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Abstract: In essence, electric digital twinning uses artificial intelligence technology to model complex
electric power systems, and is the development and supplement of electric power modeling tech-
nology. This paper intends to predict and analyze the steady-state risks of complex power systems
based on the power digital twin. Firstly, power flow calculation and optimization are carried out for
complex large power grid systems. Based on sparse matrix storage and node coding optimization,
the power flow calculation speed is improved and the memory usage is reduced. The accuracy and
timeliness of the continuous power flow calculation when obtaining the node power and voltage are
improved by using the unit processing tangent prediction vector and the internal machine of the pre-
diction vector to determine the prediction direction. Secondly, according to the optimization results
of the power flow calculation, the multi-objective optimization problem of power system simulation
is solved by using the advantages of neural network modeling, such as self-learning, self-adaptation,
fault tolerance, and parallelism. Finally, the power flow calculation optimization and neural network
analysis are applied to the integrated stability program of the United States Western Combined Power
Grid (WSCC) power system’s nine-node model; this is in order to simulate the regional power grid for
simulation analysis. Different risks in the power system under steady–state conditions are predicted
and analyzed, the voltage drop in the transient voltage is reduced under multiple working conditions,
and the relative power angle is improved, improving the overall stability of the power system.

Keywords: power flow optimization; steady-state risk; digital twinning; neural networks; stability

1. Introduction

The fundamental and long-term value of digital twinning, in terms of modeling
and simulation technology, goes far beyond its technical domain in the use of artificial
intelligence technology to model complex power systems; this is a development and
complement to power modeling technology [1–4]. The current situation of high cost and
low efficiency cannot meet the demand of electric digital twin research, and an efficient
and low-cost modeling method is the main way to solve this problem.

Whether at home or abroad, the application of digital twin technology in the power
system and energy industry is mostly in the stage of exploration and verification. In terms
of the concept and framework design of power system digital twinning, the literature [5–9]
combines the definition of digital twinning with the characteristics of an Energy Internet,
proposes the concept of Energy Internet digital twinning, proposes the construction meth-
ods and possible application scenarios of Energy Internet digital twinning, and details
the key problems solved by digital twinning technology, taking Energy Internet planning
as an example. The literature [10–13] proposes the concept of electric digital twinning
and designs a data-driven electric digital twinning framework that combines traditional
model-driven and expert systems. The literature [8] defines the overall framework and
technical route of an Energy Internet digital twin system. The literature [14–16] describes
the basic connotation, technical characteristics, and challenges of digital twinning in inte-
grated energy systems. The literature [17–20] proposes a safety analysis framework based
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on the digital twin system, which provides real-time data visualization and realizes the
operation status monitoring and evaluation of each energy generation system in the power
system. The literature [21–23] discusses the application status and the prospect of digital
twin technology from the aspects of power grid operation and power equipment.

In terms of actual modeling, the literature [24] establishes a multi-node power system
model and proposes the influence principle of a power system based on digital twinning.
In the literature [25], digital twinning and the multi-agent control architecture of microgrids
are proposed to intellectualize the power grid. The paper [26] constructs the digital twin
system of the active power prediction system to predict the power of short-term power
systems. In the literature [27], the digital twin model is adopted to estimate the operating
characteristics of the system under a steady state in real-time, and fault estimation is carried
out based on it. In the literature [28], the digital twin model is applied to energy system
detection. The literature [29] uses the digital twin model to estimate the state of the electric
power system. To sum up, the application of digital twinning technology in power systems
is still in the stage of theoretical exploration, and there are few practical systems designed
to solve the practical production problems of the complex large power grid. With the
increasing complexity of power systems, the regulation and control of large power grids is
becoming increasingly complex, and more refined and intelligent scheduling and decision-
making tools are urgently needed. Therefore, the mirroring feature of the digital twin to the
physical system applies to the field of real-time control of the power grid, which is helpful
in order to improve the accuracy and real-time nature of the dispatching operation decision
of the power grid. [30–34] Digital twins require real-time and two-way communication
between the digital model and the physical system. In the actual application of this article,
the NETCONF protocol will be used, and the RPC-based mechanism will provide a set of
network device configurations between the client and the server; this system, has settings
that can be added, modified, and deleted, a framework mechanism for querying the
configuration, status, and statistics, and can be used as a network administrator or network
configuration application with network devices and logical connections between them.
NETCONF can transmit two types of information: configuration data and state data.

• This paper innovatively proposes a power flow calculation optimization method for
a complex large power grid system, including improving the speed of power flow
calculation and reducing the use of memory; this is based on sparse matrix storage
and node coding optimization, uses the unit processing tangent prediction vector, and
determines the prediction direction by the machine in the prediction vector in order
to improve the accuracy and timeliness of continuous power flow calculation when
obtaining node power and voltage.

• In addition, the optimization results of power flow calculation are innovatively intro-
duced into the multi-objective optimization of neural network analysis, and the risk
prediction analysis of the steady-state power system is carried out.

• To verify the rationality of the proposed power flow optimization method and the
multi-objective neural network algorithm in the complex power system, the proposed
algorithm is innovatively introduced into the WSCC nine-node model in the integrated
stability program of the power system; this is performed in order to simulate the
regional power grid, the accuracy of the proposed power flow optimization method,
and to verify the multi-objective neural network risk prediction. The risk of a complex
power system is reduced based on the power digital twin.

2. Study on Optimization and Improvement of Power Flow Calculation

The improvement and optimization of power grid real-time computing modeling tech-
nology for simulating power flow is researched to form a reliable convergence for different
systems and different operating conditions; this includes a small memory consumption, a
fast computing speed, and an ease of adjustment and modification. Power flow calculation
is the most basic calculation in power system analysis [35–38]. It is also the basis of power
system optimization, as well as operation, planning, safety and reliability analysis. The
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power flow calculation model for the same power grid simulation system is also the basis
and starting point of all other computational analyses; this is to ensure that the real-time
power flow calculation is as fast as possible in order to achieve a realistic effect. This is
the most effective way to solve the current complex power system simulation to further
optimize the power flow calculation technology [38–40].

This section focuses on improving the accuracy and timeliness of continuous power
flow calculation when obtaining Nodal power and voltage; this uses matrix sparse storage
and node coding optimization methods to improve the speed of the power flow calcula-
tion, reducing the use of memory to treat the tangent prediction vector in the unit, and
determining the prediction direction via the machine in the prediction vector.

As the power flow calculation is iterative, the coefficient matrix is directly related to
the number of nodes in the calculation speed. In order to accurately predict the nodal power
and the voltage for the power flow solution that is close to the critical point, the change in
the state quantity (V, θ) of each power flow calculation is increased; this results in the error
of parameter transfer and a larger modulus value for the tangent prediction vector. If the
modulus of the tangent prediction vector exceeds a certain range, the prediction algorithm
will no longer satisfy the principle of approximation, resulting in the non-convergence of
the correction operation and a failure in the power flow calculation. This section mainly
realizes power flow calculation optimization from three directions: the sparse matrix, node
coding optimization, and the processing of the tangent prediction vector unit. Figure 1
shows the technical route of accelerated optimization of power flow calculation.3. Results.
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2.1. Sparse Storage Analysis

According to the characteristics of the matrix, namely high symmetry and sparsity, the
more nodes, the higher the sparsity. Therefore, we can use the sparse technique to store
and calculate only non-zero elements to save time and memory. Storage admittance matrix
each row of non-zero elements (triplet notation) for the whole array storage, has greatly
reduced the amount of storage. Its advantage is that the calculation speed is fast [41–43],
and the approximate calculation process is as follows:

(1) The corresponding triples in the a.ATA are found for transposition, according to
the row order of the B matrix.

(2) Quick transpose: the triples are transposed in the order of the a.data, and the
transposed triples are placed in the appropriate position of the b.data.
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(3) Calculation of the appropriate position: Firstly, the number of non-zero elements
in each column of the M matrix (that is, each row of T) is calculated, and then the position
of the first non-zero element in each column of the M matrix in the b.data is calculated.

The basic algorithm steps can be summarized as follows:
Two vectors are set: num[col], the number of non-zero elements in the col column, and

cpot[col], the appropriate position of the first non-zero element in the col column in the
b.data; This indicates the position of the next non-zero entry in the b.data for that column
during the transposition.

A simple B matrix is set, as shown in formula (1):
B11 B12 0 B14
B21 B22 B23 0
0 B32 B33 0

B41 0 0 B44

 (1)

The diagonal elements are recorded with the one-dimensional array bdia, as shown in
Figure 2 below.
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A one-dimensional array is used to record the non-zero elements of the off-diagonal
elements, as shown in Figure 3 below, and a one-dimensional array bdia records the
off-diagonal elements.
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Figure 3. The application of the non-one-dimensional array bdia to record diagonal elements.

A one-dimensional array is used to record the non-zero elements of the non-diagonal
elements. The bdia records the non-zero elements of the odd dimension and the even
dimension of the second corner code of this element. Note that the storage of the non-
zero elements of each row in the matrix must be adjacent to the storage. Then, a single-
dimensional array is used to record each line of non-zero elements in the storage of the
starting position and the end position. In Figure 4, the single-dimensional array Pnum
is used to record the start and end positions of each row of non-zero elements stored in
the store.
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As can be seen from the above process, Pnum (i) +1 is the storage starting position
of the non-zero elements in the ith row of matrix B in bdia, and Pnum (i+1) is the storage
ending position. (Pnum (i+1) − Pnum (i)) /2 is the number of non-zero elements in row i.
The Pnum array makes it easy to find a specific non-zero element.

2.2. Research on Node Coding Optimization

At present, node optimization numbering mainly includes static optimization methods,
semi-dynamic optimization methods, and dynamic optimization methods. Compared with
these three optimization methods, the static optimization method has a simple program,
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but the optimization effect is not good. The dynamic optimization method has the best
effect, but the optimization speed is slow and the optimization program is complex, while
the semi-dynamic optimization method has the advantages of a good optimization effect, a
simple optimization program, and a fast optimization speed. [44–48]

The computational efficiency of the sparse vector method can be improved based on
the semi-dynamic optimization method. A special numbering method can be adopted to
make the branches of the road tree on the final directed factor graph as short as possible. In
this way, when sparse vector technology is used, the path of the fast previous generation
and the back generation is shorter, which reduces the calculation amount of the previous
generation and back generation.

With the node optimization number, the specific process is as follows: The adjacency
matrix is formed according to the topology structure of the power grid, and the num array
is used to record the number of branches connected by each node. The node number with
the fewest connections is found and stored in the array line. When the number of connected
nodes is the same, the number in the smaller sequence is taken and stored in line. The
number of branches added or subtracted after node elimination is modified, and the value
of the array number is updated. The corresponding node in the matrix of the row and
column is eliminated. The second step is returned to, and the node is repeatedly eliminated.
The position of the balance node in the line is adjusted, and the number of the balance node
is placed in the last position of the line.

The specific optimization steps are as follows: the first step determines whether the
sum of the degrees of the compared nodes is greater than 3. If yes, the one with the
minimum degree is selected; otherwise, the second step is entered and the one with the
minimum length is selected. In the third step, the one with the smallest increment to the
total network length after elimination is chosen. In the first step, if the sum of the degrees of
the two comparison nodes is less than or equal to 3, then the second step is turned to. This
equates to the status of the nodes of degree 1 and degree 2. In the third step, the influence
of node J on the total length of the network is eliminated.

Figure 5 shows the topology of a 5–node network.
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First, the tree of node 2 is eliminated, as shown in Figure 6 below, that is, the tree of
node 2 is eliminated.

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 21 
 

First, the tree of node 2 is eliminated, as shown in Figure 6 below, that is, the tree of 
node 2 is eliminated. 

423

1

5
 

Figure 6. The elimination of the tree for node 2. 

Then, the tree of node 1 is deleted, as shown in Figure 7 below. 

2

13

4

5
 

Figure 7. The elimination of the tree for node 1. 

The solution of eliminating node 2 first is better because, when eliminating node 2, 
the length of node 1 is only increased by 1; meanwhile, when eliminating node 1 first, the 
length of node 2 and node 4 is increased. It can be seen that the elimination of nodes first 
increases the total length of the whole network, or makes the network "tree" develop 
deeper faster, which is unfavorable for the fast regeneration and back generation. 

2.3. Research on the Unit Processing of Tangent Vector 
The prediction algorithm should follow principles. The principle is the principle of 

approximation, that is, the predicted value should be close enough to the corresponding 
exact value in the prediction process. The predicted value at i+1 is more approximate than 
the predicted value at i. For the tangent prediction algorithm with local parameterization, 
the closer the power flow calculation is to the node power and voltage, and to the critical 
point of the line, the larger the modulus of the tangent prediction vector will be, resulting 
in a larger error caused by parameter transfer. If the modulus of the tangent prediction 
vector exceeds a certain range, the prediction algorithm will no longer satisfy the principle 
of approximation, resulting in the non-convergence of the correction operation and the 
failure of the power flow calculation. 

To make the prediction algorithm meet the principle of approximation, the prediction 
vector can be unitized, that is, in the more curved part of the node power and voltage, the 
modulus value of the tangent prediction vector can be a unit quantity. Unit processing is 
conducive to ensuring the approximation of the prediction algorithm. 

To meet the directionality requirements of the prediction algorithm, the inner prod-
uct of the two adjacent tangent prediction vectors can be used to determine the direction 
of the continuous power flow solution; therefore, the positive direction of the inner prod-
uct operation is the same as that of the previous step, and the negative direction of the 
inner product operation is the opposite direction of the previous step. When the inner 
product operation result of the two-step tangent prediction vector is greater than 0, the 

Figure 6. The elimination of the tree for node 2.



Sustainability 2023, 15, 2555 6 of 20

Then, the tree of node 1 is deleted, as shown in Figure 7 below.
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The solution of eliminating node 2 first is better because, when eliminating node 2,
the length of node 1 is only increased by 1; meanwhile, when eliminating node 1 first,
the length of node 2 and node 4 is increased. It can be seen that the elimination of nodes
first increases the total length of the whole network, or makes the network “tree” develop
deeper faster, which is unfavorable for the fast regeneration and back generation.

2.3. Research on the Unit Processing of Tangent Vector

The prediction algorithm should follow principles. The principle is the principle of
approximation, that is, the predicted value should be close enough to the corresponding
exact value in the prediction process. The predicted value at i+1 is more approximate than
the predicted value at i. For the tangent prediction algorithm with local parameterization,
the closer the power flow calculation is to the node power and voltage, and to the critical
point of the line, the larger the modulus of the tangent prediction vector will be, resulting
in a larger error caused by parameter transfer. If the modulus of the tangent prediction
vector exceeds a certain range, the prediction algorithm will no longer satisfy the principle
of approximation, resulting in the non-convergence of the correction operation and the
failure of the power flow calculation.

To make the prediction algorithm meet the principle of approximation, the prediction
vector can be unitized, that is, in the more curved part of the node power and voltage, the
modulus value of the tangent prediction vector can be a unit quantity. Unit processing is
conducive to ensuring the approximation of the prediction algorithm.

To meet the directionality requirements of the prediction algorithm, the inner product
of the two adjacent tangent prediction vectors can be used to determine the direction of
the continuous power flow solution; therefore, the positive direction of the inner product
operation is the same as that of the previous step, and the negative direction of the inner
product operation is the opposite direction of the previous step. When the inner product
operation result of the two-step tangent prediction vector is greater than 0, the budget
publicity is formula (2); if the result is less than 0, the budget publicity is formula (3).
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3. Artificial Neural Network Analysis
3.1. Artificial Neural Network Method

Neural networks are composed of simple units that operate in parallel and are trig-
gered by the biological nervous system. The function of the network is determined by the
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interconnection between the units. We can train the neural network to adjust the connection
strength (weight) between the units to fulfill the specified function. [49–52]

Usually, neural networks are trained and adjusted to make a specific input lead to a
specific output. This can be illustrated by the figure below, [53–56] in which the network is
trained by constantly comparing the output and the target value until the network output
and the target value are the same. Usually, the network has many of these input–output
pairs in this supervised training mode. Figure 8 below shows the learning process of the
neural network.

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 21 
 

budget publicity is formula (2); if the result is less than 0, the budget publicity is formula 
(3). 

( ) ( ) ( )
( )

i

i+1 i

i

i

i+1 i

i

,
= +

,

dX d
X X

dX d

λ
λ λ σ

λ
， ，  (2)

( ) ( ) ( )
( )

i

i+1 i

i

i

i+1 i

i

,
=

,

dX d
X X

dX d

λ
λ λ σ

λ
−， ，  (3)

3. Artificial Neural Network Analysis 
3.1. Artificial Neural Network Method 

Neural networks are composed of simple units that operate in parallel and are trig-
gered by the biological nervous system. The function of the network is determined by the 
interconnection between the units. We can train the neural network to adjust the connec-
tion strength (weight) between the units to fulfill the specified function. [49–52] 

Usually, neural networks are trained and adjusted to make a specific input lead to a 
specific output. This can be illustrated by the figure below, [53–56] in which the network 
is trained by constantly comparing the output and the target value until the network out-
put and the target value are the same. Usually, the network has many of these input–
output pairs in this supervised training mode. Figure 8 below shows the learning process 
of the neural network. 

 

Weight between neurons Compare

Adjust the weight

Iutput Output

The target

Input

 
Figure 8. Learning process of neural network. 

An artificial neural network is a nonlinear data-processing method, used to simulate 
human neurons, which is a transformation and abstraction of the natural biological nerv-
ous system. The neural network is mainly composed of neurons. As shown in Figure 9, 
there is a nonlinear correlation between the input and output of each neuron, and such an 
extensive connection among all the neurons eventually forms a complete complex nonlin-
ear network. The method simulates the functions of signal transmission, processing, re-
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An artificial neural network is a nonlinear data-processing method, used to simulate
human neurons, which is a transformation and abstraction of the natural biological nervous
system. The neural network is mainly composed of neurons. As shown in Figure 9, there is
a nonlinear correlation between the input and output of each neuron, and such an extensive
connection among all the neurons eventually forms a complete complex nonlinear network.
The method simulates the functions of signal transmission, processing, retrieval, and
storage of the human nervous system, and realizes the nonlinear reflection of the body inch,
from X dimension space to Y dimension space.
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The artificial neural network method has the advantages of simple modeling, nonlinear
implicit expression, high parallelism, and strong fault tolerance, so it is often used in the
prediction of power loads. This method has a strong adaptive ability for some non-precise
laws and non-structural data, and can learn independently, memorize information [57,58],
optimize calculation and reason knowledge, etc.; these not possessed by other algorithms.

In actual life, the power load is mainly affected by the season, temperature, holidays,
and other factors, and these factors are random with a large number of data without linear
relationships. At the same time, it is necessary to construct nonlinear relations for some
voltage and frequency disturbances with large spans. It is difficult to model these large, non-
linear data with some obvious mathematical expression and explain how the data changes.
The characteristics of the nonlinear implicit expression of an artificial neural network
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can precisely solve this difficulty [59–62]. The neuron is like a black box, replacing the
functional relationship between a large number of data information into a high-dimensional
nonlinear mapping relation; the independent variable in the functional relation becomes
the input quantity and the dependent variable becomes the output quantity, finally solving
the problem of the nonlinear relationship between various influencing factors [63,64]. The
artificial neural network method is not only suitable for short- and ultra-short-term load
forecasting, but also helpful for medium- and long-term load forecasting.

At present, the artificial neural network can be divided into the following models
through different interconnection modes: the forward network, the forward network
with output feedback, the forward network with intra-layer interconnection, the fully
interconnected network, and the locally interconnected network. The forward network
topology with output feedback is used in this paper, and is shown in Figure 10 below:
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Figure 10 shows the forward network topology of the output feedback in the intercon-
nected artificial neural network. The data information of the output layer will be fed back
to the input layer, which means that each node of the input layer not only needs to receive
the external input information, but also may receive the feedback information output by
the neurons of the output layer. This mode is more suitable for storing pattern sequences
and neurocognitive machines.

In addition, the local interconnected network is also one of the interconnected artificial
neural networks. Different from the fully interconnected network, the neurons in this
type only have input and output relationships with the neurons in one or several layers
around them, forming a local feedback network structure. The most commonly–used local
interconnected network is the Elman network.

3.2. Process of Applying Artificial Neural Network Algorithm

The flow of the artificial neural network algorithm is as follows:
The objective function of this paper is to minimize the instantaneous increment of

voltage and power. Both the active power loss and generator reactive power can be
expressed as the function form of control variables. The objective function can be expressed
in an incremental form, linearized as follows:

min∆ f (∆XC) =
∂ f

∂VG
· ∆VG +

∂ f
∂TK
· ∆TK +

∂ f
∂QC

· ∆QC (4)

where ∆XC represents the increment of the control variables,
f (XC) represents the partial derivative of the generator voltage, transformer ratio

and reactive power compensation ∂ f
∂VG

, ∂ f
∂TK

, ∂ f
∂QC

, and ∆VG,∆TK and ∆QC represent the
increment of the generator terminal voltage, the increment of the transformer ratio and the
increment of the reactive power compensation equipment, respectively.

(1) The population is initialized and Q(t0) randomly generates N-bits encoded by a
neural network qt0

j . The artificial neural network algorithm is, firstly, needed to initialize

the population Q(t0), and to initialize the bit codes of two neural networks
(

αt0
i , βt0

i

)
of n



Sustainability 2023, 15, 2555 9 of 20

neural networks in the population
(

1/
√

2, 1/
√

2
)

; this indicates that all possible states are
equally probable, as is evident in the following:

∣∣∣Ψt0
qj

〉
=

2m

∑
k=1

1
√

2
m |Sk〉 (5)

(2) All the individuals included in the population are measured once to obtain a
definitive set of solutions p(t), where p(t) =

{
pt

1, p
t
2, . . . pt

n

}
represents solution number

one in the population of generation t. The measurement result is j(j = 1, 2, · · ·, n), which is
the probability OR of randomly generating the interval number and comparing it with the
neural network bit. If it is greater than OR, the measurement result is 1; otherwise, it is 0.

(3) Based on the established fitness function (objective function), the fitness evalu-
ation is carried out for each determined solution, and the optimal individual and the
corresponding fitness value are recorded.

(4) The rotation angle adjustment strategy of the neural network revolving door is
used to calculate the rotation angle of the neural network and update the neural network
revolving door. This article uses a general, problem-independent tuning strategy, where
xi and besti are the position of the current individual and the current optimal individual,
respectively; f (x)ss the objective function; ∆θi is the magnitude of the rotation angle; and
s(αi, βi) is the direction of the rotation angle, namely, the symbol of θi. The adjustment
strategy is used to compare the fitness value of the current individual with the fitness value
of the current optimal individual in the population. The larger the objective function value
is, the better the individual is, then f (x) > f (best) and the corresponding bit of the neural
network is adjusted to make the probability amplitude approximate to the direction of x.
Otherwise, it is approaching in the direction of the besti.

(5) Whether the calculation process can be terminated is determined. If the termination
condition is met, the calculation ends. Otherwise, the number of iterations updates the
population with the revolving door of the neural network, and the algorithm moves to step (2).

In this paper, the steady-state and transient characteristics of the regional power
system are fully considered, and the evaluation index of the evaluation configuration
strategy is established based on the voltage transient characteristics of different nodes after
failure, which can more truly reflect the voltage dynamic characteristics of the regional
power system. Moreover, the simulation software is used to continuously optimize the
steady-state and transient operation mode, to obtain a real and reliable optimal active
and reactive power configuration strategy. Figure 11 shows the general flow chart of
steady-state risk prediction analysis by digital twinning in the regional power network.
The specific calculation steps are as follows:

(1) The operating parameters of the regional power system are obtained, and the
corresponding network model is established in PSASP;

(2) The power flow calculation optimization analysis involves the sparse matrix, node
coding optimization, and tangent prediction vector unit processing;

(3) The active power and reactive power sensitivity of the regional power grid are cal-
culated;

(4) Artificial modeling and calculation, according to the artificial neural network
algorithm, is conducted, the initial population and the calculation parameters of the neural
network algorithm are determined, namely the initial defense strategy of each node, and
this is revised in PSASP;

(5) The dynamic simulation of the calculation is carried out. In the actual calculation
process, the steady-state index in the objective function is ignored, but only the transient
index is retained; the objective function value is taken as the evaluation function value of
each individual;

(6) The above calculation is made for each individual in the initial population;
(7) the fitness of each individual is evaluated;
(8) the fitness of the optimal individual is recorded;
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(9) A new generation of the population is obtained by programming and updating the
population with the revolving gate of the neural network;

(10) The new population is taken as the initial population, (4) is returned to, and the
above calculation is repeated;

(11) If the termination condition is satisfied, that is, if the number of calculations is
sufficient or the solution is satisfactory enough, the calculation is terminated (12). The
optimal scheme of the transient characteristics of each node is output.
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4. Simulation Verification Analysis Based on Multi-Node Network
4.1. Nine-node Power Network with a WSCC-Integrated Stability Program Introduction

Figure 12 shows the power flow calculation and analysis of a nine-node power net-
work with a WSCC-integrated stability program under a steady state. It can be seen that
the power flow distribution of each unit and network is uniform, and that the system
runs stably.
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Figure 12. Power flow calculation and analysis of a nine-node power network with integrated
stability program WSCC under a steady state.

The three-machine, nine-bus system of the Western Power System (WSCC) in the
United States is a classic example of power system research. Table 1 below shows the
bus data of the nine-node WSCC power network-integrated stability program under a
steady state. The following Table 2 shows the AC line data of the nine-node WSCC power
network-integrated stability program under steady-state conditions.

Table 1. Bus data.

BUS_NAME PHYPOS Plant/Station BASE_KV VMAX_KV VMIN_KV

GEN1 0 Gen1 16.5 18.15 14.85
GEN2 0 Gen2 18 19.8 16.2
GEN3 0 Gen3 13.8 15.18 12.42

GEN1–230 0 Gen1 230 0 0
GEN2–230 0 Gen2 230 0 0
GEN3–230 0 Gen3 230 0 0
STNA–230 0 STNA 230 0 0
STNB–230 0 STNB 230 0 0
STNC–230 0 STNC 230 0 0
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Table 2. AC line data.

NAME I_NAME J_NAME R1 X1 B/2 R0 X0

AC_1 GEN1–230 STNA–230 0.01 0.085 0.088 0 0.255
AC_2 STNA–230 GEN2–230 0.032 0.161 0.153 0 0.483
AC_3 GEN2–230 STNC–230 0.0085 0.072 0.0745 0 0.216
AC_4 STNC–230 GEN3–230 0.0119 0.1008 0.1045 0 0.302
AC_5 GEN3–230 STNB–230 0.039 0.17 0.179 0 0.51
AC_6 STNB–230 GEN1–230 0.017 0.092 0.079 0 0.276

4.2. Nine-node Power Network WSCC-Integrated Stability Program Simulation Three-Phase
Ground Fault Characteristics Analysis

A three-phase ground fault occurs at 50% of the line between the GEN2–230 and
STNC–230 nodes in the WSCC power system-integrated stabilization program nine-node
network. The fault setting location is shown in Figure 13.
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ting diagram.

After the occurrence of a 0.03 s fault, the voltage of nodes GEN1, GEN2, GEN3, GEN1–
230, GEN2–230, GEN3–230, STNA–230, STNB–230, and STNC–230 all dropped to a large
extent, and the voltage did not recover within 5 s after the fault occurred. At this moment,
there is no risk prediction system based on digital twins involved in the system, and the
specific degree of fall is shown in Figure 14. The relative power angles of the GEN1, GEN2,
and GEN3 generators diverge, as shown in Figure 15. The system is unstable and risky
after failure.
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4.3. Nine-Node Simulation Risk Prediction Based on Digital Twinning in WSCC Power
System-Integrated Stability Program

Based on the digital twin in the integrated stability program of the WSCC nine-node
power system simulated risk prediction, in order to obtain the operation parameters of
the regional power system, the corresponding network model is established in PSASP,
and the power flow calculation optimization analysis is carried out: sparse matrix, node
coding optimization, tangent prediction vector unit processing. The active power and
reactive power sensitivity are calculated for the regional power grid. According to the
artificial neural network algorithm, the artificial modeling and calculation is carried out
to determine the initial population and the calculation parameters of the neural network
algorithm, namely the initial defense strategy of each node; the correction is made in
PSASP. In the actual calculation process, the steady-state index in the objective function
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is ignored, but only the transient index is retained. The objective function value is taken
as the evaluation function value of each individual. The above calculation is performed
for each individual in the initial population, the fitness of each individual is evaluated,
the corresponding fitness of the optimal individual is recorded, and a new generation
of the population is obtained by using the revolving gate of the neural network. The
new population is taken as the initial population and the calculation is repeated. If the
termination condition is met, that is, if the calculation times are sufficient or the solution
is satisfactory enough, the optimal solution of the transient characteristics of each node
is terminated

(1) Based on the power digital twin, the risk prediction and correction of the nine
nodes of the integrated stability program WSCC, in the case of three-phase failure, are
carried out. The specific fault location is 50% of the line between the two nodes GEN2–
230 and STNC–230, as shown in Figure 13. After the occurrence of the 0.03 s fault, the
nodes GEN1, GEN2, GEN3, GEN1–230, GEN2–230, GEN3–230, STNA–230, and STNB–
230, STNC-230 can be obtained. After the voltage fluctuation occurs, the digital twinning
algorithm quickly plays the role of balancing the voltage stability. As a result, the voltage
of each node fluctuates within the stable threshold range. The specific degree of fluctuation
is simulated in detail in Figure 16. The relative power angles of the GEN1, GEN2, and
GEN3 generators do not diverge, as shown in Figure 17. Figures 16 and 17 prove that
power flow calculation optimization and power digital twinning can effectively reduce the
risk of regional power systems when a three-phase failure occurs between two nodes of
nine nodes in the integrated WSCC power system stabilization program, based on power
digital twinning.

(2) Based on the power digital twinning, the risk prediction and correction of the nine
nodes of the WSCC integrated stability program in the case of phase-to-phase failure are
carried out. The specific fault location is 50% of the line between the two nodes GEN2–230
and STNC–230, as shown in Figure 15. After the occurrence of the 0.03 s fault, the nodes
GEN1, GEN2, GEN3, GEN1–230, GEN2–230, GEN3–230, STNA–230, STNB–230, and STNC–
230 can be obtained. After the voltage fluctuation occurs, the digital twinning algorithm
quickly plays the role of the balancing voltage stability. The voltage of each node fluctuates
within the range of the stable threshold. The specific degree of fluctuation is simulated
and analyzed in detail in Figure 18. The relative power angles of the GEN1, GEN2, and
GEN3 generators do not diverge, as shown in Figure 19. Figures 18 and 19 prove that
power flow calculation optimization and power digital twinning can effectively reduce the
risk of regional power systems when nine nodes of the integrated WSCC power system
stabilization program fail in phases between two nodes.
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power digital twin phase fault.

(3) Based on the power digital twinning, the risk prediction and correction of the
nine nodes of the integrated stability program of the WSCC power system, in the case of
single-phase failure, are carried out. The specific fault location is 50% of the line between
the two nodes GEN2–230 and STNC–230, as shown in Figure 15. After the occurrence
of the 0.03 s fault, the nodes GEN1, GEN2, GEN3, GEN1–230, GEN2–230, GEN3–230,
STNA–230, STNB–230, and STNC–230 can be obtained. After the voltage fluctuation
occurs, the digital twinning algorithm quickly plays the role of balancing the voltage
stability. The voltage of each node fluctuates within the range of the stable threshold. The
specific degree of fluctuation is simulated and analyzed in detail in Figure 20. The relative
power angles of the GEN1, GEN2, and GEN3 generators do not diverge, as shown in
Figure 21. Figures 20 and 21 prove that power flow calculation optimization and power
digital twinning can effectively reduce the risk of regional power systems when nine
nodes of the integrated WSCC power system stabilization program fail in phases between
two nodes.
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power digital twin single-phase fault.

Finally, the eigenvalue analysis of the nine-node model of the WSCC power system-
integrated stabilization program after the adoption of power digital twinning is carried out.
As shown in Figure 22, the coordinates of GEN1, GEN2, and GEN3 are all located on the
X-axis, Therefore, it can be proven that the WSCC nine-node model is stable after adopting
the research method described in this paper; this which further verifies that power flow
calculation optimization and power digital twinning can effectively reduce the risk of the
regional power system.

Future research will explore the application of power digital twin in more nodes,
AC–DC hybrid systems, flexible DC systems, and add different operating conditions.
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Figure 22. Analysis of characteristic values of GEN1, GEN2, and GEN3 motors under different faults
after the introduction of electric digital twinning.

5. Conclusions

This paper predicts and analyzes the steady-state risks of complex power systems,
based on the power digital twin. Firstly, power flow calculation and optimization are
carried out for complex large power grid systems. Based on sparse matrix storage and
node coding optimization, the power flow calculation speed is improved and the mem-
ory usage is reduced. The accuracy and timeliness of continuous power flow calculation
when obtaining the node power and voltage are improved by using the unit processing
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tangent prediction vector and the internal machine of the prediction vector to determine
the prediction direction. According to the optimization results of the power flow calcula-
tion, the multi-objective optimization problem of the power system simulation is solved.
Finally, power flow calculation optimization and neural network analysis are applied to
the integrated stability program of the WSCC power system’s nine-node model, in order
to simulate the regional power grid for simulation analysis. Steady-state risk prediction
and intervention are carried out for the three-phase faults, phase-to-phase faults, and
single-phase faults of two nodes. The steady-state analysis is carried out on the voltage
of nodes GEN1, GEN2, GEN3, GEN1–230, Gen2–230, GEN3–230, STNA–230, STNB–230,
and STNC–230 under different working conditions, and on the relative power angle of
generators GEN1, GEN2, GEN3 under different working conditions. It is found that the
steady-state risk of the power system can be reduced and the stability of the power system
can be improved, based on the power digital twin under different risks.
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