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Abstract: Geothermal pavements have the potential to reduce the pavement surface temperature by
circulating fluid in pipes within the pavement structure. This research investigated an innovative
geothermal pavement system with multiple benefits, such as reducing the surface temperature and
harvesting heat energy for power generation. This research aimed to provide an understanding of the
mechanical properties of geothermal pavements constructed with construction and demolition (C&D)
waste materials through large-scale physical testing, experimental testing, small-scale prototype
testing, and numerical simulation. The mechanical properties of the geothermal pavement system
were assessed under long-term traffic loading conditions using a prototype test system. The repeated
load triaxial and repeated-load California bearing ratio tests were also undertaken to evaluate the
effect of pipe inclusion on the permanent deformation, stiffness, and strength of the pavement base.
A numerical model was subsequently developed and calibrated using the data from small-scale pro-
totype testing. In addition, the effects of the flow rate and pipe materials on the thermal performances
of the geothermal pavements were also investigated in this research. The inclusion of pipes in the
pavement base layer was found to have negligible detrimental effects on the deformation behavior of
RCA. The resilient moduli of recycled concrete aggregate (RCA) samples slightly decreased with the
inclusion of pipes. An HDPE pipe reduced the stiffness of the RCA + HDPE mix. On the other hand,
a copper pipe’s high stiffness improved the mix’s strength. The numerical simulations indicated that
for the HDPE pipe, increasing the flow rate from 500 mL/min to 2000 mL/min reduced the surface
temperature by approximately 1.3%, while using the copper pipe resulted in an approximately 4%
further decrease in the surface temperature compared to the HDPE pipe.

Keywords: ground improvement; pavement geotechnics; geothermal pavements; demolition waste;
recycled wastes

1. Introduction

Asphalt surfaces absorb significant amounts of solar radiation during hot summer
days, increasing the pavement surface temperature by up to 70 ◦C [1]. High temperatures
are an important contributor to pavement distresses, such as rutting and cracking, leading
to serviceability and stability problems [2,3]. To mitigate these issues, pavement cooling
technologies using circulating fluid in pipes at a shallow depth in the pavement surface
have been introduced as effective solutions [4–6]. Due to the stress concentration around
the pipe, the installation of the pipe in the surface layer requires a special construction
technique to prevent pavement surface cracking [5]; hence, this was not attempted in this
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research study, which focused specifically on the performances of pipes in the pavement
base layer.

Geothermal pavements are formed by embedding pipes in the pavement’s granular
base layer, which is an efficient method for reducing the pavement surface temperature [7].
In addition, embedding pipes in the granular pavement base layer rather than in the
pavement surface layer can result in significant pavement maintenance cost savings. The
fluid circulation within the pipes can reduce the surface temperature and subsequently
reduce the urban island heat effect. The improved heat transfer properties of pavement
base materials, due to their higher resistance to binder degradation against heat energy,
are important parameters affecting the service life [3]. In addition, embedding pipes in
the granular layers of the pavements rather than the pavement surface layers can result in
significant savings in terms of pavement maintenance costs.

Construction and demolition (C&D) materials have emerged as sustainable materials
for civil engineering works, particularly in pavement granular base layers. It is well estab-
lished that C&D materials have similar and in some cases superior deformation responses
compared to natural aggregates [8–10]. The utilization of C&D materials in the infrastruc-
ture application is considered a sustainable solution to minimize the conventional disposal
of C&D waste. In Australia, an enormous quantity of C&D waste, approximately 8.7 million
tons of RCA, 1.3 million tons of CB, and 1.2 million tons of RAP, is stockpiled annually and
promises to increase continuously [11]. Therefore, various pavement engineering research
has attempted to maximize the application of C&D materials as an alternative to the utiliza-
tion of natural aggregates to reduce the environmental problem. Moreover, the application
of C&D materials can mitigate the shortage problems of quality natural materials, with the
advantage of a lower carbon footprint compared to the ordinary aggregates.

Reclaimed asphalt pavement (RAP), crushed brick (CB), and recycled concrete aggre-
gate (RCA) are the major streams of C&D materials in pavement engineering applications.
CB is a by-product of building demolition and is composed of approximately 70% brick
and 30% other components such as cement. For pavement engineering applications, the
California bearing ratio (CBR) and Los Angeles abrasion loss of CB material were found to
be sufficient to satisfy the minimum requirement for the sub-base layer specified by the
local road authority. CB has been recommended for usage in pavement sub-base appli-
cations with a moisture ratio of around 65% because the strength of CB decreases with
further increases in the moisture ratio beyond 65%. CB can be mixed with the other durable
aggregates in order to improve the engineering properties and durability [12–16].

RAP is the waste product associated with the demolished asphalt concrete of the
wearing of a pavement surface. Previous research on C&D materials revealed that RAP
aggregate was suitable for pavement bases. The shear strength under static loading of pure
RAP is similar to loose sand. However, due to its very low cohesion values, the resilience
properties under the cyclic loading of RAP could not be determined. The RAP aggregate
has a more pronounced performance when stabilized with cement. The cement-stabilized
RAP has dominant resilient properties that can meet the minimum requirements of the
local road authority [17–20].

Recycled concrete aggregate (RCA) is the by-product of concrete structure demolition
in the aggregate form after the crushing process. RCA has sufficient engineering properties
and superior deformation responses compared to other C&D materials and thus can be
used for the sustainable construction of unbound pavement layers. In addition, pavement
base layers containing RCA materials have sufficient durability against extreme weathering,
such as wet–dry and freeze–thaw cycles [21–24]. As such, the construction of geothermal
pavements with C&D wastes such as CB, RAP, and RCA further enhances the sustainability
of the system while maintaining the structural integrity of the pavement.

Previous research has studied the effects of C&D materials on geotechnical and en-
vironmental properties [25–30]. However, research on the influence of C&D materials
on geothermal systems is limited to date. A geothermal system is an advancement in
renewable energy resources for heating and cooling systems. For example, a shallow
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geothermal heat pump system, which consists of ground heat exchangers, is an effective
system with regard to transferring the thermal energy between the ground and the heat
pump to distribute the thermal energy. The pipes in a geothermal pavement system can be
installed in asphalt concrete pavements to collect thermal energy, where it is characterized
as an asphalt solar collector system. The energy from the asphalt solar collector system
can be used effectively for the heating and cooling system of a building by storing energy
in the ground. In addition to the energy collection, an asphalt solar collector system can
effectively reduce pavement surface temperatures. The pipe system of an asphalt solar
collector is commonly installed at a shallow depth in the pavement in order to prevent
cracks in the asphalt layer due to the stress concentration around the pipe [25–30].

Based on the published literature [27–30], the pipe system of a geothermal pavement
system can be installed in the base layer to minimize construction and maintenance costs.
A geothermal pavement system, comprising a pipe system formed by a number of pipe
circuits (for redundancy) in the base layer to collect the thermal energy, is an advancement
in renewable energy resources for generating electricity as an alternative to the conventional
power generation for both heating and cooling systems. For example, a shallow geothermal
heat pump system, which consists of ground heat exchangers, is an effective system with
regard to transferring thermal energy between the ground and the heat pump to distribute
the thermal energy [25–27]. If any of the redundant pipe circuits experience leaks or
ruptures during the pavement’s lifetime, that particular circuit is closed off, and the system
continues in operation until the pipe is repaired or continues at a slightly reduced efficiency
if the circuit is abandoned. Further details on geothermal design and operation can be
found in the literature [25,26]. In addition to heating and cooling applications, the collected
energy from the geothermal pavement system may be able to generate electricity for the
buildings in the vicinity of the road [9,27–34].

The incorporation of C&D materials in the pavement base layer of geothermal pave-
ments further enables a lower-carbon pavement system. C&D materials were established
as mainstream pavement base materials in Australia after an earlier benchmarking of
their performance against quarry aggregates indicated they provide equivalent or superior
performance. C&D materials have also been incorporated into road authority standards,
enabling their usage in pavement base applications. However, it is important to understand
how the thermal and mechanical properties of C&D materials affect the performance of
geothermal pavements [35]. To date, no known studies have investigated the long-term
deformation responses of geothermal pavements under traffic loading. The effect of pipe
inclusion on the deformation and strength properties of pavement materials is also of great
importance. In addition to mechanical properties, the effects of different parameters such as
pipe material and flow rate on the thermal performances of geothermal pavements should
be investigated.

This research study attempted to investigate the long-term mechanical properties of
geothermal pavements constructed with C&D materials in pavement bases using experi-
mental testing, prototype testing, and numerical methods. Permanent strain development
due to repetitive traffic loading is a long-term response to a time-dependent process [16].
The accumulated permanent strain increases with an increasing number of vehicle passes.
In this work, the permanent deformation responses of geothermal pavements were char-
acterized using a combination of physical testing and numerical simulations. Laboratory
repeated-load triaxial (RLT) and repeated-load California bearing ratio (CBR) testing was
undertaken to analyze the time-dependent evolution response toward permanent defor-
mation, the resilient moduli, and the strength responses of the C&D materials with pipes.
A small-scale prototype system was used to evaluate the short- and long-term thermal
performances of the geothermal pavements. Based on the experimental results, a numerical
model (which also considered the different target levels of stresses of the geothermal pave-
ments) was developed to investigate the effects of influential parameters on the thermal
performances of the systems in the long term. The outcomes of this research, as evidenced
by the extensive experimental testing, prototype testing, and numerical modeling, will
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build further confidence in using C&D materials in the construction of new geothermal
pavements and will assist in enabling their future commercialization.

2. Materials and Methods
2.1. Experimental Investigation

Recycled concrete aggregate (RCA), crushed brick (CB), and reclaimed asphalt pave-
ment (RAP) were used for the deformation analysis of the prototype geothermal pavement
system under long-term cyclic loads. These materials were collected from recycling sites
across Victoria, Australia. The physical properties of the utilized C&D materials have been
described in the published literature [9].

In this regard, a prototype square testing tank (50 cm × 50 cm) was designed to
investigate the deformation responses of geothermal pavement under long-term cyclic
loading conditions. A single pavement base layer with an approximate thickness of 40 cm
and constructed with C&D materials was equipped with high-density polyethylene (HDPE)
pipes with circulating fluid and was subjected to cyclic loading. The pipes were inserted
approximately 10 cm into the RCA base. A multistage cyclic loading procedure consisting
of 5 loading stages with 40,000 cycles (frequency = 1 Hz) in each stage was applied to
the center of the pavement through a circular plate with a diameter of 10 cm. In total,
200,000 load cycles were applied to the geothermal pavements constructed with RCA, CB,
and RAP. The applied cyclic stress had a haversine shape and varied between 150 kPa and
550 kPa in 100 kPa intervals, according to Austroads repeated-load triaxial test method
AG:PT/T053 [36], to evaluate the long-term performance of the system under a wide range
of stress levels. The testing started at room temperature, and the temperature was changed
to 45 ◦C after approximately 30,000 load cycles. Figure 1 presents the experimental setup
for long-term physical testing.
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Figure 1. Prototype testing setup.

A series of repeated-load triaxial (RLT) tests were undertaken to investigate the effect
of pipe inclusion on the deformation behavior of the RCA samples, as RCA had more
favorable deformation properties compared to the CB and RA, which were used in the
long-term deformation assessment. Three types of pipes, including HDPE, polyethylene
(PE), and copper, were inserted at two different depths within the compacted samples. The
samples were prepared in 5 layers using a vibratory hammer at their optimal moisture
content (OMC) to obtain a compaction degree equal to at least 98% of the maximum dry
density (MDD). The pipes were positioned in a mold after compaction of the 3rd (case 1)
and 4th (case 2) layers. A three-stage RLT testing procedure consisting of constant confining
stress at 50 kPa and deviator stresses equal to 250 kPa, 350 kPa, and 450 kPa was applied to
the samples according to Austroads repeated-load triaxial test method AG:PT/T053 [36].
Each stage included 10,000 cycles of cyclic loads with loading and resting periods of 1 s and
2 s, respectively. The resilient moduli (MR) of the samples were characterized by applying
65 various combinations of confining and deviator stresses as per the Australian standard.
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To further investigate the effect of pipe inclusion on the deformation of the RCA,
repeated-load California bearing ratio (RL-CBR) tests were undertaken. The procedure
adopted for the RL-CBR tests was similar to those used by Araya et al. in 2010 [37] and
Haghighi et al. in 2018 [38], with some modifications. The samples were loaded using
the loading plunger at a constant rate of 1 mm/min, and the forces and corresponding
deformations were recorded. Once the sample reached a deformation value of 5 mm, the
peak load was recorded, and the loading plunger was unloaded to 0.05 kN (seating load)
to complete the first cycle. The loading was repeated for 10 cycles, where the majority
of deformations tended to become recoverable, to complete the first stage of the RL-CBR
testing. Upon the completion of the first stage, the peak load for the first stage was increased
by 30% and 10 cycles were applied to the samples. Similarly, the peak load of the second
stage was increased by 30% in the third stage of the RL-CBR test, and the increased load
was applied for 10 further cycles. Figure 2 shows the sample preparation for the RL-CBR
tests and a prepared sample for RLT testing.
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2.2. Thermal Performance

A small-scale prototype pavement system measuring 300 mm × 300 mm × 170 mm
was used to evaluate the thermal performance of the system. The geothermal pavement
system was composed of a 50 mm asphalt layer over a 100 mm C&D base. A similar setup
was previously used in [7]. A serpentine HDPE pipe with a diameter of 20 mm was inserted
2 cm below the interface between the C&D base layer and the asphalt concrete surface layer.
Four infrared heating lamps were used to heat the asphalt surface, and temperature sensors
were placed on the surface of the system. A constant flow rate of 1000 mL/min was used
in the experiments. The experiments started with heating the pavement surface for more
than 7 h without the circulation of water in the system (case 1) and simultaneous surface
heating and water circulation in the system (case 2). Figure 3 presents the test setup and
the positioning of the HDPE pipe within the pavement system.

A numerical model was subsequently developed using the computational fluid dy-
namics code FLUENT to assess the effects of pipe materials and flow rates on the pavement
surface temperature. The three main heat transfer mechanisms in pavements are radiation,
conduction, and convection. A geothermal pavement system has interactions with the
surrounding environment. It was necessary to define appropriate boundary conditions to
obtain accurate and precise results. The main heat transfer mechanisms on the pavement
surface are radiative and convective heat transfer. The energy equation can be defined as
follows [4,6]:

− k
∂T
∂t

= asqs + εσ
(

T4
sky − T4

)
+ h(Ta − T) (1)

where as is the absorptivity; qs is the solar irradiation; ε represents emissivity; σ is the
Stephan–Boltzmann constant (5.669 × 10−8); and T, Tsky, and Ta are the surface tempera-
ture, sky temperature, and air temperature, respectively. Here, Ta was measured using a
temperature sensor, and it was assumed that Tsky = Ta [37]. The convective heat transfer
coefficient (h) was calculated to be equal to 5.6 (wind speed = 0), according to the empir-
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ical Bentz model, as the experiments were undertaken in a laboratory with a controlled
environment.
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The thermal conductivity of the asphalt concrete and RCA were obtained using the
divided bar method [7,9]. Table 1 summarizes the thermal properties of the materials
used in the numerical simulations. To control the entry of the flow and the flow rate
during simulations, a user-defined function was used. The inlet velocity for the validation
of the numerical model was the same as in the experiments (1000 mL/min), and the
water had a constant temperature of 22 ◦C. Other flow rates (500 mL and 2000 mL/min)
were also considered to evaluate their effects on the system’s performance. Similar to the
experiments, two cases were considered in the numerical simulations: case 1, where there
was no circulation of water and the pavement was under constant heating for more than
7 h, and case 2, where the heating and flow circulation started simultaneously.

Table 1. Thermal and physical properties of materials used in numerical simulations (data from
Arulrajah et al. (2021) [7] and Ghorbani et al. (2021a) [9]).

Material λ (W/(m.K)) Cp (J/(kg.K)) ρ (kg/m3)

Asphalt 1.73 870 2350
RCA 1.65 1050 2200
Water 0.614 4187 999
HDPE pipe 0.50 2000 970
Copper pipe 387 381 8978

3. Results
3.1. Experimental Characterization

Figure 4 presents the relationship between permanent deformation and the number of
cycles under the long-term cyclic loading of C&D materials using a prototype geothermal
pavement tank test. RCA exhibited a stable response and a negligible increase in permanent
deformations with load cycles. The maximum permanent deformation of the geothermal
pavement constructed with RCA was approximately 2.5 mm. CB showed a considerable
increase in the permanent deformation at the initial cycles of each stage, followed by
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a consistent increase in the permanent deformations with the number of cycles. The
maximum permanent deformation of the geothermal pavement with CB was approximately
16.3 mm, which was considerably higher than that of the RCA. On the other hand, RAP
exhibited unstable behavior, even in the initial loading stage, which resulted in failure
in the second stage of the test. Based on the above discussion, RCA was selected as the
primary material for further testing due to its stable behavior and small deformations under
long-term cyclic loads.
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Figure 4. The permanent deformation responses of geothermal pavement systems under long-term
cyclic loading.

Figure 5 shows a schematic of the shakedown theory and the relationship between
permanent deformation and the number of cycles in the long-term cyclic loading tests of
the RCA samples with different pipe types and two pipe inclusion depths. The permanent
strain increased with an increase in the number of cycles for all C&D materials. At the same
number of cycles, the material with a higher resilient response exhibited a lower permanent
strain. Based on the shakedown theory, the unbound granular material behavior under
repetitive stress could be classified as plastic shakedown (range A), plastic creep (range B),
and incremental collapse (range C), as presented in Figure 5a. For range A, the material
had a relatively large permanent strain increment in the primary stage and exhibited an
entirely resilient response (stopped accumulating plastic strain) in the secondary stage.
For range B, the material experienced a large permanent strain increment in the primary
stage, and the rate of permanent strain increased slower in the secondary stage. For range
C, the large amount of permanent material strain increased rapidly in the primary stage,
which ultimately caused failure in the secondary stage due to the accumulated permanent
strain [5].

It was evident that the RCA material with and without pipe experienced a small
permanent strain increment in the secondary stage (Figure 5b). Therefore, the permanent
strain responses of the studied material were classified as range A, which can be used as
pavement material. As noted in the figure, regardless of the pipe type and inclusion depth,
the permanent strains of all samples were lower than 0.86%. That is, all samples exhibited
small permanent strain values and stable behavior under the applied stress combinations.
A closer observation of the results indicated that the inclusion of plastic pipes (HDPE and
PE) increased the permanent strain of the RCA, and the samples with HDPE pipes showed
slightly higher permanent strain values than those with PE pipes. However, at the same
temperature, the inclusion of copper pipes had a negligible effect on the permanent strain
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values. The permanent strain trends for the RCA samples with copper pipes were relatively
similar to the RCA samples. These results can be attributed to the higher stiffness of copper
pipes compared to HDPE and PE pipes. The position of the pipe resulted in the difference
in permanent strain. The influence of the pipe-embedded layer could be observed. In
case 1, pipe installation had a lower permanent strain than case 2. It can be interpreted
that the deeper pipe-embedded layer could reduce the stress concentration on the pipe,
thereby lowering the permanent strain at the same number of cycles. Nevertheless, the
results indicate that, given the stress levels of the unbound base layer, pipes can be inserted
into the unbound base layer without worrying about excessive deformations.
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Figure 6 presents the relationship of the resilient moduli versus the stage numbers
of RCA samples with different pipe inclusions. At the same stage number, the MR
of samples slightly decreased with the inclusion of pipes. Due to the stiffness of cop-
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per, the RCA + copper sample exhibited MR values equivalent to those of RCA. Mean-
while, the RCA + PE and RCA + HDPE samples exhibited slightly lower MR values than
RCA + copper and RCA because of the lower stiffness of the PE and HDPE pipes. The
pipe-embedded layer slightly influenced the MR values at a high stage number, where case
2 pipe installations had slightly lower MR values than case 1 installations for all pipe types.
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Figure 6. Resilient modulus responses of samples with pipe inclusion: (a) case 1 and (b) case 2.

The RL-CBR test was performed on unsoaked RCA samples with different pipe types.
The load–deformation behavior of samples under the three stages of RL-CBR is presented in
Figure 7. As noted in this figure, the peak loads of the first stage for the RCA, RCA + HDPE,
RCA + PE, and RCA + copper samples were 27.1 kN, 21.7 kN, 27.1 kN, and 30.0 kN,
respectively. The inclusion of the HDPE pipe reduced the stiffness of the RCA + HDPE mix
and resulted in a decrease in the peak load. On the other hand, the high stiffness of the
copper pipe improved the strength of the mix and resulted in a higher peak load. Another
notable observation was the higher deformation of RCA + copper compared to the other
mixes. While the higher peak loads could be the reason for high values of the deformation
for the RCA + copper mix, the brittle behavior of the copper pipe once the failure point
was reached would be another important contributing factor. This was evident in the third
stage of the RL-CBR test, where the applied load was beyond the capacity of the copper
pipe and large deformations were observed. In other words, although copper pipes have
better resistance against applied loads, they exhibit a brittle response when failure occurs.
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3.2. Numerical Simulation

Figure 8a shows the pavement surface temperature profiles obtained from experimen-
tal and numerical analyses. There was a consistent increase in the surface temperature
with increasing time, with a higher rate of increase when there was no circulation in the
system (case 1). For case 2, the initial increase in the surface temperature was followed by a
decrease in the temperature accumulation rate, which indicated the efficiency of the system
for reducing the surface temperature. The surface temperature stabilized and reached a
constant value after almost 6 h of simultaneous heating and water circulation. Figure 8b
presents the predicted temperatures from numerical simulations versus the experimental
results, indicating that there was a reasonable agreement between the experimental results
and the numerical simulation results.

The validated numerical model was subsequently used to investigate the effects of
pipe materials and flow rates on the performance of the system. Figure 9a presents the
surface temperature profiles for different flow rates (500 mL/min to 2000 mL/min) and
pipe materials (HDPE and copper). As noted, the flow rate had a negligible effect on the
surface temperature. For the HDPE pipe, increasing the flow rate from 500 mL/min to
2000 mL/min reduced the surface temperature by approximately 1.3%. Similar results
were obtained for the copper pipes, which indicated that the flow rate was not a governing
factor affecting the surface temperature. At a constant flow rate of 2000 mL/min, using
copper pipe resulted in an approximately 4% further decrease in the surface temperature.
In addition, varying the flow rate during testing (Figure 9b) also had small effects on the
surface temperature profile.
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4. Conclusions

This research evaluated the deformation, strength, and thermal performance of
geothermal pavements constructed with C&D materials. The following significant findings
can be summarized from this research:

1. The deeper pipe-embedded layer can reduce the stress concentration on the pipe, lead-
ing to lower permanent deformation after the same number of cycles. The inclusion
of pipes in the pavement base layer was found to have negligible detrimental effects
on the deformation behavior of RCA. Regardless of the pipe type and inclusion depth,
the permanent strain values of all RCA samples were lower than 0.86%. It can be
concluded that the pipes can be inserted in unbound granular layers without causing
excessive deformations.

2. Due to the higher permanent deformation, the MR of RCA samples slightly decreased
with the inclusion of pipes. The RCA + copper sample exhibited MR values equivalent
to those of RCA because of its adequate stiffness, and the RCA + PE and RCA + HDPE
samples exhibited slightly lower MR values. Similar to the permanent deformation
results, the inclusion of the pipes had no significant detrimental effects on the resilient
modulus of RCA.

3. The results of the RL-CBR test indicated that the inclusion of the HDPE pipe reduced
the peak load of the stiffness of the RCA + HDPE mix due to the loss of stiffness. On
the other hand, the high stiffness of the copper pipe improved the strength of the
mix and resulted in a higher peak load. The total deformation for the RCA + copper
mix was the highest due to the brittle response of the copper pipe and the significant
deformations once the failure point was reached under monotonic loading.

4. A numerical analysis was developed to evaluate the effects of pipe materials and
flow rates on the surface temperature. The numerical model was calibrated using the
experimental data. The parametric study indicated that the flow rate had negligible
effects on the surface temperature for both the HDPE and copper pipes. Copper pipes
were slightly more efficient in reducing the surface temperature compared to HDPE
pipes. At a constant flow rate of 2000 mL/min, using a copper pipe resulted in an
approximately 4% further decrease in the surface temperature compared to the HDPE
pipe. It was also noted that varying flow rates during testing had small effects on the
surface temperature profile.

5. The installation of plastic pipes (HDPE and PE) and copper pipes in the unbound
base layer can effectively reduce the pavement’s surface temperature without a large
effect of excessive deformation. At the same temperature, the copper pipe had a high
potential to transfer the surface heat with lower permanent strain compared to the
RCA without a pipe. Meanwhile, the plastic pipes caused slightly higher permanent
deformation than the RCA layer without a pipe and had a slightly lower potential
to reduce the surface temperature compared to RCA with a copper pipe but at a
much-reduced material cost.
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