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Abstract: The availability of food in a country and the capacity of its citizens to access, acquire, and
receive enough food are both referred to as having food security. A crucial component of food security
is ensuring and maintaining safe and high-quality goods, which the supply chain process should take
into due deliberation. To enhance the food supply chain, organic and wholesome food items should
be encouraged. Although packaged goods are evaluated and approved by legal authorities, there
is no mechanism in place for testing and assessing the market’s available supply on a regular basis.
As a result, food manufacturers are compelled to provide nutritious and healthy products. In this
research, we propose an explainable artificial intelligence-based faster regions with convolutional
neural networks (XAI-based Faster RCNN) model to evaluate the contents of the food items through
user-friendly web-based front-end design and QR code. To validate each communication token in the
network, an elliptic curve integrated encrypted scheme (ECIES) based on blockchain technology is
utilized. Additionally, artificial rabbit optimization (ARO) is used to register each user and assign
him a key. The user will gain a deeper understanding of machine learning (ML) and AI applications
using the XAI technique. An EAI-based Faster RCNN model is proposed to help digitize information
about food products, rapidly retrieve the information, and discover any hidden information in the
quick response (QR) code that could have impacted the safety and quality of the food. The results of
the experiments indicated that the proposed method requires less response time than other existing
methods with the increase of payload and users. The Shapley additive explanation is used to obtain a
legal plea for the laboratory test based on the nutritional information present in the QR code. The
benefits provided by ECIES-based blockchain technology assist policymakers, manufacturers, and
merchants in efficient decision-making, minimizing public health hazards, and improving welfare.
This paper also shows that the accuracy achieved by the proposed method reached 99.53%, with the
lowest processing time.

Keywords: food chain supply; faster regions with convolutional neural networks; food production
industry; artificial rabbit optimization; secure blockchain

1. Introduction

Food has always been fundamental to human life since it is the only tangible thing
that humans consume. Food is becoming increasingly burdened by a range of demands,
including flavor, color, health, and social events. Poor food consumption is a major con-
tributor to global disease prevalence. As a result, various individual-based techniques for
improving food consumption have been studied [1]. According to the Food and Agriculture
Organization (FAO), 793 million people worldwide do not have enough food to live [2].
The growth in the intake of unhealthy foods is responsible for the growing incidence of
noncommunicable illnesses.

According to the World Health Organization (WHO), obesity and an improper diet are
responsible for 2.8 million worldwide deaths (5%) each year. A daily intake of 400 g of fruits
and vegetables helps to prevent chronic illnesses and nutritional deficits [3]. The universal

Sustainability 2023, 15, 2579. https://doi.org/10.3390/su15032579 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15032579
https://doi.org/10.3390/su15032579
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-3097-6568
https://orcid.org/0000-0002-2131-3028
https://doi.org/10.3390/su15032579
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15032579?type=check_update&version=3


Sustainability 2023, 15, 2579 2 of 16

product code (UPC) is a 1D barcode that is used to electronically store food information. The
barcode has 12 numeric digits and may hold a huge amount of information [4]. The issue
of food traceability is addressed by the supply chain (SC). Distributed ledger technology
(DLT) is a blockchain technique that has solved the problem of food traceability [5]. To
tackle this challenge, the technique was used to connect the isolated and fragmented events
along the supply chain [6]. Any transaction on the blockchain network may be traced
back to its origin. However, blockchain technology has several challenges, such as the
possibility of potential attacks and scalability issues [7]. The proposed method employs
a deep learning model to improve the procedure. The BT-based framework is used to
digitize food production data. The QR (quick response) code is used to readily access food
information between producers and consumers at any time and in any location. Using deep
learning and blockchain system privacy, the technique attempts to improve performance
analysis and security.

To digitize the food supply chain, different studies [8,9] have been proposed using
advanced technologies such as blockchain and QR codes. The researchers also utilized
blockchain to improve food awareness. However, only a few researchers [8] have integrated
cloud computing, deep learning blockchain, and QR codes for digitizing the food supply
and our work is also one of them. These technologies change the standard ways of data
collection, processing, and management and also enhance the food tracking process. Only
a few works [9] have concentrated on privacy-preserving functionality in the food-tracking
process. To bridge this gap, we introduce an elliptic curve integrated encrypted scheme
for security. The traceability of the food products is improved using the QR code-enabled
blockchain and the data accessibility is enhanced using cloud computing technology. The
XAI-based Faster RCNN architecture intelligently identifies the harmful ingredients in the
QR code that compromises food safety. To the best of our knowledge, this is one of the novel
frameworks which integrates different technologies to identify the harmful substances in
food products and improve food safety. This paper’s key contributions are as follows:

• A blockchain-based elliptic curve integrated encrypted scheme is presented to validate
every communication token and prevent a fraudster from entering the network;

• An explainable artificial intelligence (XAI) technique is presented to make the user more
competent in the field of artificial intelligence (AI) application and machine learning;

• An XAI-based Faster RCNN model is proposed to digitize the food product information,
retrieve it, and identify the hidden details in the QR code that affects food safety;

• Artificial rabbit optimization (ARO) is implemented to register each user and provide
him with the key including data storage.

The rest of this paper is as follows: Section 2 illustrates the related works; Section 3
explains the proposed methodology; Section 4 describes the result and discussion; Section 5
explains the conclusion of the paper.

2. Related Works

Bechtsis et al. [8] developed a hyper ledger fabric framework to examine the two-stage
containerized food supply chains (TSFSC). The development of blockchain technology
(BT) coincides with the progress of food SC operations, adding significant value. Better
traceability and parameter authentication are provided by this technique. For food trace-
ability, Tsang et al. [9] introduced blockchain-IoT-based food traceability systems (BIFTS).
Perishable food was managed with the use of IoT technology. The features are utilized
in the blockchain to determine the need for traceability of vaporized and lightweight
foods. The integrated consensus process was developed taking into account transit time
and cargo volume.

Chen et al. [10] investigated a blockchain-based agriculture security chain (ASC)
framework for making optimal food production decisions and ensuring the security of agri-
food tracking data. Extensive simulation trials validated the blockchain-based framework’s
performance with the deep reinforcement learning-based supply chain management (DR-
SCM) technique for ASC optimization. As a result, the blockchain-based ASC framework
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was able to establish consistent product traceability and agri-food safety. Hu et al. [11] used
edge computing and blockchain technologies to create a trust crisis framework solution for
supporting organic agriculture supply networks. To build an organic agricultural supply
chain (OASC) trust framework, the consistency of blockchain and the paradigm of edge
computing must make a trade-off between cost and efficiency. When compared to the
existing approach, the evaluated results showed improved performance and cost savings.

Casino et al. [12] created a revolutionary food supply chain traceability (FSC) solution
using blockchain. To build a collection of features that enable varied qualities, a local private
blockchain and smart contract were used. The smart contract stored the information and
exchanges between them in a verifiable manner; however, this approach needed additional
maintenance time. Huang et al. [13] created a safe food traceable system utilizing blockchain
to avoid data manipulation and boost traceability accuracy. Inter planetary file system
(IPFS) was utilized to store data in a chain. Cooperative handling of on- and off-chain data
reduced the quantity of data for a single node.

Dey et al. [4] presented a food safety quick response (Food SQRBlock) framework
using blockchain and cloud technologies. Blockchain technology is used to digitize food
production information to offer easier access to sellers and buyers. Li et al. [14] developed
an IoT-based real-time packaged food supply chain tracing platform using extensible
markup language (XML) and integrating the QR code with the RF tags. The results showed
that the method is economical and efficient for real-time data collection. Ahamed et al. [15]
utilized blockchain to manage the seafood supply chain. They have improved the supply
chain using some unique tags such as near-field communication (NFC), QR codes, and RFID
tags. The main reason for using these details is to gather the data from the manufacturer
such that no one can alter the manufacturing data on the go.

Karumanchi et al. [16] presented a mask recurrent convolutional neural network
and Merkle tree (MRCNN-MT) for monitoring the condition of commercial goods in the
transport cargo. The MRCNN-MT model is integrated with blockchain technology to
offer secure communication during supply chain management. The network storage is
preserved using synchronized registry entries and the information security is offered via
encryption. Hu et al. [17] utilized the gated recurrent unit (GRU) and bidirectional long
short-term memory (BILSTM) for vaccine supply chain management during the COVID-19
pandemic. They mainly integrated the IoT, deep learning, and blockchain technologies.
The vaccine demand is predicted using the GRU model and the BiLSTM is used to analyze
the sentiments present in the vaccine reviews and offered an accuracy of 80%.

Dey et al. [18] presented a model named SmartNoshWaste by integrating different
technologies such as blockchain, cloud computing, reinforcement learning, and QR code.
The main aim of their model is to minimize food wastage using the reinforcement learn-
ing technique. This model was capable of reducing food wastage by nearly equal to
9.46%. A new block is created in different phases of the food supply chain and the data
block is also visible in the form of a QR code. The SHA256 hash function is used here
for security purposes.

To decrease food waste in the home, food management applications are now available
to consumers to remind them of the expiration/best-before dates and product contents
of the packaged foods. With the use of these applications (apps), a customer may keep
track of the food items they’ve purchased, their expiration and best-before dates, and
nutritional information to set reminders for when to eat them or avoid doing so. The
consumer still needs to enter the expiration/best-before dates of each item separately in
these apps even though barcode scanning allows for automatic entry of the purchased
food products into the apps. This is due to the absence of information encoded in the
barcode [15]. This necessitates the development of technology that gives consumers the
capacity to automatically retrieve the relevant expiry/best before the date, and the ability
to trace the origin of the food they purchased across the supply chain. Even though the
existing techniques [19–21] offered improved benefits, they often fail to incorporate efficient
deep learning techniques or explainable AI for efficient decision-making. The efficient



Sustainability 2023, 15, 2579 4 of 16

traceability of food supply chains is the only issue that is addressed by all the existing BT
frameworks [22,23], which do not address technical solutions to improve consumer access
to food traceability so that they can verify and track the food they have purchased, possibly
using a mobile phone. Motivated by these challenges, we propose an XAI-based faster
RCNN to evaluate the nutritional advantages of food products and identify customers who
are at high risk of jeopardizing their health if they consume unhealthy products. In this
sense, our research is novel, and there are few other research approaches in this domain
that analyze the health benefits of a product using a QR code (Table 1).

Table 1. Existing literature contribution.

Author Technique Aim Advantage Limitations

Bechtsis et al. [8] TSFSC

Deploying a demonstration
application using blockchain and

verifying its traceability via
critical parameters

Secure information sharing
and improves process control

The properties of the
products are not analyzed

Tsang et al. [9] BIFTS

Integrate usage of blockchain, IoT,
and fuzzy logic into a system that
maintains the full traceability and

shelf life of perishable goods.

Offers reliable
decision support

The user is not able to
verify the food source

Chen et al. [10] DR-SCM
Making a decision that is efficient for
food production and secure for the

agri-food tracking data.

Consistent product tracing
and food safety

Item level tracking is not
conducted

Hu et al. [11] OASC To address the shortcomings of
blockchain’s price and efficiency

Offers inexpensive traceability
options for individuals Prone to Byzantine faults

Casino et al. [12] FSC

Create a distributed functional
model based on smart contracts and

blockchain technology to allow
automatic, decentralized

FSC traceability.

Prevents health risks and
minimizes monetary loss

Still needs improvement
in the decision-making

process

Huang et al. [13]
Electronic Product

Code and
blockchain

Food tracking and tracing
throughout the agricultural

supply chain

Reduce the data explosion in
the Internet of Things

blockchain

Increase in capital
construction cost

Dey et al. [4] Food SQRBlock
Information retrieval using a BT and

QR code-based framework for
food production

Improved traceability Arises storage issues

Li et al. [14] XML, QR, and RF
To cut implementation costs while
achieving fine-grained monitoring

and tracing

All parties involved may stand
to gain from the effective

implementation of
prepackaged food monitoring

and tracking across its
supply chain.

Failed to provide timely
decision-making and

improve consumer health

Ahamed et al. [15] Blockchain and
QR code

Using blockchain and specific
product identifiers to enhance

supply chain management

The benefits of a customized
tag allow everyone from the

manufacturer to the consumer
to learn more about a

product’s reliable
production process.

Absence of smart sensors
and AI technologies

Karumanchi et al.
[16] MRCNN-MT

Monitor the conditions of
commercial products in the

cargo industry

Secure communication and
storage improvements

This study does not focus
on minimizing the impact

of product wastage

Hu et al. [17] GRU and BILSTM Vaccine supply chain management
during COVID-19 Accuracy nearly equal to 80% Results in massive QR

code generation

Dey et al. [18] Reinforcement
learning Minimize food wastage Reduces food wastage by

up to 9.46%
The food surplus data is

not easily available

3. Proposed Blockchain-based Secure Food Recommendation Framework Using QR
Mechanism

The different activities and phases involved in a typical food supply chain (FSC) must
be investigated in order to design a blockchain technology (BT)-based architecture that
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would improve the accessibility and traceability of food production data [4]. The proposed
framework’s study focuses on the food production industry (FPI) supply chain, which
comprises five main phases and is illustrative of a broader FSC:

Production: All FPI-related operations are represented by the first stage of production;
Processing: The produce is harvested and transformed into products during the processing
stage. Through a production batch code, every packet is identified, and the phase includes
the product’s packaging and preparation;
Distribution: After the product has been labeled and packed, the product is distributed to
various warehouses and product storage in other distribution centers which are conducted
in the distribution phase;
Retailing: products are supplied from the distribution centers to the retailers during
retailing phase so they can sell them to the customers;
Consumption: The food supply chain’s final user is the consumer who purchases the prod-
uct, demands the traceability of quality standards, and accesses other pertinent information
about the product like the expiration date.

We concentrated on digitizing information in the framework by proposing an XAI-
based faster RCNN model. Moreover, the initial four phases are utilized; they include
processing, retailing, production, and distribution.

3.1. Faster RCNN Model

• Faster RCNN:

Faster RCNN is an object detection system that contains two modules including a
deep fully convolutional network and a faster R-CNN detector. The below section explains
the properties and design of the regional proposal network.

a. Region proposal Networks:

The input of the region proposal network is the image, and the set of rectangular
object proposals is the output; each contains the score of abjectness [24]. We overlay a
tiny network with the convolutional feature map generated through the last transferred
convolutional layer to produce region proposals. The input convolutional feature map’s
m × m spatial window for this tiny network serves as the input. A lower-dimensional
feature is assigned to each sliding window. The two fully connected layer features are box
classification (cls) and box-regression layer (reg).

b. Anchors:

We concurrently forecast numerous region proposals at each sliding-window location;
here, c represents the higher number of proposals that can be made at each site. The cls
layer outputs 2c scores which evaluate the probability of an object or not an object for each
proposal, while the reg layer outputs 4c storing the locations of c boxes.

c. Translation-Invariant Anchors:

Our method’s translation invariance both with regard to the functions and the anchors
which calculate suggestions related in to the anchors is a key characteristic. When an object
in an image is translated, the proposition should follow suit and should be predictable
in either location using the same function. By our method the translation, the invariant
property is assured.

d. Multi-scale Anchors as Regression references

In contrast, on a pyramid of anchors, our anchor-based approach is structured and is
then more economical. Bounding boxes are categorized and regressed using anchor boxes
with different scales and aspect ratios in our method. It only employs filters of one size
and only uses images and single-scale feature maps. We can easily employ the single-scale
convolutional features computed by the Fast R-CNN detector, owing to this multi-scale
design based on anchors. A significant factor for sharing features is not incurring additional
costs for addressing scales which is the establishment of multi-scale anchors.
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• Loss function

It is designed to assign a binary class label to every anchor for the training of re-
gion proposal networks (RPNs). There are two different types of anchors: the greatest
intersection-over-union (IoU) and the IoU interconnect that exceeds 0.7 over any ground-
truth box. Multiple anchors may receive positive labels from a single ground-truth box.
For the determination of the positive samples, the second condition is adequate, but the
first condition is adopted because the second condition did not detect a positive sample in
some rare cases. Anchors that fall into none of the positive or negative categories do not
advance the training goal. The below equation defined the loss function:

Q({rj}, {vj}) =
1

Rcls
∑

j
Qcls(rj, rj

∗) + β
1

Rreg
∑ rj

∗Qreg(vj, vj
∗) (1)

where j represents the anchor’s index and rj indicates as the anchor’s predicted probability.
When the anchor is positive, the ground-truth label r∗j is 1; and if the anchor is negative, it
is 0. vj is donated as a vector which is representing four parameterized. Qcls is represented
as the log loss. When Qreg(vj, v∗j ) = G(vj − v∗j ), the regression loss is used. The robust loss
function is indicated by G. The clsreg layers’ outputs are

{
rj
}

and
{

Vj
}

, correspondingly.
The two terms are weighted by a balancing parameter β and normalized by Rcls and Rreg.
By the many anchor locations, the term reg is normalized, while the term cls is normalized
through the mini-batch size. The parameterizations of the four following coordinates are
used for bounding box regression.

vY = (y− yb)/zb, vX = (x− xb)/ea, (2)

vZ = log(z/zb), ve = log(e/eb), (3)

v∗Y = (y∗ − yb)/zb, v∗x = (x∗ − xb)/eb, (4)

v∗Z = log(z∗/zb), v∗e = log(e∗/eb) (5)

Here, the box’s width, height, and center coordinates are represented by y, x, z, and e.
All region sizes share the same regression weights.

e. Training RPNs

End-to-end RPN training may be accomplished using backpropagation and stochastic
gradient descent (SGD). Every mini-batch begins with a single image that has a large
number of both strong and poor example anchors, making it possible to improve the loss
functions of all anchors. Every new layer was initiated by randomly selecting weights from
a zero-mean Gaussian distribution with a standard deviation of 0.01. When a model is
pre-trained, it initializes all of its layers. For the initial 60 k mini-batches, a learning rate of
0.001 was employed.

3.2. Formation of Blockchain-Driven XAI-Based Faster RCNN Model

In recent times, the field of research, explainable artificial intelligence (XAI) is increas-
ing. The main purpose of the XAI is to make the user more competent in the field of
artificial intelligence (AI) application and machine learning. In this paper, we utilize the
post hoc method to demonstrate XAI on faster RCNN; therefore, the user can trust and
understand the faster RCNN AI approach. Furthermore, the detection of model results
may be understood, and the dataset can be modified throughout the training phase to
adjust the application for changes. We use post hoc techniques such as visuals and written
explanations. In this study, we used the following post hoc approaches for the OSA XAI
demonstration: graphics, text explanations, and example-based explanations. Faster RCNN
XAI application software was built to assist customers in understanding it. Faster RCNN
XAI is comprised of four primary screens. These displays are used for testing, training,
monitoring, and calculating metrics. The model state is shown using the visualization
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approach based on the accuracy numbers for each model. When one of these three accuracy
values falls below 80%, the color of the relevant accuracy statistic is changed. Further-
more, using the text explanation technique, training progress steps are provided inside the
training process in a more intelligible form, and the application analyzes the importance
of the accuracy values after the training operation. The final trained model is activated
automatically. At the same time, the user can select one of the previous models from the list.
Shelf images may be taken around every hour during peak hours and every three hours
during off-peak hours for the Faster RCNN system to assess. The model is then used for
subsequent image classification, and the images are saved by the system. When empty or
almost empty shelves are discovered, the responsible shop employee receives a notification
to examine the relevant area. To prevent losing money and consumers, a sensible employee
can place new items on the shelf after receiving a notification. For non-AI professionals
and developers consumers, Faster RCNN XAI provides an opportunity to comprehend,
trust, and govern AI applications to boost Faster RCNN. Results can be easily interpreted,
and the dataset can be expanded with images without labels for the demand alters. Here,
information is stored in BT for consumer accessibility and traceability at the stage of con-
sumption. The blockchain stores and maintains every piece of digital information related
to the initial four phases within a cloud [25].

System design: A layered system is developed for the creation of our BT framework. The 3
layers of our system are as follows:
Physical layer: Various food items from various FPI and manufacturers along the supply
chain frame the physical layer;
Digital information layer: The physical layer’s production is associated with the digital
information layer, which will be used for accessibility and traceability. The food item’s
expiration date is an example of the data related to the product;
Cloud layer: Through the usage of BT, which is employed for accessibility and traceability,
digital information is processed in the cloud in the cloud layer.

Our XAI-based Faster RCNN model framework is introduced with an example of how
food production data in the first four stages of the supply chain can be digitally archived
and made available to consumers through a quick response (QR) code to be used in data
verification. In Figure 1, an FPI creates and processes a food product, where the pertinent
data is digitalized and saved in a genesis Block 0. The item is moved to the distribution
facility and then carried into the store for customers to purchase. The preceding block’s
hash is stored in another block that is created in the supply chain stage so that the item
can always be traced and tracked. We also employ the elliptic curve integrated encryption
scheme (ECIES) technique, where the hash function provides the block before its hash.
The ECIES technique encrypts information many times for sensitive data, but only once
for non-sensitive data. The encrypted data is then stored utilizing cloud switches [4].
We adopt ECIES for the hash function in our XAI-based quicker RCNN model since it
provides the required cloud security for the associated computational cost. If we utilize
other hashing algorithms, such as ECIES, the computational cost eventually rises since it is
computationally more expensive and takes a long time to calculate on the cloud. This is
especially true if millions of electronically created data are processed daily on the cloud.
The two components that comprise the XAI-based faster RCNN model are input and output.
The input module creates the blocks, the data-carrying QR code, and digitizes the formed
data. QR codes are an efficient data transfer medium that is used in product tracking,
mobile payments, advertising, and other sectors. This QR code is defined by forty symbol
variations and four error correction levels (ECL). The larger QR variants have greater
payloads and the 40 code versions have a capacity of 2596 bytes. The error-correcting
capacity introduced by the QR code standard, which recovers data accurately even if a
component is broken, is a critical aspect of the bar code. The Reed–Solomon error-correcting
method was used to rectify the flaw. The error-corrected codeword is attached to the rear
of the QR code’s data codewords. The larger QR code version and higher ECL give the
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increased payload and dependability. Consumers use the output module, or open-source
software, to access and verify the manufacturer’s data.
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3.2.1. Input Module

The following details
(

f j
)

about the products are true when we observe f j to be the
jth food item instance generated in an FPI such as PNj. tj represents the product name
and type. FPIj, sj, PDj and BDj represent the FPI id, produce’s size, production date, and
best-before date, which is digitized so that the consumer can use this data to trace and
verify the block as it moves through the system. The below-given equation illustrates the
digitized data.

f j =
{

PNj, tj, FPIj, SPj, PDj, BDj
}

(6)

In information f j, the specific FPI id FPIj, which corresponds with the FPI data, is
saved in a database that keeps track of all the FPI. The hash function is also used to produce
the specific FPI id from the FPI’s stored information, guaranteeing that each FPI has a
unique identifier. The information f j is saved in the genesis block. The latest block that
contains the unique information f j and the previous block’s hash is generated each time a
component of the supply chain moves the products or processes them. The data passed in
the block is stored in the QR code, which can be created at any stage of the supply chain.

3.2.2. Output Module

Utilizing a QR code scanner, the output module retrieves the information f j and the
preceding block’s hash from the QR code. From the preceding block, the output module
applies a hash function to the data which is created online for consumer verification. The
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outcome is contrasted with the hash value acquired from the QR code. The data regarding
the product is accurate when the hash values are identical. The FPI information where
the product originated is retrieved from the unique FPI received from the QR code, and
the data is shown to the customer together with extra data about the item. The FPI id
can be used to conduct a reverse database search since the FPI’s specifics are kept in a
database. Figure 1 displays the dairy product data that was retrieved from the QR code in
Figure 1. The XAI-based Faster RCNN architecture also analyzes the harmful ingredients
like the sugar, calories, and saturated fats listed in the product’s ingredients. The overall
architecture of the XAI-based Faster RCNN model is represented in Figure 1.

3.2.3. SHAP Analysis

The most popular model-neutral technique is Shapley additive explanations (SHAP)
where the SHAP values, which are a cooperative game theory concept, serve as the founda-
tion [16]. Utilizing an additive feature attribution analysis, SHAP breaks down a model’s
prediction amid each of the features that are involved.

f (y′) = π0 +
N

∑
j=1

πjy′ j (7)

In this case, f (y′) is indicated as the explanation model that, when y = oy(y′), equals
the original model f(y). y′ ∈ {0, 1}N where a number of input features are represented by
N. For πj ∈ <, the baseline model is represented by π0, and the contribution of feature j in
order to the prediction of the model is represented by πj.

πj = ∑
S⊆M\j

|S|!(N − |S| − 1)!
N!

[gY(S ∪ j)− gY(S) (8)

Here, M represented all input features. For j, SHAP’s internal workings take into
account two different models: gS∪{j}(y) and gS(y). The difference in prediction between
the two models is then calculated. This distinction is a result of feature j. Here the SHAP
analysis is conducted to acquire a legal plea for a laboratory test based on the health benefits
and nutritional benefits listed in the product QR code. Figure 2 illustrates the processing
time of various methods.
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3.3. Artificial Rabbits Optimization (ARO) for Secure Cloud Storage

At first, the user will be registered with a reputable authority. It obtains the key of
ARO for data encryption. After that, the user will authenticate by providing an ID of the
user, password, and random number. In the cloud, the encrypted data can be updated by
the authenticated user. For the encryption algorithm’s purpose, we develop the elliptic
curve integrated encryption scheme (ECIES) algorithm. On non-sensitive data, encryption
is performed only once. The ARO algorithm is used for registration. Random hiding and
detour foraging are two rabbit survival principles that are typically utilized to introduce
the ARO algorithm [17]. The detour foraging approach is designed to keep rabbits safe
from natural predators while the grass around the nest is consumed by rabbits. The rabbits
employ a random hiding tactic to hide and travel to another burrow. The search algorithm
is in the process of being initialized. The design variable dimension is represented as t, the
artificial rabbit colony’s size is represented as M, the lower bound is represented as lb, and
the upper bound is represented as ub. The initialization process is as follows:

→
y j,o = q.(ubo − lbo ) + lbo , o = 1, 2, . . . . ., t (9)

where
→
y j,o represents the position of the jth rabbit of the cth dimensions, and q rep-

resents the random number. The metaheuristic algorithm generally regards the two
processes—exploitation and exploration—and at the same time detour foraging gener-
ally regards the exploration phase. Detour foraging is employed to all rabbit’s food sources
and chooses the location of another rabbit to earn enough food. The detour foraging
updated formula is as follows:

→
s j (p + 1) =
→
y c(p) + W.(

→
y j(p)−→y c(p)) + round(0.5.(0.05 + q1)).x1

(10)

W = h.B (11)

h =

(
g− g(

p−1
Imax )

2)
. sin(2πq2) (12)

B(o) =
{

1 i f o == F(h)
0 else

}
k = 1, . . . . . . ., t and h = 1, . . . . . . . .[q3 .t] (13)

F = randp(t) (14)

x1 ≈ M(0, 1) (15)

where
→
d j,o (p + 1) represents the artificial rabbit’s new position. The disposition of artificial

rabbits is denoted by j, c = 1, . . . ., M.
→
y j and

→
y c denotes the artificial rabbits in other

random positions. The maximum number of iterations is denoted by Imax. Rounding to
the nearest integer is represented by the ceiling function df e. Random stochastic layout
permutation of numbers from 1 to t was represented as q1, q2, q3. During detour foraging,
the running length, denoted by the l, is the rate of movement. The common normal distribu-
tion follows x1. Through the common distribution x1 random number, the perturbation is
mainly reflected. Equation (10) is the last term perturbation aid to perform a global search
and ARO to avoid local extremum. Random hiding is primarily formed in the algorithm’s
exploration phase. To lessen the likelihood of being eaten, rabbits typically create various
burrows over their nests and select a random single burrow to which to retreat. We start by
explaining how rabbits create burrows at random.

→
b j,c(d) =

→
y j(d) + G.h.

→
y j(d) (16)

G =
Fmax − d + 1

Fmax
.m2 (17)
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m2 ∼ M(0, 1) (18)

h(o) =

{
1 i f o == c
0 else

q o = 1, . . . t (19)

where j, c, and m2 follow the standard distribution. G represents a hidden parameter. G
reduces 1 to 1/Fmax.

4. Results and Discussion

This paper introduces XIA-based Faster RCNN for tracing food behaviors using
blockchain-based technology. Deep Reinforcement learning-based supply chain man-
agement (DR-SCM), Fuzzy based blockchain-IoT food traceability systems (BIFTS), and
food traceable schemes based on blockchain and Ethernet blockchain (FTS-BAEPC) are
the currently available food tracing methods selected for analyzing and comparing the
performance of the proposed method. The Google cloud platform (GCP) is chosen for
implementing the proposed XIA-based Faster RCNN model.

4.1. Experimental Evaluation

GCP is an 8-vCPU virtual machine with 500 GB of disc storage and 16 GB of RAM.
A computer running Debian GNU OS (Linux) Version 10 serves as the computing engine.
Various criteria, such as response time, payload size, and the number of connected users
with the system, are utilized to validate the proposed method in real-world scenarios. The
evaluation of the measures is given below.

• Response time: It computes the time that the mobile client device takes to send the messages
to the agent, and then it is transferred between the agent and the server. It includes the
time it takes to save data in the database, which is measured in milliseconds (MS);

• Payload size: It defines the volume of data transferred together which is represented
in bytes;

• User numbers: These refer to the users simultaneously using the system and requests
for service along the network. It denotes the true scalability of the system.

4.2. Comparative Analysis

Figure 2 illustrates the time taken for processing the information in different methods
with the Google Cloud platform (GCP). The processing time of the proposed XIA-based
Faster RCNN model is comparatively lower than the existing methods; time is measured
based on seconds. The processing time is evaluated here for the thousand products. The
processing time of the XIA-based Faster RCNN method is 443 s.

Table 2 describes the comparative analysis of the proposed XIA-based Faster RCNN
and existing methods in terms of different performance metrics such as accuracy, precision,
recall, and F1-score. The percentage of accurate outcomes is called precision. The recall is
a percentage metric that represents the proportion of accurate findings discovered. The
harmonic mean of a system’s precision and recall values is known as an F-score, and it can
be calculated using the following formula: 2 × [(Precision × Recall)/(Precision + Recall)].
One way to think about precision is as an inverted measure of noise; the further away from
the greatest score it is, the more erroneous data will be included in the system’s output.
Similar to recall, which is an inverted measure of silence, the more this number deviates
from a perfect score, the more crucial data will be missing from the output the system
produces. The proposed method attains the highest accuracy of 99.5%, whereby the existing
DR-SCM methods reached 95.24% and Fuzzy-based BIFTS achieves 94.32% accuracy. The
rest of the method taken for comparison is FTS-BAEPC which achieves 92.10% accuracy.
The precision, recall, and F1-score of the proposed model are 98.56%, 98.65%, and 94.89%,
respectively. Therefore, it is concluded that the XIA-based Faster RCNN method attained
the highest performance among the other underlying methods.
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Table 2. Comparative analysis of accuracy.

Methods Accuracy (%) Precision (%) Recall (%) F1-Score

Proposed 99.53 98.56 98.65 98.54

DR-SCM 95.24 94.56 95.69 94.89
Fuzzy based BIFTS 94.32 94.35 94.56 94.34

FTS-BAEPC 92.10 91.56 92.15 91.32

Figure 3a,b compares the accuracies and loss values of the proposed method’s training
and testing sets. The observations from these figures are explained as follows: the training
performance begins at the 87.5% range and maintains stable performance till the 43 epochs.
After these points, it witnessed more instabilities and attained the highest score of 92.35%.
Similarly, the testing accuracy begins at the range of 80.42%. After maintaining a stable
performance until 43 epochs, it witnessed unstable performance until the highest score of
90.25%. Conversely, the training and testing accuracies receded with the increasing epochs.
The training loss started at 0.48 and decreased to 0.12 with the 100 epochs. Moreover, the
test score begins with 0.38 and ends with a score of 0.1 at the 100th epoch. The XIA-based
Faster RCNN method performs with significantly increasing accuracy and decreasing
losses. From Figure 3a,b, we can observe that the training score is higher than the testing
score for both accuracy and loss curves.
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Figure 4 shows the response time of the user requests made by the user. A user creates
twenty requests continuously. This helps them to analyze the efficiency of the proposed
XIA-based Faster RCNN system in the cloud environment. Figure 5 demonstrates the
scalability of the proposed XIA-based Faster RCNN method. The payloads are chosen at
the range between 16 to 1024 bytes and their respective response time data is also gathered.
Between 340 and 360 milliseconds, the response time maintains a constant motion between
16 and 256 payload bytes. After these 256 bytes, there is a noticeable increase in reaction
time. Blockchain technology rejects the idea of massive data storage; as a result, scalability
measurement is a crucial aspect of this. On the other hand, even if the communication
distance is greater across the shared network and server setup of the cloud, this indicates a
slower reaction time. The proposed XIA-based Faster RCNN method’s analysis results for
training and cross-validation scores are shown in Figure 6. Cross-validation, testing, and
training datasets are included in the three segments that make up the entire dataset. The
majority (80%) of the dataset was used for training, with the remaining 20% being used for
testing. Moreover, the K-fold cross-validation experiment uses both testing and training
sets. At 87.52%, both curves merged. The training and cross-validation scores rise steadily
as the number of products increases.
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The trade-off between specificity and sensitivity is depicted by the ROC curve
(1—specificity). Classifiers perform better when their curves are closer to the top-left
corner. An initial assumption is that a random classifier will produce diagonal points
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(sensitivity = specificity). The ROC curve of the proposed model that differentiates between
the harmful and healthy ingredients is presented in Figure 7.
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5. Conclusions

This paper proposes a novel blockchain-based technology called XIA-based Faster
RCNN which helps to digitalize food production data and combines the QR codes for
tracing and validating data through the producers and consumers. The GCP platform is
utilized to simulate a real-world food processing situation. The performances of the pro-
posed method were measured based on accuracy, performance time, and scalability. Three
underlying blockchain-based food traceability mechanisms are selected for comparison:
deep reinforcement learning-based supply chain management (DR-SCM), fuzzy based
blockchain-IoT food traceability systems (BIFTS), and food traceable schemes based on
blockchain and Ethernet blockchain (FTS-BAEPC). The results indicated that the proposed
method requires less response time and the lowest processing time compared with other
existing methods. The accuracy achieved by the method is 99.53% and it was completed in
less response time even with the increased payload and user number. The proposed work’s
shortcoming is that the model’s scalability and interoperability were not evaluated in more
practical contexts. To increase operational optimization in the supply chain for fast food,
further research into data analytics approaches will be required in the future. A reliable
warning system should also be developed to stop mishaps involving food.

Even though the proposed model improves the food traceability scenario, certain chal-
lenges still need to be addressed when deploying these solutions in real-time applications.
The US is one of the nations which have has the world’s highest blockchain funds and most
of the companies funding the blockchain space are in the starting stage of development.
The lack of a fitness and lifestyle field in the blockchain is also one of the drawbacks faced.
Hence, in the future, the application fields in the blockchain can be expanded and we can
experiment with food traceability using a novel approach.

One of the challenges faced by many developing nations is the inability to satisfy the
needs of the citizen in terms of both technology and services. Blockchain latency is another
challenge faced by the proposed approach during the consensus process due to the increase
in throughput. Sensor failure is another problem that needs to be focused on in the future
because if the sensor tracking the crucial information fails at some point, it results in loss of
the valid information. Hence, the safety of the sensor tracking the QR code information
also needs to be addressed.

To deploy the system in real-time, we should ensure that the customers have basic
knowledge of the blockchain system, i.e., how to use it, its requirements, and what draw-
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backs may be faced. The collection of users’ sensitive information should not be high in
food traceability systems. One of the issues faced when dealing with data from different
organizations is satisfying the regulatory requirements. A cost-efficient data acquisition
process can be implemented by automatically extracting the data during the warehousing,
manufacturing, and shipping processes. An important step that can improve food trace-
ability is the gathering of crucial data from customers in order to analyze the nutritional
benefits of the product.
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