning event of the orange juice permeating through the membrane
pores. In addition, orange juice contains pectin content, which can make the color paler
and cloudier in the retentate stream.

The decrease in the brightness in orange juice occurred due to the natural browning
or a particular reaction that darkened the color. Color differences are also influenced
by several factors, such as the maturity level, seasonal variations, varieties, and regional
developments [40]. In color a* (reddish level), the value slightly increased in the permeate,
reaching 7.9. The red color increment in orange juice tends to be lower than the yellowness
because the appearance of orange juice is generally pale yellow. The color b* (yellowness
level) slightly increased in the retentate compared to permeate. The highest value of yellow-
ness level was obtained in the retentate condition of 22.35. This is inversely proportional to
the color L* and a*, where the color increased in the permeate. It can be attributed to the
dominant yellow color compared to other colors in orange juice. Clarification of orange
prickly pear juice by using a microfiltration membrane resulted in a clarified juice with a
higher luminosity (L*) value, which was more apparent and less turbid. In addition, the a*
value showed an increase in the red color, and b* showed an increase in the yellow color [20].
The clarification of pomegranate juice via membrane filtration also led to an increase in the
(L*), (a*), and (b*) values, as reported elsewhere [60]. In another study, the membrane-based
clarification of apple juice led to a higher permeate color intensity [19]. The clarification
of Valencia orange juice with PES and PS membranes increased the color and clarity of
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the juice due to the loss of suspended colloidal particles. The color intensity increased in
the retentate condition compared to the feed-in in both membranes [21]. The variations
of findings in the literature were because of the difference in the feeds and the membrane
properties. Clarification using an ultrafiltration membrane resulted in lower turbidity and
higher permeate color intensity. The color of the reddish level, the characteristic of blood
orange juice, increased more significantly when using the membrane with lower MWCOs.
The study found that the dominant color, yellow (b*), would persist and increase [61] since
the colors L* and a* became darker due to the concentration and other factors.
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3.11. Summary of the Clarified Product Properties

Orange juice clarification and concentration using a plate-and-frame module produced
a clarified juice with the properties summarized in Table 3.

Table 3. Properties of the clarified orange juice by using the developed plate-and-frame membrane.
Data are presented as average ± standard deviation.

Sample pH
Total Soluble

Solids
(◦Brix)

Viscosity
Ash

Content
(%)

Water
Content (%)

Total Acid
(%)

Vitamin C
(mg/100 g)

Color

(L*) (a*) (b*)

Orange
Juice 5.76 ± 0.06 8.40 ± 0.14 3.27 ± 0.33 0.34 ± 0.01 90.58 ± 0.32 0.62 ± 0.08 29.25 ± 0.21 34.35 ± 0.07 7.15 ± 1.06 22.05 ± 1.48

Permeate 5.82 ± 0.33 7.95 ± 0.21 2.94 ± 0.16 0.32 ± 0.01 91.48 ± 0.53 0.82 ± 0.11 21.02 ± 1.00 35.10 ± 0.57 7.90 ± 0.28 21.65 ± 1.06
Retentate 5.85 ± 0.02 9.00 ± 0.85 2.85 ± 0.06 0.36 ± 0.02 89.78 ± 0.63 0.54 ± 0.01 31.85 ± 3.64 34.00 ± 0.14 7.20 ± 0.28 22.35 ± 0.64

4. Conclusions

This study evaluated a plate-and-frame module equipped with a predeveloped cellu-
lose acetate–based ultrafiltration membrane by incorporating phenolic compounds from
garlic extract as an additive. The module system was used to clarify orange juice. An
analysis of the fresh juice as the feed, the clarified juice as the permeate, and the retentate
streams was performed thoroughly. The results show no difference in the value of the
pH, viscosity, total acid, water content, color L* (brightness), and color a* (reddish). Mean-
while, the total dissolved solids (◦Brix), ash content, vitamin C, and color (b* yellowish)
were slightly increased in the clarified permeate relative to the fresh juice. The overall
findings demonstrated that the developed plate-and-frame module could effectively clarify
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orange juice without altering the quality. A follow-up study that assesses the hydraulic
performance, especially against membrane fouling, is required to thoroughly assess the
performance of the predeveloped membranes in a plate-and-frame module.
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