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Abstract: High-resolution remote-sensing images can be used in human activity analysis and criminal
activity monitoring, especially in sparsely populated zones. In this paper, we explore the applicability
of China’s Gaofen satellite images in the land cover classification of Xinjiang, China. First of all, the
features of spectral reflectance and a normalized radar cross section (NRCS) for different types of
land covers were analyzed. Moreover, the seasonal variation of the NRCS in SAR (Synthetic Aperture
Radar) images for the study area, Dunkuotan Village of Yuli County, China, was demonstrated by the
GEE (Google Earth Engine) platform accordingly. Finally, the CART (classification and regression
trees) algorithm of a DT (decision tree) was applied to investigate the classification of land cover in the
western area of China when both optical and SAR images were employed. An overall classification
accuracy of 83.15% with a kappa coefficient of 0.803 was observed by using GF-2/GF-3 images
(2017–2021) in the study area. The DT-based classification procedure proposed in this investigation
proved that Gaofen series remote-sensing images can be engaged to effectively promote the routine
workflow of the administrative department.
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1. Introduction
1.1. Remote-Sensing Big Data

As satellite remote-sensing (RS) technology has developed, the spatial and temporal
resolution of satellite images has significantly improved over the past two decades. The
intelligent applications of remote-sensing big data, therefore, are bound to be researched
and developed, which aim to provide scientific big data and decision-making assistance
for supporting sustainable social and economic development while building a community
with a shared future for humankind [1].

Spatial information is of essentially importance for the sustainable administration of
government, while remote-sensing big data are able to be used in the investigation and
monitoring of national territory resources and security because they are characterized by
wide coverage, high resolution and user privacy [2]. Moreover, remote-sensing big data
could also effectively alleviate the difficulties of manual information collection and acqui-
sition and promote the updating and integrating of background information. Finally, the
combination of high-resolution remote-sensing images, global navigation and positioning
(GPS) technology and geographic information systems (GISs) could implement the efficient
reconnaissance and dynamic trajectory analysis of criminal activity, especially in sparsely
populated regions, the west of China, for example.

When Albert Gore, former vice president of the United States, proposed “big data
for the earth”, satellite remote sensing was entering the era of big data [3]. Since the
successful launch of the first US meteorological satellite in 1960, there have been 558 earth
observation satellites launched, as of September 2020 [4]. China, for instance, has more than
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500 satellites in orbit, as of 24 April 2022. How remote-sensing data can be accurately, fast
and intelligently gathered and how the information coming from remote-sensing satellite
big data can be mined are the core issues with the application of big data of remote-sensing
satellites [5].

In the past decade, remote-sensing big data platforms, such as the Google Earth Engine
(GEE) [6], NEX (NASA Earth exchange), Descartes Labs, Amazon Web Services (AWS),
Data Cube of Australia and CODE-DE (Copernicus Data and Exploitation Platform-DE)
from Germany, etc., have rapidly developed and achieved many typical applications [7–9].

China’s remote-sensing cloud-computing platform is also rapidly developing. For
example, the Earth Data Miner [10] supported by the pilot project “Earth Big Data Science
Project”, run by the Chinese Academy of Sciences, and Pixel Information Expert (PIE), a
cloud computation platform of PIESAT Group Inc., are representative remote sensing big
data platforms in early development. In addition, Alibaba cloud, Tencent cloud and the
Sense Earth platforms of SenseTime Group Inc. have also play a leading role in terms of
remote-sensing cloud computing in China. Remote-sensing cloud-computing platforms
make the real-time processing of massive satellite remote-sensing big data possible and
have been industrialized in many fields, such as earth science, GISs, disaster prevention
and mitigation, emergency rescue and even public security.

With the advent of the era of big data, deep learning models represented by decision
trees, random forests, convolutional neural networks, etc. have been widely used in the
field of remote sensing. A large number of remote-sensing data sets has been produced and
released, such as UC Merced, WHU-RS19, Gaofen Image Datasets (GIDs), etc., over the past
few years, and those data sets have been successfully applied in neural net optimization
and prediction algorithm improvement [11]. As deep learning models require massive
samples to be trained and tested, the demand for high-resolution remotely sensed image
data sets has exploded, which has been enhanced by the rapid development of the big data
of remote sensing, parallel computing and artificial intelligence. The remote-sensing data
set, including onsite pictures, attribute information, etc., are vital for model training and
algorithm testing in regard to the process of machine learning for many research fields of
remote-sensing applications, such as target recognition, land cover and land utilization
classification [12].

1.2. China’s Gaofen Satellite Constellation

China’s High-Resolution Earth Observation System (CHEOS) was approved in 2010
by the Chinese government. It consists of a space-based observation system, a near-space
observation system, an aviation observation system, a ground system and an application
system. Seven civil satellites have been successfully launched so far, which are named
after Gaofen (GF). The Gaofen satellite constellation combines the advantages of high
temporal resolution and high spatial resolution. Various sensors are deployed on the
Gaofen series satellites.

The GF-1 satellite carries two panchromatic multispectral cameras (PMS, 2 m for PAN
and 8 m for MS) and four wide-field-of-view (WFV) cameras with a resolution of 16 m. The
GF-1 satellite is used mainly in public security, disaster prevention and urban land surveys.
The sensor resolution on the GF-2 satellite is higher than that of the GF-1 satellite, with a
resolution of 1 m for PAN and 4 m for MS. The GF-2 satellite can be used in high-precision
land-use surveys, public security, reconnaissance and other application fields. The GF-3
is equipped with a C-band multipolarization synthetic aperture radar (SAR), 12 imaging
modes and a spatial resolution of up to 1 m. The satellite payload can work under any
weather conditions, day or night, because the electromagnetic waves (EMWs) radiated from
the SAR sensor can penetrate clouds, surface vegetation, loose sand and even snow. The
GF-3 satellite is widely used in marine protection, early-warning disaster-risk prevention
and forecasting, water resource management and weather forecasting. The payloads and
mission objectives of the Gaofen series satellites are shown in Table 1 [13].
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Table 1. The payload and mission of the Gaofen satellite constellation of China.

Satellite Date of Launch Sensors Missions

GF-1 26 April 2013

2 panchromatic multispectral
cameras (2 m for panchromatic,

8 m for multispectral); 4
multispectral wide-width cameras

(16 m)

Land resources and
agricultural meteorology

GF-2 19 August 2014
2 panchromatic multispectral

cameras (1 m for panchromatic,
4 m for multispectral)

Land and resources, urban
management,
transportation

GF-3 10 August 2016 C-band multipolarization
synthetic aperture radar (1~500 m)

Marine application,
disaster processing, water

protection and
management, meteorology
prevention, mitigation of

emergent disasters

GF-4 29 December 2015 Staring camera with visible (50 m)
and near infrared (400 m)

Remote sensing of disaster
reduction, forestry,

meteorology

GF-5 9 May 2018 AHSI, VIMS, AIUS, EMI, GMI,
DPC

Monitoring atmospheric
aerosol, sulfur dioxide,

nitrogen dioxide, methane,
water quality, straw

burning, urban heat island

GF-6 2 June 2018

1 panchromatic multispectral
camera (2 m for panchromatic, 8 m
for multispectral); 1 multispectral

wide-width camera (16 m)

Land resources,
agricultural meteorology,

identification of
ground crops

GF-7 3 November 2019

A dual-linear array camera (back
sight: 0.65 m, fore sight: 0.8 m);

multispectral (back sight: 2.6 m); a
laser altimeter (ranging accuracy

≤ 0:3 m) (slope is less than
15 degrees); a footprint camera

(≤4 m)

Agricultural surveying
and mapping of

topography

1.3. Image Classification by Means of Machine Learning

A decision tree (DT) is one of the most intuitively effective classifiers applied in the
automatic identification of remote-sensing images. CART is one of the DT classification
algorithms, and it is widely used in machine learning and artificial intelligence [14–16].
CART is an intelligent algorithm that uses recursive segmentation technology to build
a prediction model, which analyzes the relationship between multiple attributes and
decisions to generate easy-to-understand rules for prediction [15–17]. The CART method is
widely used in remote-sensing classification-based tasks, such as land cover mapping, forest
remote-sensing surveys, crop area extraction, land desertification mapping, etc. [18,19].
The Gini coefficient is engaged in the measurement of the impurity of a given element with
respect to the rest of the classes in CART [20,21]. Accordingly, by using a set of features, the
maximum depth of the decision tree is reached.

The DT can be modeled as a set of if-then rules, which is applicable in categorical data.
Once the model has been developed, classification is extremely quick because no further
complex mathematics is required. Problems with DTs include the possibility of generating
a nonoptimal solution and overfitting. The latter is normally addressed by pruning the
tree, removing one or more layers of splits. Pruning reduces the accuracy of classifying the
training data but generally increases the accuracy of dealing with unknowns [22].

In this study, a DT-based land cover classification was proposed by using Gaofen
series satellite images, taking Yuli County, Xinjiang, China, as the study area. First of
all, GF-2/GF-3 data were introduced, and a preprocessing procedure was demonstrated.
Next, various features of optical and SAR images were investigated, and a multiseasonal
merged SAR image was displayed. In addition, the CART algorithm of the decision tree
was applied to train the classifier and to output the classification result. Finally, a case study
of the DT-based classification was presented for Dunkuotan Village of Yuli County, and
a classification accuracy assessment was proposed. The supervised classification scheme
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proposed in this paper could effectively promote the routine administrative and supervised
workflow when remote-sensing images are applied, according to our investigation.

2. Data and Methodology
2.1. Study Area

The study area of this paper is in Dunkuotan Village, Yuli County, Xinjiang Uygur
Autonomous Region, China. Yuli County, also known as Lop Nur, is in the middle of Xin-
jiang, China (Figure 1). Yuli County is in the southern foothills of the Tianshan Mountains
and on the northeast edge of the Tarim Basin. Dunkuotan Village is 24 km away from Yuli
County, with a total area of 15,468.9 km2 and an average altitude of 901 m. Dunkuotan
Village is suitable as a research area of the Chinese western social economy and natural
resources development because it is not only the geographical center of Xinjiang but also
the intercontinental hub of the Silk Road Economic Belt.
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and the right picture is a remotely sensed image of a part of Dunkuotan Village, Yuli County. 

The study area is located in the Asia–Africa desert region, with complicated plant 

composition and low vegetation coverage. The grassland in the study area is composed 

Figure 1. Map of the study area. The left map shows the location of Yuli County, Xinjiang, China,
and the right picture is a remotely sensed image of a part of Dunkuotan Village, Yuli County.

The study area is located in the Asia–Africa desert region, with complicated plant
composition and low vegetation coverage. The grassland in the study area is composed
mainly of perennial tepid and xerophytic plants. Most of them are in the form of shrub
grassland, which is short and sparse. The woodland vegetation, on the other hand, is
composed mainly of sparse Populus euphratica. The shrubbery is red willow, with rich
constructive species and diverse ecological types. The river net structure is determined by
the topography in the study area. In addition, the simple road, around 6 m in width, is the
common type of road. The rooftops are made up of either cement/metal (for most of the
town area) or wood/cement (for the rural area), according to the onsite investigations (see
Figure 2).
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Figure 2. The onsite photos of the typical roads and buildings in the study area.

2.2. Data and Preprocessing
2.2.1. GF-2 Data and Preprocessing

In this investigation, 16 GF-2 images are collected, which are acquired in four seasons,
ranging from 28 January 2017 to 22 December 2021 (see Table 2). Each GF-2 image in
the L1A redistributed level consists of two types of data products: the panchromatic
(1 m resolution) and the multispectral (4 m resolution) product, respectively. The high-
resolution CCD sensor, mounted on a GF-2 satellite platform, works in four spectral bands
(B1/blue: 0.45–0.52 µm, B2/green: 0.52–0.59 µm, B3/red: 0.63–0.69 µm and B4/NIR:
0.77–0.89 µm), plus a panchromatic band (PAN: 0.45–0.90 µm), which is the same as that of
the GF-1 satellite.

The preprocessing of GF-2 data includes radiation calibration, atmospheric correction,
geometrical correction and image fusion. First, the radiation calibration procedure was
implemented by using ENVI 5.3 software [23] by Harris Corporation in Melbourne, Florida,
USA. In this phase, the pixel digital number (DN) in every band (B1–B4) of the GF-2
data was converted to the value of radiance to minimize the uncertainty produced by
the CCD sensor. Next, the atmospheric correction was conducted by using the FLAASH
(Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) atmospheric correction
toolbox in ENVI 5.3, such that the pixels in the four spectral bands were represented in the
value of spectral reflectance. Thereafter, the RPC model–based geo-correction procedure
was implemented by analyzing the rational polynomial coefficient (RPC) file, which is
associated with the image files in the data package of the GF-2 data. Finally, the NNDiffuse
Pan Sharpening toolbox in ENVI 5.3 software was utilized to improve the spatial resolution
of a multispectral image from 4 m to 1 m.
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Table 2. GF-2 data collected in this paper.

Platform Sensor Date of
Acquisition

Number of
Scenes

Spatial
Resolution

GF-2 PMS1 28 January 2017 1 1 m/4 m
GF-2 PMS1 3 August 2017 1 1 m/4 m
GF-2 PMS1 26 October 2017 2 1 m/4 m
GF-2 PMS2 31 October 2017 1 1 m/4 m
GF-2 PMS1 9 December 2018 1 1 m/4 m
GF-2 PMS2 9 December 2018 1 1 m/4 m
GF-2 PMS2 16 September 2019 1 1 m/4 m
GF-2 PMS1 19 November 2019 2 1 m/4 m
GF-2 PMS2 15 February 2021 1 1 m/4 m
GF-2 PMS1 24 May 2021 2 1 m/4 m
GF-2 PMS2 14 October 2021 1 1 m/4 m
GF-2 PMS2 22 December 2021 1 1 m/4 m
GF-2 PMS2 1 March 2022 1 1 m/4 m

2.2.2. GF-3 Data and Preprocessing

The GF-3 SAR sensor is able to image in 12 modes. For instance, the spot light (SL)
mode image has the highest spatial resolution, of up to 1 m, among all of the imaging
modes, and the Quad-Polarization Strip I (QPSI) mode image has the most polarization
channels (HH/HV/VH/VV), with a nominal spatial resolution of 8 m. In this investigation,
14 Ultra Fine Strip (UFS) mode GF-3 images were collected (Table 3), which have a relatively
high spatial resolution (3 m) and wider swath (30 km), in HH polarization.

Table 3. GF-3 data collected in this paper.

Platform/Sensor Date of
Acquisition Imaging Mode Spatial

Resolution Polarization

GF-3/SAR 8 September 2018 UFS 3 m HH
GF-3/SAR 8 April 2019 UFS 3 m HH
GF-3/SAR 3 August 2019 UFS 3 m HH
GF-3/SAR 16 June 2020 UFS 3 m HH
GF-3/SAR 31 August 2020 UFS 3 m HH
GF-3/SAR 30 September 2020 UFS 3 m HH
GF-3/SAR 5 January 2021 UFS 3 m HH
GF-3/SAR 4 March 2021 UFS 3 m HH
GF-3/SAR 1 May 2021 UFS 3 m HH
GF-3/SAR 28 June 2021 UFS 3 m HH
GF-3/SAR 23 July 2021 UFS 3 m HH
GF-3/SAR 18 October 2021 UFS 3 m HH
GF-3/SAR 16 November 2021 UFS 3 m HH
GF-3/SAR 10 April 2022 UFS 3 m HH

A series of preprocessing procedures was performed on the single-look complex
images using PIE-SAR 6.3 software [24] by PIESAT Information Technology Co., Ltd. First
of all, the multilook module was applied to improve the quality of the single-look SAR
image at the L1A processing level. Next, the enhanced frost filter, with a window size of
3 by 3 and damping ratio of 1, was applied to reduce the speckle noise. In addition, the
geocoded terrain correction (GTC) module was implemented by using a DEM map around
the study area. Finally, radiometric calibration was conducted to convert the DN value of
the pixel into the normalized radar cross section (NRCS).

The overall preprocessing procedure was drawn in Figure 3.
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2.3. Methodology
2.3.1. Feature Extraction

Four kinds of features were extracted to discriminate between different types of
land cover in the study area: spectral features, vegetation indexes, a water index and a
radar backscattering coefficient. Four bands of GF-2 data were selected as the spectral
features: blue, green, red and NIR. The normalized difference vegetation index (NDVI) and
the enhanced vegetation index (EVI) served as the vegetation indexes. The normalized
difference water index (NDWI) is the water index in this investigation. These indexes are
defined as follows [25,26]:

NDVI =
ρNIR − ρred
ρNIR + ρred

(1)

EVI = 2.5 × ρNIR − ρred
ρNIR + 6ρred − 7.5ρblue + 1

(2)

NDWI =
ρgreen − ρNIR

ρgreen + ρNIR
(3)

where ρ denotes the reflectance in different spectral bands: NIR, red, green or blue.
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The NRCS, extracted from the calibrated GF-3 SAR image, on the other hand, can
be used as the measurement of the radar backscattering from targets on the ground. The
following equation [27] demonstrates the extraction of NRCS (σ0

dB) in the GF-3 product
of L1A.

σ0
dB = 10 × lg

[
PI(Quali f yValue/32767)2

]
− KdB (4)

where PI = I2 + Q2 and I and Q are the real and imaginary parts of the GF-3 SAR
data, respectively, in the product of L1A. The QualifyValue and KdB, on the other hand,
are constants that can be found in the field of <QualifyValue> and <CalibrationConst>,
respectively, in the *.meta.xml file of the GF-3 L1A product.

2.3.2. CART Method

The CART algorithm is able to divide n-dimensional space into nonoverlapping
rectangles through recursion [28,29]. Let xi be an independent variable; when xi = ui,
the n-dimensional space is divided into two parts. Some points satisfy xi ≤ ui, and the
others satisfy xi > ui. For a discontinuous variable, there are only two values for the
attribute value: equal or not equal. In the processing of recursion, these two parts reselect
an attribute to a partition until the entire n-dimensional space is divided. Attributes with
minimum Gini coefficient values are used as partition indexes. For a data set D, the Gini
coefficient is defined as follows:

Gini(D) = 1 − ∑k pk
2 (5)

where k is the number of categories of samples and pk represents the probability that
a sample will be classified as category k. The Gini coefficient indicates the degree of
uncertainty that the samples in the data set belong to a certain category. The smaller the
Gini coefficient, the smaller the uncertainty of the sample category, the higher is the purity
of the sample, and thus the better the division effect is. If there is only one category in
sample set D, the Gini coefficient will be 0 and the uncertainty of the sample category will
be 0.

2.3.3. Evaluation Metrics

We use several widely adopted metrics [30,31], such as the producer’s accuracy (PA),
the user’s accuracy (UA), the overall accuracy (OA) and the Kappa coefficient (Kappa), to
quantitively assess the accuracy of the classification in this paper, based on the resulting
confusion matrix (Table 4)

PA =
Pj,j

∑n
i=1 Pi,j

(6)

UA =
Pi,i

∑n
j=1 Pi,j

(7)

OA =
∑n

i=1 Pi,i

T
(8)

Kappa =
T ∑n

i=1 Pi,i − ∑n
i=1(Pi· × P·i)

T2 − ∑n
i=1(Pi· × P·i)

(9)

where j is the jth category of the predicted results, i is the ith category of the validated
results, T is the overall number of samples, and Pi· and P·i are the sum of the samples in the
ith row and the ith column in the confusion matrix, respectively.
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Table 4. The confusion matrix.

Validated Results

Predicted
Results

Category 1 Category 2 . . . . . . Category N

Category 1 p11 p12 . . . . . . p1N
Category 2 p21 p22 . . . . . . . p2N

. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .
Category N pN1 pN2 . . . . . . . pNN

3. Results and Discussions
3.1. Spectral Feature Analysis

In the study area, the most common land cover types are vegetation, crops, bare soil
(Gobi), desert, river, building, road and other. First of all, we analyzed the spectral features
(Figure 4) of seven types of objects on the ground in the GF-2 multispectral image (Figure 5),
which was acquired on 24 May 2021.
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Figure 4. Mean reflectance of six types of samples extracted from GF-2 multispectral bands. Vegeta-
tion: land covered by vegetation; plastic film: land covered by plastic films; water: river, pool, lake,
etc.; bare soil: land with no covers; desert: the desert samples; cement roof: rooftop that is made up
of cement or similar materials; metal roof: rooftop that is made up of metal.

As shown in Figure 4, most of the samples are observed to have the highest reflectance
in the NIR band, except water, which is able to absorb the NIR radiation to an extreme
degree. It can be inferred that the water body can be identified by the reflectance of the NIR
band or by the NDWI index instead. In addition, the samples of the cement rooftop show
stronger reflectance in all of the four visible bands other than that of the metal rooftop or the
land (either with covers or without). This interprets the rooftop of cement (mostly for the
residential housing) as a bright rectangle in either the RGB composite or the pseudocolored
imageries. The metal rooftop, on the other hand, shows the highest reflectance in the blue
band, causing the rooftop to often be painted as blue. This kind of rooftop is often related
to the factories or commercial buildings in Western China. In this paper, we introduce an
index that identifies the feature of colored metal rooftops in accordance with the spectral
reflectance (Figure 4), named the NDMRI (normalized difference metal rooftop index),
which is defined as follows:

NDMRI =
ρblue − ρred
ρblue + ρred

(10)

From Figure 5, we find that the water body and the buildings with the blue metal roof
are highlighted in the NDWI and NDMRI image, respectively. Moreover, we are able to



Sustainability 2023, 15, 2535 10 of 18

discriminate between the metal and cement rooftop by the difference of spectral reflectance
in red or green (see Figure 4). Accordingly, we analyze the ability of the feature extraction
of NDVI and EVI regarding the different land cover types: crops, plastic film, desert and
shrubs in the Gobi area (see Figure 6 for details).
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As shown in Figure 6, the NDVI index can be used to differentiate between land
covered with plastic film (a common agricultural technique in the spring in Western China,
serving to maintain the temperature and humidity of the soil below) and vegetation (crops).
This is because the vegetation tends to reflect more NIR radiation than the agricultural
plastic film. The EVI index, on the other hand, is shown as an effective indicator in
identifying shrubs (brighter spot) from the Gobi Desert background (dark area of vegetation-
free zone) (see the bottom left slice in Figure 6).

3.2. Radar Feature Analysis

The synthetic aperture radar (SAR) is a useful spaceborne sensor in various remote-
sensing application aspects, such as natural resource monitoring, crop production assess-
ment and ground object identification [32–35]. In this investigation, we analyze a set of
features by using GF-3 SAR images so as to enhance the robustness of the trained classifica-
tion model and diversify the type and number of remote-sensing data in the study area.

Figure 7 shows a pair of slices in the study area comparing GF-3 SAR imagery and
GF-2 MS imagery. Four types of samples are assigned letters A–D. It was shown that SAR
recognizes higher biomass (spot A) under the plastic film than the camera on board the
GF-2 satellite, because of the penetrating ability of the microwave from using the SAR
sensor. In other words, the electromagnetic waves of the SAR could detect the earth in
cases where a thin plastic film is placed. Spot B shows a higher NDVI feature index yet
is interpreted as a smaller NRCS (i.e., radar backscattering coefficient) value than that of
spot A, which shows a lower NDVI index. This example implies that SAR imagery is a
useful data set to identify land cover. Spots C and D, on the other hand, produced images
with lower backscattering samples, resulting from the small surface roughness of bare soil,
including those growing shrubbery.
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Figure 7. GF-3 SAR image of Dunkuotan Village (left), which was acquired on 28 June 2021 (in HH
polarization, 3 m), and the GF-2 multispectral image pair (right), which was acquired on 24 May 2021
(R/G/B: NIR/red/green or band 4/3/2). A: land covered with higher biomass (vegetation); B: land
covered with lower biomass (vegetation); C: bare soil covered by medium biomass (shrubs); D: bare
soil covered by lower biomass (Gobi).

We summarize the radar features of five typical types of samples extracted from
GF-3 SAR images (UFS) collected in this investigation (Table 5). As shown in Table 5, the
difference between typical land covers can be drawn by MVN features. The highest value
of NRCS in dB is observed for building, −1.33 dB on average. However, this statistic should
be recognized as the radar backscattering of the entire building rather than of the rooftop
only, which dominates the spectral reflectance of pixels in GF-2 multispectral images. The
reason is that the structural parameters, such as the shape and material of the rooftop, the
location of scattering center, etc., determine the NRCS of a building. The lowest value of
NRCS in dB, on the other hand, is observed for water, at −26.43 dB on average, with a small
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SDN of 1.23 dB. The desert is detected as a dark area in the C-band SAR images because
the dryer the object is, the lower the signal backscattered is. We can see that the averaged
NRCS for the desert is −21.69 dB, half of that of bare soil, which is covered by rock, clay
or salt crust in the study area. The vegetation, shown as bright spot in SAR images, is
identified as −7.95 dB of NRCS, resulting from the large biomass, as expected in summer.

Table 5. The statistical value of radar backscattering coefficient from GF-3 SAR images.

Features
Category

Vegetation Bare Soil Desert Water Building

Mean Value of NRCS (MVN, dB) −7.95 −12.88 −21.69 −26.43 −1.33
Standard Deviation of NRCS (SDN, dB) 1.3 1.79 5.88 1.23 6.78

To demonstrate the seasonally varied characteristics of NRCS in SAR images, we
produced a pseudo-colored SAR image (Figure 8) from multitemporal Sentinel-1 SAR data
by the GEE platform (https://earthengine.google.com/, accessed on 30 December 2022).
From Figure 8, we can see the image showed stronger brightness in the green band, which
is related to the SAR image acquired in June, when higher biomass is expected than that in
spring or winter. In addition, we can see the color changed among the cultivated lands in
the study area. This is because the seasonal variation of NRCS is observed. Moreover, many
extreme bright spots are displayed in Figure 8. These spots are related to the buildings that
intensively reflect the incidence electromagnetic waves. It can be inferred from Figure 8 that
SAR image bands can be used to improve the classification of land covers, in comparison
with using the spectral bands of an image alone.
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It is interpreted from Figure 8 that mainly three types of land cover can be classi-
fied. Region A, which was shown as green patches in Figure 8, exhibited the highest
backscattered power in June. This is because the shrubs in the Gobi Desert grow stronger
in the summer than in the winter (channel B) or fall (channel R). Accordingly, region B,
which is shown as bright yellow patches in Figure 8, is revealed as vegetation because of
high backscattering in both channel R (SAR image acquired in Feb) and channel G (SAR
images acquired in June). This is because the biomass of vegetation stays relatively high
from spring through summer in the study area. Region C is interpreted as the center of
Dunkuotan Village because the dense white spots are shown. This is because the residential
buildings are proved to backscatter high in the SAR image throughout the year; i.e., there is
no seasonal variance found between winter and summer for buildings in the SAR images.
SAR images are verified to improve the detectability of buildings and many types of land
cover, in comparison with when optical images are deployed only.

3.3. Classification Result of Decision Tree
3.3.1. Rule Generation of CART

In this paper, the CART Rule Generator toolbox embedded in ENVI 5.3 was set to
produce the rule for decision tree classification. Nine features discussed in this investigation,
i.e., four spectral features, NDVI, EVI, NDWI, NDMRI, plus the radar backscattering
coefficient, were input into the training procedure.

To obtain training samples for the classification and validation samples for an accuracy
assessment, 280 photos taken from an onsite investigation and recorded with coordinates,
along with the high-resolution GF-2 RGB composite images with varied acquisition time,
were applied to manually recognize samples. All samples were randomly divided as 70%
and 30% for training and validation, respectively.

3.3.2. Accuracy Assessment

Table 6 shows the classification accuracy of the common objects in spring/summer
(images from May/June 2021) of the study area computed by the confusion matrix. The
overall accuracy is 83.15% with a kappa coefficient of 0.803. In addition, we also found that
the OA is 82.56% with a kappa coefficient of 0.816 in the season of autumn/winter.

Table 6. Confusion matrix of classification results of the study area, based on CART.

Referenced
Category

Classified as

Vegetation Plastic
Film Water Bare Soil Desert Metal

Rooftop
Cement
Rooftop Total PA (%)

Vegetation 89 0 0 3 0 0 0 92 96.74
Plastic Film 1 147 0 13 0 11 9 181 81.21

Water 1 0 86 0 0 6 0 93 92.47
Bare Soil 8 13 0 148 12 0 12 193 76.68
Desert 0 8 0 18 96 0 1 123 78.05
Metal

Rooftop 0 0 5 1 0 85 0 91 93.41

Cement
Rooftop 0 8 0 18 5 0 104 135 77.03

Total 99 176 91 201 113 102 126 908 -
UA (%) 89.90 83.52 94.50 73.63 84.96 83.33 82.54 - 83.15

Overall accuracy (OA) = 83.15%. Kappa = 0.8030.

From the accuracy evaluation in Table 6, it is concluded that water has obtained the
highest classification accuracy of both PA (92.47%) and UA (94.50%). Vegetation and metal
rooftop observed good PA at 96.74% and 93.41%, respectively. The OA, however, declined
to 89.90% and 93.33% for vegetation and metal rooftop, respectively. The bare soil observed
the smallest classification accuracy both of PA (76.68%) and OA (73.63%), which is often
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incorrectly classified as the desert or the plastic film, because their spectral reflectance are
comparable (see Figure 4).

3.3.3. Land Cover Mapping of Dunkuotan Village

The automatic classification result is displayed in Figure 9 and is based on the decision
tree algorithm. We can see that there are many areas of land with plastic film cover detected.
The vegetation and bare soil were discriminated in accordance with the NDVI/EVI features.
Moreover, the buildings with a metal rooftop were correctly identified, which are at an
intersection or beside the main street of the village (at the center of Figure 9). Some of the
buildings with a cement rooftop, however, were wrongly classified as the plastic film on
the ground (at the bottom left of Figure 9) because of its extremely high spectral reflectance,
which is close to that of the rooftop of cement.
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3.4. Integrated Use of Optical and SAR Images for Land Cover Classification

The multispectral remote-sensing images, Gaofen-1/2 and Sentinel-2A/2B, for in-
stance, and SAR images (e.g., GF-3, Sentinel-1A/B, etc.) are widely applied remote-sensing
data sources in the classification of land cover and land use [36], especially for residence
area identification [37]. The spectral indexes from optical remote-sensing images such as
NDVI, NDWI and EVI can be served to discriminate between vegetated land and bare
soil. The radar features of SAR remote-sensing images, on the other hand, are suitable to
apply in the detection of buildings or residential regions because of the double-bounce
effect in SAR images (see the bright spots in Figure 8). In addition, the optical images can
be used in the classification of different types of rooftops on the basis of the difference
of reflectance between the metal and the cement rooftop, according to the NDMRI index,
which is proposed in this investigation. This is helpful when automatic workflow is applied
to distinguish the inhabitance in rural districts from the commercial regional center. This
scheme is extremely useful in the assessment of the sustainable development level among
the regional cities in Western China. It can be concluded that the integrated use of indexes
from optical and SAR images would enhance the robustness of classification for land cover
and land use when a high-resolution remote-sensing application is concerned.

4. Conclusions

Gaofen satellites enjoy the advantages of high temporal and comparably high spatial
resolution, where both optical and radar sensors are deployed. The GF-2 multispectral
images and GF-3 SAR images were used in this investigation to analyze the characteristics
of land cover in Yuli County, Xinjiang, China, by means of the CART algorithm of a
decision tree. The overall classification accuracy of 83.15% with a kappa coefficient of
0.803 was observed for the study area. The vegetation, water, land with plastic film, bare
soil, desert and buildings with metal or cement rooftops were classified accordingly. The
DT-based classification for Gaofen satellite images proposed in this paper can be used in
the reconnaissance and analysis of human activities in the sparsely populated zones of
Western China to promote the effectiveness and accuracy of a routine administrative and
supervised workflow.
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Appendix A

All the abbreviations in this paper are listed below, in Table A1.

Table A1. The meaning of abbreviations used in this investigation.

Abbreviation Full Term Meaning

AWS Amazon Web Services
The cloud platform that was developed
by Amazon to handle remote-sensing big
data.

CART Classification and regression tree One of the decision tree classification
algorithms.

CCD Charge coupled device The optical sensors for remote-sensing
image acquisition.

CHEOS China’s High-Resolution Earth
Observation System

A Chinese earth observation system for
the acquisition of high-resolution
remote-sensing images.

CODE-DE Copernicus Data and Exploitation
Platform-DE

The cloud platform that was developed
by Germany to handle remote-sensing
big data.

DEM Digital elevation model A model that demonstrates the elevation
of the Earth’s surface.

DN Digital number The pixel value in a remote-sensing
image.

DT Decision tree One of the machine-learning algorithms.

ENVI Environment for visualizing images

The name of a type of software for
remote-sensing image analysis, which
was developed by Harris Corporation in
Melbourne, Florida, USA.

EVI Enhanced vegetation index The index that demonstrates vegetation
in optical remote-sensing images.

FLAASH Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes

The atmospheric correction algorithm
model.

GEE Google Earth Engine

The platform used to process
remote-sensing data online, which was
developed by Google in the United
States.

GF GaoFen The name of a Chinese high-resolution
satellite.

GIS geographic information system The computer program used for the
analysis of spatial information.

GPS global navigation and positioning The global navigation and positioning
developed by the United States.

GTC Geocoded terrain correction One of the geo-correction methods for
SAR remote-sensing images.

Kappa Kappa coefficient A value to quantitively assess the
accuracy of a classification.

MS Multispectral A type of optical remote-sensing image.
MVN Mean value of NRCS A statistic value that demonstrates the

mean value of an NRCS.

NDMRI Normalized difference metal rooftop
index

The index that demonstrates metal
rooftops in optical remote-sensing
images.

NDVI Normalized difference vegetation
index

The index that demonstrates vegetation
in optical remote-sensing images.

NDWI Normalized difference water index The index that demonstrates water in
optical remote-sensing images.

NEX NASA Earth Exchange
The cloud platform that was developed
by NASA in the United States to handle
remote-sensing big data.

NIR Near infrared The name for a specific spectrum.

NRCS Normalized radar cross section

The parameter that is used to depict the
capability of a target on the Earth to
reflect the incidence of electromagnetic
waves of radar.

OA Overall accuracy The statistical parameter that is used to
demonstrate classification accuracy.

PA Producer’s accuracy The statistical parameter that is used to
demonstrate the classification accuracy.

PAN Panchromatic A type of optical remote-sensing image.

PIE Pixel information expert
The cloud platform that was developed
by PIESAT Group Inc. in China to handle
remote-sensing big data.
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Table A1. Cont.

Abbreviation Full Term Meaning

PIE-SAR /

The name of a type of software for SAR
image processing, which was
developed by PIESAT Information
Technology Co., Ltd., in China.

PMS Panchromatic and multispectral A type of optical remote-sensing sensor.

QPSI Quad-Polarization Strip I One of the image modes of GF-3 SAR
sensors.

RPC Rational polynomial coefficient A commonly used geo-correction
model.

RS Remote sensing A technique for spatial information
acquisition.

SAR Synthetic aperture radar
An active microwave sensor that is able
to acquire high-resolution
remote-sensing images.

SDN Standard deviation of NRCS A statistical value that demonstrates
the variance of an NRCS.

UA User’s accuracy The statistical parameter that is used to
demonstrate classification accuracy.

UFS Ultrafine strip One of the image modes of GF-3 SAR
sensors.

WFV Wide field of view A type of optical remote-sensing sensor.
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