
 

 
 

 

 
Sustainability 2023, 15, 2649. https://doi.org/10.3390/su15032649 www.mdpi.com/journal/sustainability 

Article 

Research on the Detection and Measurement of Roughness of 

Dam Concrete Layers Using 3D Laser Scanning Technology 

Nuo Hu 1,†, Zhuo Chen 1,†, Rui Ma 2, Haiyang Liu 1,2,* 

1 Institute for Public Safety Research, Department of Engineering Physics, Tsinghua University,  

Beijing 100084, China 
2 State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering,  

Tsinghua University, Beijing 100084, China 

* Correspondence: haiyangliu@mail.tsinghua.edu.cn; Tel.: +86-151-9880-1119 

† Nuo Hu and Zhuo Chen contributed equally to this work and co-first authors. 

Abstract: The roughness of the interlayer concrete, which is an important index for the construc-

tion of dams, affects the mechanical properties of the interface between new and old concrete. The 

traditional monitoring method cannot satisfy field measurements. Therefore, this paper proposes a 

concrete surface roughness measurement method based on 3D laser scanning technology and im-

plements 3D point cloud calculations. Two layers of specimens with same concrete mix  propor-

tion were poured 28 days apart, and a splitting tensile strength test of the superimposed specimen 

was carried out. Four groups of experiments (MR-S, MR-N, MR-15, and MR-35) tested the inter-

laminar tensile splitting strength of nine 150 mm cubic specimens on the 3rd, 7th, 14th, and 28th 

days, respectively. Filling volume, mean amplitude, surface area expansion rate, normal angle std. 

dev., and curvature std. dev. were measured in the study. The results showed that as the surface 

roughness of the concrete increased, as did the flushing pressure. The splitting strength of the con-

crete interface after it solidified increased with age. At 28 days, the splitting strength of MR-15 was 

higher than that of MR-35. The mean amplitude and the normal angle std. dev. of the rough surface 

could replace the traditional filling volume index. The new 3D point cloud calculation method for 

calculating concrete surface roughness was proven by experiments to have good performance. 
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1. Introduction 

Coastal water conservancy projects such as sea dikes and dams are barriers against 

natural disasters such as typhoons, floods, and tides. These projects are also an im-

portant guarantee for the development of the national economy and the well-being of 

people. Unfortunately, the negative impact of tidal dry and wet cycles and temperature 

changes on the durability of concrete, as well as strong winds, large waves, storm surg-

es, and heavy rain caused by natural disasters such as typhoons, can damage seawalls 

and dams, which can have a significant impact on the safety and integrity of these struc-

tures and the people and communities they protect. Thus, it is essential to have a proper 

assessment of the condition of these structures to guarantee their safety and longevity. 

Since a concrete layer is a weak surface, the strength of the layer’s performance will af-

fect the integrity, permeability, and corrosion resistance of the concrete structure, there-

by endangering the safety of the structure, so timely reinforcement is required [1,2]. 

Among the existing reinforcement techniques, scouring is a method that uses a high-

pressure water gun to wash the surface of concrete to expose fine sand, coarse aggre-

gates, etc. [3]. It can increase the roughness of the interface between the upper and lower 

layers of the concrete and improve the bonding strength and shear resistance of the lay-
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er. Furthermore, concrete surface punching technology is widely used to improve the 

mechanical properties of the interface between new and old concrete. 

The scouring effect of concrete is usually evaluated by its roughness [4–7]. In the 

detection of surface roughness, the basic principles can be divided into two categories: 

the point–line relationship calculation based on “line” sampling, or the volume–area re-

lationship calculation based on “surface” sampling. Among the processing methods 

based on “line” sampling, the most representative are mechanical stylus, profile texture 

meter, and PDI (processing of digital images). The detection methods based on “surface” 

sampling mainly include concrete surface profiles, the sand patch test, water accumula-

tion method, and slit-island method [8,9]. Generally, a method based on “surface” sam-

pling has higher accuracy than one based on “line” sampling because more combined 

surface information is collected and used for calculation. In the case of repeated sam-

pling, the fluctuation of the detection results is smaller [10]. In terms of non-digital 

measurement methods, a detection method based on “surface” sampling is a compre-

hensive evaluation comprising of quantitative analysis, damage to a rough surface, test-

ing costs, portability of testing instruments, contact with rough surfaces (whether pre-

treatment or post-treatment is needed), accuracy, and other factors [11]. As a representa-

tive option, the sand patch test stands out by virtue of its simple and clear principle, 

simple operation, and basic avoidance of damage to rough surfaces [12]. However, the 

method is limited by various constraints and is often less practical in engineering prac-

tice than in theory. As a result, the accuracy of sand patch test measurement data is in-

sufficient and the collection efficiency is low. The sand patch test also cannot be digit-

ized to inform the detection process and results. As this demonstrates, traditional meas-

urement techniques cannot meet the needs of the times due to the continuous advance-

ment of science and technology and the increasing demand for spatial three-dimensional 

(3D) information. Different from the point-to-line and line-to-surface single-point opera-

tion modes in traditional measurements, 3D laser scanning adopts the laser ranging 

method to record the massive and dense 3D coordinate value, reflectivity, and texture 

information on the surface of the measured object [13–15]. Based on the computer sys-

tem and laser point cloud algorithm, the 3D model of the measured object and its line, 

surface, volume, and other data can be quickly obtained. Such 3D laser scanning has the 

advantages of high accuracy, high efficiency, quantification, and modeling, and realizes 

the leap from non-digital measurement to digital measurement of concrete surface 

roughness [16,17]. 

Surface-based 3D laser scanning measurements have been reported by many au-

thors [13,18]. Tsakiri et al. used planes fitted to point clouds when estimating the defor-

mation of a sea-lock [19]. In tunnel monitoring, Van Gosliga et al. modeled a tunnel with 

a cylinder [20]. Chang et al. developed a structure surface analysis program [21]. The 

surface data, such as the degree of surface deformation, can be easily obtained by using 

statistical regression and polynomial methods. Rosser et al. used 3D laser scanning to 

monitor changes to coastal cliff faces [22]. The results demonstrated that 3D laser scan-

ning can be used to quantify cliff failures with previously unattainable precision. 

Monserrat et al. monitored land deformation using repeated 3D laser scanning and es-

timated the deformation parameters using local surface matching [23].  

In addition, 3D laser scanning technology has been applied and achieved good re-

sults in the fields of surveying and mapping engineering, deformation monitoring [24–

27], mine surveying, cultural relic protection, archaeological exploration, agricultural da-

ta collection, etc. [28–32]. As 3D laser scanning had good application prospects, this 

study adopted the following hypotheses: 

1. When the flushing pressure increases, the surface roughness of the concrete will al-

so increase; 

2. The splitting strength of concrete increases with its roughness; 
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3. The mean amplitude (mm), surface area expansion rate, normal angle standard de-

viations (std. dev.), and curvature std. dev. can replace the traditional filling vol-

ume as the roughness index of concrete. 

The study used 3D laser scanning technology to efficiently and accurately recon-

struct a concrete surface in order to study the roughness of concrete and the proposed 

algorithms and indicators. 

2. Materials and Methods 

2.1. Concrete Material and Mix Proportion 

Baihetan concrete was used in this study. The concrete mix proportions are shown 

in Table 1. Table 2 shows the main chemical composition of concrete. 

Table 1. Mix proportion of concrete (kg/m3). 

Water Cement 
Fly 

Ash 
Sand 

Small 

Boulders 

Water Reducing 

Agent 

Air Entraining 

Agent 

122 197 106 691 1284 2.121 0.121 

Table 2. Main chemical composition of concrete (%). 

SiO2 Al2O3 CaO Fe2O3 K2O MgO Na2O TiO2 

19.591 4.430 64.033 2.843 0.630 1.323 0.106 0.266 

The coarse aggregate used had an apparent density of 2810 kg/m3, a bulk density of 

1515 kg/m3, mud content of 0.3%, soil content of 0%, an index of crushing value of 5%, 

needle flaky content of 4.5%, and ruggedness of 2%. 

2.2. Specimen Design 

The specimen in this study was 150mm × 150mm × 300mm in size and was cast in 

two equal layers, namely layers A and B. Layer A and layer B were both 150 mm × 150 

mm × 150 mm in size.  

In this experiment, the roughness of the interface of the test piece was set by the 

scouring method. Pressures of 15 MPa and 35 MPa were selected to carry out the scour-

ing treatment on the specimen, and two sets of controls, without scouring (N) and with 

integral pouring (S), were adopted. We used a press to carry out the split tensile strength 

test. As shown in Figure 1, there was an iron cushion strip on the top and bottom of the 

press to simulate the splitting process. Nine 150 mm cubic specimens were tested at 3, 7, 

14, and 28 days for the interlayer tensile splitting strength of concrete according to the 

Chinese standard DL/T 5150–2017. The mean values were recorded. 
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Figure 1. Steel cushion strip for the split test. 

2.3. Specimen Production 

The specimens were cast in a cubic size of 150 mm × 150 mm × 150 mm. In the pro-

cess of casting the specimens, layer A was first poured, and then we used a high-

pressure water gun to finish them after a 3-day standard curing period. After 3 days of 

standard curing, the poured concrete A-layer specimens were tested in groups. The ex-

periment was divided into three groups, one of which was set up as the control group 

without any treatment. The difference between the other two groups lay in the scouring 

strength of the specimen. The second group had a scouring strength of 15 MPa, and a 

third group had a scouring strength of 35 MPa. 

Because there is usually a long pouring interval in actual projects, concrete layer B 

was added to layer A after a period of time. We chose to leave layer A for 28 days after 

the scouring treatment, and we poured concrete layer B according to the mixture ratio in 

Table 1. Before pouring layer B, the surface of the freshly poured concrete layer A spec-

imen was soaked in clean water to ensure that the concrete specimens poured at differ-

ent times had good contact. Following the completion of the first pour, the second pour 

smoothed the end face. Using the same method, a batch of rectangular parallelepiped 

specimens with a size of 150 mm × 150 mm × 300 mm was produced. The finished spec-

imens were divided into 4 groups with ages of 3 days, 7 days, 14 days, and 28 days, and 

the mechanical strength test was carried out. 

2.4. The 3D Laser Scanning and 3D Point Cloud Data Processing Algorithm 

2.4.1. 3D Laser Scanning 

In this study, a Roland LPX 3D laser scanner was used for the 3D scanning test to 

measure the surface roughness of concrete specimens. The scanner used a non-contact 

laser sensor to acquire information on the rough surface morphology, with a scanning 

speed of 37 mm/s and a scanning accuracy of 0.02 mm. We placed the object to be meas-

ured in the center of the table of the Roland LPX 3D laser scanner, with the rough sur-

face vertical. In this way, accurate scanning results could be obtained, which could be 

used to analyze the actual situation of the object to be measured. The 3D scanning ren-

derings are shown in Figure 2.  
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Figure 2. 3D laser scanning renderings. 

A flow chart of the 3D point cloud processing algorithm can be seen in Figure 3.  

Load point cloud data

Filter small point clouds that are separated from the main point cloud

RANSAC+ plane fitting to extract the upper surface

Construct a coordinate system based on the upper surface

Accurately extract some points on the upper surface

Re-filter the upper surface point cloud based on the coordinate system

Re-precise, get the adjusted coordinate system
 

Figure 3. Flow chart of the 3D point cloud processing algorithm. 

2.4.2. Point Cloud Filtering 

Firstly, point cloud data were obtained from the 3D scanning. Small point clouds 

that separated from the main point cloud were filtered out. Then, the RANSAC+ plane 

fitting method was used to extract the upper surface, and some points on the upper sur-

face were accurately extracted. Finally, a coordinate system based on the upper surface 

was constructed (Figure 4). 
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Figure 4. 3D point cloud filtering processing. 

RANdom Sample Consensus, abbreviated as RANSAC, is an efficient and robust 

estimation algorithm. RANSAC obtained model parameters by selecting a small amount 

of sample data that met the conditions. Then, a consistent dataset was used to expand 

that dataset. Finally, the best-fitting model was obtained. The process was as follows. 

From the point cloud data, three non-collinear points were selected, and their corre-

sponding plane equations were calculated: 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 (1) 

The distance 𝑑𝑖 from each point in the point cloud data to the plane was calculated 

as follows: 

𝑑𝑖 =
|𝑎𝑥𝑖 + 𝑏𝑦𝑖 + 𝑐𝑧𝑖 + 𝑑|

√𝑎2 + 𝑏2 + 𝑐2
 (2) 

Calculate the std. dev. 𝜎 of 𝑑𝑖; then, 𝜎 can be used as a reference for selecting the 

value of t. 
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𝜎 = √∑ (𝑑𝑖 − �̅�)
2𝑛

𝑖=1

𝑛
 (3) 

Among them, �̅� =
1

𝑛
∑ 𝑑𝑖

𝑛
𝑖=1 . 

A threshold t was chosen. If 𝑑𝑖 < t, it was counted as an interior point. And 𝑛 was 

the number of interior points that could be calculated. After multiple iterative calcula-

tions, the plane with the largest number of interior points 𝑛 was selected, and the fitting 

plane was finally obtained. The upper surface was extracted using the RANSAC+ plane 

fitting method at the time. 

2.4.3. Coordinate System Construction 

RANSAC+ plane fitting was used to obtain the plane normal vector n and all the 

points on the plane from the point cloud (Figure 5a orange points). 

𝑥𝑚 was the average of all points on the plane, which represented the center point of 

the rectangle formed by each point on the plane. Then, as the vertex of the rectangle, 𝑥𝑓 

was the farthest point on the plane from the center point 𝑥𝑚. 

If constructing a rectangular auxiliary coordinate system with the midpoint of the 

rectangle as the origin, the plane normal vector 𝑛 was the positive direction of the z-axis, 

and 𝑥𝑓 − 𝑥𝑚 was the positive direction of the x-axis. The transformation matrix from the 

auxiliary coordinate system to the initial coordinate system was: 

𝑇𝐴
𝐼 = [

𝑥𝑓 − 𝑥𝑚

‖𝑥𝑓 − 𝑥𝑚‖
𝐼𝑦

𝑛

‖𝑛‖
𝑥𝑚

0 0 0 1

] (4) 

Among them, 𝐼𝑦 =
𝑛

‖𝑛‖
×

𝑥𝑓−𝑥𝑚

‖𝑥𝑓−𝑥𝑚‖
. 

The rectangular coordinate system was set as the auxiliary coordinate system rotat-

ed 45 degrees around the z-axis, so the transformation matrix from the rectangular coor-

dinate system to the auxiliary coordinate system was: 

𝑇𝑀
𝐴 = [

𝑐𝑜𝑠(𝜋/4) − 𝑠𝑖𝑛(𝜋/4) 0 0

𝑠𝑖𝑛(𝜋/4) 𝑐𝑜𝑠(𝜋/4) 0 0
0 0 1 0
0 0 0 1

] (5) 

The transformation matrix from the initial coordinate system point to the rectangu-

lar coordinate system was: 

𝑇𝐼
𝑀 = 𝑇𝐴

𝑀 𝑇𝐼
𝐴  (6) 

The result is shown in Figure 5b. The upper surface point cloud was re-filtered 

based on the coordinate system, and the result is shown in Figure 5c. The coordinate sys-

tem was refined again, and the result shown in Figure 5d was obtained. 
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Figure 5. Coordinate system construction. 

2.5. Research on 3D Laser Scanning Roughness 

(a) Filling volume was extracted from the obtained point cloud and calculated: 

The point cloud density was uniformly sampled (down-sampling) (see the PCL li-

brary for the voxel grid) by a voxel grid where the leaf was 0.25 m. The absolute value of 

the z-axis direction of all points in the point cloud was found and used to calculate the 

filling volume: 

𝑣 =
𝑆

𝑁
∑|𝑧𝑖|

𝑁

𝑖=1

 (7) 

where 𝑧𝑖 was the component in the z-axis direction of the 𝑖-th point in the point cloud, 𝑁 

was the number of points in the point cloud, and 𝑆 was the area of the rectangle (if the 

rectangle became 150 mm in length, then 𝑆 = 150 × 150). 

(b) Calculation of mean amplitude: 

𝑙 = √
1

𝑁
∑(𝑛𝑧,𝑖 − �̅�𝑧)

2
𝑁

𝑖=1

 (8) 

�̅�𝑧 was the average value of the unit normal vector of all point clouds in the z-axis 

direction. 

(c) Calculation and statistics of the normal vector: 

The point cloud normal vector was the most important geometric feature of the 3D 

point cloud data. It represented the inherent characteristics of the data point in the entire 

collection and was one of the important bases for point cloud data processing. For the 

sampling point P, the local plane L was fitted according to its neighboring k points. This 

plane L could be expressed as: 
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𝐿(𝑛, 𝑑) = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑(𝑛 ∙ 𝑝𝑖 − 𝑑)2

𝑘

𝑡=1

 (9) 

where 𝑛 was the normal vector of plane L, �̅� was the centroid of the k neighboring points 

in plane L, and 𝑑 was the distance from point p to plane L. Through the eigenvalue de-

composition of covariance matrix M, the eigenvector corresponding to the smallest ei-

genvalue of M was the normal vector of point p. 

𝑀 =
1

𝑘
∑(𝑝𝑖 − �̅�)(𝑝𝑖 − �̅�)𝑇

𝑘

𝑖=1

 (10) 

The estimated normal vector had no direction, and the normal vector needed to be 

redirected. The p coordinate of the sampling point was (x, y, z), and the angle between 

the normal vector of the sampling point and the z-axis direction of the rectangular coor-

dinate system was: 

𝛼 = 𝑎𝑟𝑐 𝑐𝑜𝑠 (
𝑛 ∙ [−𝑥 − 𝑦 − 𝑧]𝑇

√𝑥2 + 𝑦2 + 𝑧2
) (11) 

It was stipulated that if 𝛼 ≤ 90°, then n would not change; if 𝛼 ≥ 90°, then we let 

𝑛 = −𝑛 to realize the fast global orientation of the normal vector. 

We calculated statistics for the angles between the normal vectors and the z-axis di-

rection of the rectangular coordinate system and calculated their proportions in each in-

terval. The std. dev. of the angle between the normal vector and the z-axis of the rectan-

gular coordinate system was: 

𝜏 = √
∑ (𝛼𝑖 − �̅�)2𝑚

𝑖=1

𝑚
 (12) 

where 𝑚 was the total number of normal vectors, �̅� =
1

𝑚
∑ 𝛼𝑖

𝑚
𝑖=1 . 

(d) Surface area expansion rate calculation: 

The unit normal vector of each point in the point cloud (N = 8) needed to be calcu-

lated. Then, the expansion area calculation formula was: 

𝑠 =
𝑆

𝑁
∑

1

|𝑛𝑧,𝑖|

𝑁

𝑖=1

 (13) 

where 𝑛𝑧,𝑖 was the z-axis component of the unit normal vector. 

(e) Curvature statistics: 

Curvature was an important indicator reflecting the surface characteristics of the 

target object, which reflected uneven change in the target object. 𝑝𝑖 was set as a point in 

the point cloud data. After adjusting the direction of the normal vector, the curvature 𝑐𝜇𝑖 

of point 𝑝𝑖 was calculated as: 

𝑐𝜇𝑖 =
𝜆0

𝜆0 + 𝜆1 + 𝜆2
 (14) 

The curvature of all point cloud data and their distribution ratio in each interval 

needed to be obtained. The calculation formula for the average curvature 𝑐𝜇̅̅ ̅ was: 

𝑐𝜇̅̅ ̅ = ∑|𝑐𝜇𝑖|

𝑁

𝑖=1

 (15) 

where N was the total number of point clouds and cμ was the curvature of each point. 

The std. dev. of the curvature was: 
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𝜑 = √
∑ (𝑐𝜇𝑖 − 𝑐𝜇̅̅ ̅)2𝑁

𝑖=1

𝑁
 (16) 

3. Results 

3.1. Research on Roughness of 3D Laser Scanning 

The roughness indices selected for this study were filling volume (mm3), mean am-

plitude (mm), surface area expansion rate, normal angle standard deviation, and curva-

ture standard deviation. The average values for these indices, as measured by 3D laser 

scanning, are presented in Table 3 for each group of specimens, along with their respec-

tive standard deviation (std. dev.). It is worth noting that the standard deviation shown 

reflects the degree of variation among individual results within a group. 

Table 3. Concrete surface roughness index. 

 V/mm3 L/mm s τ φ 

MR-N 29,897.850 0.513 1.146 0.266 0.000 

MR-15 57,754.982 0.878 1.093 0.364 6.747 

MR-35 163,286.117 2.554 1.469 0.513 0.001 

Figure 6 showed the change trend of each index under various working conditions. 

The x-axis represents the working condition, and the y-axis the numerical value of indi-

cators. Overall, the indicators of the 35 MPa flushing treatment group were significantly 

higher than those of the other two groups. Except for the two indices of surface area ex-

pansion rate and curvature std. dev., the values of other indexes in the 15 MPa treatment 

group were higher than those in the untreated group. The filling volume, mean ampli-

tude, and normal angles std. dev. increased with the increasing flushing pressure of the 

high-pressure water gun. The traditional sand filling method to determine the roughness 

also measured the filling volume, and the 3D laser scanning method was shown to be 

more accurate than the traditional sand filling method. From the perspective of the overall 

change rule of each index, the change rules of the mean amplitude and the filling volume 

with age were basically the same, meaning the two indices could be used interchangeably. 
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Figure 6. Variation law of the concrete surface roughness index. (a) Filling volume of different 

working conditions; (b) mean amplitude/surface area expansion rate/normal angle std. dev. of dif-

ferent working conditions; (c) curvature std. dev. of different working conditions. 

We calculated the correlation between the five indicators of concrete roughness us-

ing a two-tailed significance test , and the results are shown in Figure 7. 
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Figure 7. Concrete surface roughness index shown in a Pearson’s correlation test heatmap. (* indi-

cator was significant at the 0.05 level, the background color ranged from dark to light from the 

previous value to decreasing by 0.05.) 

It can be clearly seen from the figure that all indicators are significantly related to 

one another. Among them, the filling volume, average amplitude, and std. dev. of the 

normal vector are extremely closely related. In contrast, the curvature is only closely re-

lated to the std. dev. of the normal vector. 

3.2. Experimental Analysis of Concrete Strength Performance 

The splitting strength of the concrete joint was calculated using the following for-

mula: 

𝑓𝑡𝑠 =
2𝐹

𝜋𝐴
= 0.637

𝐹

𝐴
 (17) 

where: 

𝑓𝑡𝑠: Splitting tensile strength of concrete (MPa) 

F: Failure load of specimen (N) 

A: Time split surface area (mm2) 

The experimental data on the splitting strength of the treated concrete are shown in 

Table 4. 

Table 4. Concrete splitting strength. 

Age 3 7 14 28 

MR-S 1.185 1.774 2.364 2.509 

MR-N 0.494 0.67 0.934 0.799 

MR-15 0.372 0.663 0.831 1.395 

MR-35 0.524 0.767 0.966 1.089 

The relationship between different treatment methods, ages, and splitting strengths 

of the concrete junction is shown in Figure 8. When using same treatment method, the 

splitting strength of the concrete interface increased with age, and the growth rate was 

relatively slow. Only the unwashed treatment group had a slight decrease in splitting 

strength at 28 days. This showed that when the early-pouring specimen and the new 

specimen were used at the same time, the previous concrete specimen needed to be 

soaked in clean water. This affected the contact between new and old concrete speci-

mens to some extent. If no corresponding treatment measures were taken, the contact 

 

filling volume mean amplitude 

surface area 

expansion rate 

normal angles 

std.dev 

curvation 

std.dev 

filling volume 1  
  

 

mean amplitude 
0.98351* 1 

 

    

surface area 

expansion rate 
0.81099* 0.84481* 1   

normal angles 

std.dev 
0.96242* 0.94775* 0.83519* 1  

curvation 

std.dev 
0.7279* 0.67758* 0.67907* 0.84661* 1 
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between the concrete specimens would become worse after a period of time (28 days) 

and the splitting strength would be weakened. In addition, the splitting strength was re-

lated to the composition of cement. The late strength of cement would be reduced if the 

alkali content was too high. Admixtures could also decrease the late strength of cement, 

requiring additional experiments to prove the extent of the impact on the cement. 

 

Figure 8. Influence of different ages and different treatments on splitting strength. 

The splitting tensile strength of the integrally poured concrete (MR-S) was much 

higher than that of the layered concrete at all ages. It can be seen from the figure that at 

3–14 days, the relationship of the splitting strengths of each treatment group was MR-

S>MR-35>MR-N>MR-15. At 28 days, the relationship between the splitting strengths of 

each treatment group was MR-S > MR-15> MR-35> MR-N. This was because the concrete 

specimens were not completely solidified at 3–28 days, and the splitting strength of dif-

ferent treatment methods was not obvious at 3–14 days. At 28 days, the splitting 

strength of MR-15 was higher than that of MR-35. A higher scouring strength made it 

easier to produce bubbles after the mortar was washed away, which would reduce the 

splitting strength. 

3.3. The Relationship between Filling Volume, Average Amplitude, and Normal Angles Std. Dev. 

The average amplitude, normal angle std. dev., and filling volume were not the 

same. It was worth exploring what kind of relationship existed between them. From the 

results of this experiment, it could be seen that the larger the filling volume, the larger 

the mean amplitude, and the two were approximately quadratic, as shown in Figure 9. 
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3.4. Relationship between Crackle Strength and Roughness 

In the analysis in 3.1, the concrete had not completely solidified when the age was 

3–14 days, and the splitting strength of different treatment methods was not obvious. 

Therefore, when analyzing the relationship between strength and roughness, we only 

selected the 28-day age. The data served as a reference. Table 5 showed the correlation 

between the five concrete roughness indices and the concrete splitting strength. 

Table 5. Pearson’s correlation test of the concrete splitting strength. 

 V L s τ φ 

𝑓𝑡𝑠 0.577 * 0.495 * 0.456 * 0.709 * 0.343 

Two-tailed significance test. * indicator is significant at the 0.05 level. 

Table 5 shows that the splitting strength of concrete had a significant correlation 

with the concrete filling volume, average amplitude, surface area expansion rate, and 

normal angle std. dev. The normal angle std. dev. included angle was closely related to 

the splitting strength, and the filling volume also had a certain relationship with the 

splitting strength, while the relationship between the average amplitude and the surface 

area expansion rate and the splitting strength was relatively weak. Next, we would only 

study the relationship between the filling volume and the normal angle std. dev. with 

respect to the tensile strength. 

Figure 11 shows the test results and fitting curve of the correlation between the 

splitting strength 𝑓𝑡𝑠 and the filling volume V. The curve equation was as follows, and 

the goodness of fit was R2 = 0.731. 

 

Figure 11. Fitting curve of the correlation between the splitting strength and the filling volume. 
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flushing pressure; more sand and gravel were washed away, leaving bubbles and voids, 

but the splitting strength increased slowly or even decreased. In this range, although the 

filling volume continued to increase and the roughness continued to increase, the split-

ting strength was close to the extreme value, so the growth was increasingly at a slower 

pace. The fitting curve of the correlation between the splitting strength and the filling 

volume has a lesser R2. This simply means that other variables that affected the depend-

ent variable were missing. 

Figure 12 shows the test results and fitting curve of the correlation between the 

splitting strength 𝑓𝑡𝑠 and normal angle std. dev. τ. The curve equation was as follows, 

and the goodness of fit was R2 = 0.861. 

 

Figure 12. Fitting curve of the correlation between the splitting strength and normal angle std. dev. 

𝑓𝑡𝑠 = 2.0107 𝑙𝑛(𝜏) + 3.5838 (21) 
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curacy is limited by the camera’s imaging level and on-site lighting conditions. At the 
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same time, because the probe’s free fall is dependent on gravity, it must be held vertical-

ly downwards and the rough surface to be detected must be kept horizontal, which can 

be difficult in practice. The PDI method has also been developed [35], but it is complicat-

ed to operate. It has a heavy workload and can cause irreversible damage to the rough 

surface. Therefore, although the PDI method is theoretically feasible and its accuracy is 

fully guaranteed, it is often not applicable in actual operations. None of these processing 

methods based on “line” sampling can guarantee complete randomness when drawing 

lines, and they can only minimize accidental errors through multiple tests. The accuracy 

of the detection results is poor, and the distribution of roughness on the plane will not 

be fully reflected. 

The “surface” sampling method obtains roughness parameters by analyzing the 

rough surface as a whole or by sampling rough surface samples. Generally, compared 

with the “line” sampling method, the rough surface parameters obtained through the 

“surface” sampling method are more reasonable and accurate. A method based on “sur-

face” sampling has higher accuracy than that based on “line” sampling because more 

combined surface information is collected and used for calculation. In the case of repeat-

ed sampling, the fluctuation of the detected results is smaller. The International Concrete 

Restoration Association (ICRI) proposed concrete surface profiles [36]. As a visual com-

parison method, this is simple to operate, and the detection time is short. However, the 

subjectivity of the detection personnel’s judgment in this method is difficult to avoid. 

Additionally, as a qualitative detection method, this method cannot provide accurate 

roughness detection values. Alternatively, the sand patch test is a method of quantita-

tively detecting roughness, which can calculate the average value of roughness in a cer-

tain area [8,37]. It is simple to operate and low in equipment cost, and it can be operated 

in prefabricated component factories or construction sites. However, the sand patch test 

requires that the surface to be tested must be kept level, which can add extra workload 

in actual operations, and it is difficult to maintain an absolute level. In addition, the 

presence of voids in the powdery material may affect the accuracy of the results and 

cause the rough surface to require secondary cleaning. The water accumulation method, 

which is similar to the principle of the sand patch test, can avoid the influence of the 

powdery material and the rough surface. However, because the concrete has a certain 

degree of water absorption, it is necessary to ensure the surface to be tested fully absorbs 

water before the measurement, and there should be no accumulation of water. This is 

difficult to control in actual operations, and the feasibility is not high. The slit-island 

method is similar to PDI and also theoretically feasible, but in actual operations, it can 

cause irreversible damage to the rough surface, and it has low efficiency and slow run 

times, which are not conducive to actual operations [38]. 

Compared with the above methods, the concrete bonding surface roughness detec-

tion method based on 3D laser scanning technology has the following advantages 

[16,39–41]: (1) The bonding surface to be tested does not have to be level. In fact, as long 

as the lighting conditions are good, 3D laser scanning technology can scan the joint sur-

face to be inspected at any angle. (2) This method is a non-contact, non-destructive test-

ing method. The material properties of concrete mean its surface can reflect the laser 

beam well so there is no need to preprocess the joint surface to be tested. At the same 

time, since there is no material contact with the bonding surface during the detection 

process, the bonding surface to be detected will not be damaged. As a result, no addi-

tional cleaning treatment is required after the detection. (3) This method is simple and 

practical. The accuracy of the results obtained by 3D laser scanning technology is high. 

Both the mean amplitude and the normal angle std. dev. demonstrated in this paper 

could replace the filling volume and improve the detection accuracy. 
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5. Conclusions 

This study explored the feasibility of detecting the roughness of a concrete bonding 

surface using 3D laser scanning technology. To that end, we produced concrete test 

blocks with rough surfaces under different scouring pressures and conducted split ten-

sile experiments. Through the analysis and discussion of the experimental results, the 

following conclusions were drawn: 

(1) We used 3D laser scanning technology to detect the roughness of a concrete joint 

surface, and a point cloud correction algorithm was proposed, which we showed offers 

the possibility for handheld field measurement of roughness. 

(2) This paper discussed the changes in the roughness of the concrete bonding sur-

face under different scouring pressures. Overall, the indicators of the 35 MPa flushing 

treatment group were significantly higher than those of the other two groups. Except for 

the two indexes of surface area expansion rate and curvature std. dev., the values of oth-

er indexes in the 15 MPa treatment group were higher than those in the untreated group. 

As the flushing pressure increased, the surface roughness of the concrete also increased. 

This was in line with our first hypothesis. 

(3) A corresponding relationship was established between the 28-day split tensile 

strength and the roughness index of the concrete specimens. Under the same treatment 

method, the splitting strength of the concrete interface increased with age, and the 

growth rate was relatively slow. When the specimen was less than 28 days old, the con-

crete specimen was not completely solidified, and the splitting strength was not obvious. 

A change model of the normal angle std. dev. and the split tensile strength was prelimi-

nary established, which provides the possibility for the direct evaluation of the concrete 

interlayer strength after the roughness is measured on-site in the future.  

(4) The relationship between the split tensile strength of concrete and the roughness 

of the joint surface was discussed. The greater the roughness of the concrete bonding 

surface, the greater the split tensile strength. This was consistent with the second hy-

pothesis to some extent. However, if the scouring pressure increased to a certain extent, 

this affected the structure of the concrete, thereby reducing the split tensile strength.  

(5) By exploring the relationship between different roughness indexes, new evalua-

tion indexes that could replace the traditional filling degree were found. The mean am-

plitude of the rough surface and the normal angle std. dev. could replace the traditional 

filling volume index, and the quantification effect was very good. Meanwhile, the corre-

lation between the remaining index in the third hypothesis and the filling volume was 

not significant. 
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