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Abstract: The groundwater contained in aquifers is among the most important water supply re-
sources, especially in semi-arid and arid regions worldwide. This study aims to evaluate and compare
the prediction capability of two well–known models, support vector machine (SVM) and adaptive
neuro-fuzzy inference system (ANFIS), combined with a genetic algorithm (GA), invasive weed
optimization (IWO), and teaching–learning-based optimization (TLBO) algorithms in groundwater
potential mapping (GPM) the Azraq Basin in Jordan. The hybridization of the SVM and ANFIS
models with the GA, IWO, and TLBO algorithms results in six models: SVM–GA, SVM–IWO, SVM–
TLBO, ANFIS–GA, ANFIS–IWO, and ANFIS–TLBO. A database consisting of well data containing
464 wells with 12 predictive factors was developed for the groundwater potential mapping (GPM)
of the study area. Of the 464 well locations, 70% (325 locations) were assigned for the training set
and the rest (139 locations) for the validation set. The correlation between the 12 predictive factors
and the well locations is analyzed using the frequency ratio (FR) statistical model. An area under
receiver operating characteristic (AUROC) curve was used to evaluate and compare the models.
According to the results, the SVM-based hybrid models outperformed other ANFIS hybrid models in
the learning (training) and validation phases. The SVM–GA and SVM–TLBO hybrid models showed
AUROC values of 0.984 and 0.971, respectively, in the training and validation phases. Moreover, the
ANFIS–GA and ANFIS–TLBO hybrid models showed an AUROC of 0.979 and 0.984 in the training
phase and an AUROC of 0.973 and 0.984 in the validation phase, respectively. The SVM–IWO and
ANFIS–IWO hybrid models showed the lowest AUROC. This study demonstrated the more efficient
results of the SVM-based hybrid models in comparison with the ANFIS-based hybrid models in
terms of accuracy and modeling speed.

Keywords: azraq basin; Jordan; groundwater potential mapping; ANFIS; SVM; GA; TLBO; IWO

1. Introduction

Water is essential for the survival and livelihood of all living beings on the earth.
Groundwater is the most efficient and sustainable source of water that is not affected by the
fluctuation in climate conditions of a particular area. About 1.5 billion people worldwide
depend upon groundwater as the only source of clean drinking water, and about 38% of
cultivated lands rely on groundwater for irrigation [1,2]. The importance of groundwater as
the water source for wide communities encourages the regular monitoring and evaluation
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of groundwater quantity and quality and sustainable management and utilization, mainly
in arid and semi-arid regions [3]. Groundwater quality can be studied through the chemical
analysis of the water available from wells, aquifers, ponds, and sometimes streams, while
quantity can be estimated by measuring the water table and saturated zone thickness. After
industrialization, the multifold increment in population has caused excess groundwater
utilization, which leads to scarcity, especially in major parts of developing countries with
arid climatic conditions. Thus, the use of the advanced technology of remote sensing
(RS) and geographic information systems (GIS) is being initiated for the identification
of groundwater potential zones through mapping; several studies have been performed
worldwide and are still being studied using advanced statistical tools [4–10]. Satellite-based
RS techniques allow for more extensive ground surface coverage than possible through
terrestrial observations [11]. They provide extensive, neutral, accurate, and readily available
information about the location and the dynamics of changes worldwide [12]. On the other
hand, the abilities of GIS help with the large size of geospatial data processing, and the
delivery of reliable information using query-based calculation becomes easier [13].

Groundwater occurrence or availability depends on the role of various controlling
factors, mainly the recharge, which is influenced by several important factors such as
rainfall, geology, drainage density, lithology, soil texture, slope, and elevation [14–16].
Different conditioning factors carry different properties and help identify the potential
groundwater locations. The most important factor is rainfall; the excessive water stored
in the rainy season helps recharge groundwater. A drainage system is an indicator of
shallow groundwater availability; in a drainage basin’s periphery, high permeability is
found [17]. Other informative indicators are faults and fractures found in rocks; hence,
lithology is counted as a conditioning factor. A region’s soil also determines groundwater
availability; the more permeable soil has more chances of groundwater availability. The
shape, grain size, arrangement, porosity, void ratio, and degree of saturation are some
of the most influential factors determining the permeability of the soil [18]. The slope of
the surface directly influences the infiltration process of surface water; a steep slope is
less helpful compared with a flat surface for water infiltration. The flat surface provides
optimal time for the surface waters to infiltrate completely before the evaporation of the
remaining water. The geology of an area provides a descriptive layout of soil and rock
layers, including their porosity and permeability properties. Geomorphology (a combined
dataset comprising different geomorphic units), on the other hand, geomorphological units
(single units of geomorphology), or geomorphological proxies (data produced by using
either geomorphology or geomorphological units) help us understand the evolution of
a landform, which is further useful in understanding porous and permeable zones [19].
Another essential controlling factor is the land use/landcover dataset, which provides
different categories/classes of it. The important classes in this factor are vegetation cover,
water bodies, forests, and settlements. Land use/landcover affects the size and volume of
groundwater and surface water drastically by influencing the infiltration process, surface
runoff, and groundwater utilization. Studies have found more success in delineating
the groundwater potential zone (GPZ) when researchers use knowledge-driven factors,
including different controlling factors, as layers (input datasets) and analyze them through
RS and GIS tools to perform analysis for the mapping of GPZs. The analysis methods
for mapping are varied, ranging from bivariate statistical methods to machine learning
(artificial neural networks) and multicriteria decision-making models (analytical hierarchy
processes, evidential belief function, TOPSIS, VIKOR, etc.) [20–26].

The simplest prediction models are bivariate statistical methods such as the frequency
ratio (FR) model, which correlates the predictive variables with well locations. Jothibasu A.
and Anbazhagan S. [26] used this model to map groundwater potential zones in Tamil Nadu
with an area under the receiver operating characteristic curve (AUROC) equal to 0.789.
Falah F. et al. [25] compared three statistical models, namely, frequency ratio (FR), statistical
index (SI), and weight-of-evidence (WOE), to develop a groundwater spring potential map
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in Iran. The results showed that the accuracy of SI was the highest (AUROC = 0.854), while
the FR and WOE accuracies were 0.837 and 0.763, respectively.

MCDM uses different algorithms, such as AHP, which are also widely used to map
groundwater potential zones. Adiat K.A.N. et al. [20,21] used the MCDM-AHP model to
predict GPZs in part of Malaysia. The prediction accuracy ranged between 80 and 81.25%.
To the same extent, Akinlalu A.A. et al. [22] used the MCDM-AHP model to map GPZs in
Nigeria with an accuracy of 70%.

Using optimization algorithms with MCDM can enhance prediction accuracy. Using
random forest (RF) with MCDM can yield high accuracy, such as AUROC = 0.9572 in [23].
Duan H. et al. [24] combined MCDM with the C5.0 algorithm to predict GPZs in southwest
China with more than 90% accuracy.

In search of better model performance, several studies have been accomplished
by utilizing two or more models and their ensembles to compare them for mapping
GPZs [3,23,27,28]. Furthermore, many studies have been conducted using an artificial
neural network (ANN) and its advanced form, the adaptive neuro-fuzzy inference system
(ANFIS), for the modeling of hydrological systems and the prediction of various haz-
ards [29]. With a self-learning ability and decisions based on fuzzy logic, ANFIS produces
a more consistent structure for finding a better solution [30,31]. The ANFIS works more
accurately than fuzzy logic or ANN models. ANFIS architecture can be presented by two
fuzzy if–then rules based on the first order of the Sugeno model [32]. Many studies have
been completed by using ANFIS and other advanced models to make ensembles for GPZ
mapping, but very few of them have compared ANFIS-based ensembles with any other
machine learning-based ensemble models [4,27,33,34]. Hence, this study focused on filling
this research gap and conducting such an analysis.

Machine learning models are used to predict GPZs. These models can be used alone
or with optimization algorithms. Lee S. et al. [28] compared the performance of an ar-
tificial neural network (ANN) and a support vector machine (SVM) in predicting GPZs
in Boryeong City in Korea and found that the accuracies (AUROC) of the two models
were 0.8357 and 0.8083, respectively. Combining optimization algorithms with machine
learning models can enhance the prediction accuracy of these models. Khosravi K. et al. [27]
combined ANFIS with five algorithms (invasive weed optimization (IWO), differential
evolution (DE), firefly algorithm (FA), particle swarm optimization (PSO), and the bees
algorithm (BA)) to map GPZs in western Iran and found that ANFIS-DE provided the high-
est accuracy (AUROC = 0.875). At the same time, the least accurate model was ANFIS-BA,
with an AUROC equal to 0.839.

Other environmental applications of machine learning models using these models
to predict groundwater levels can be found in [29,33,34]. Another application is using
machine learning models to predict floods, as in [30,31], where the models predicted flood
susceptibility maps with AUROC of or more than 0.8.

This study will compare the GPZ prediction capabilities of two machine learning
models, namely, support vector machine (SVM) and adaptive neuro-fuzzy inference sys-
tem (ANFIS), when combined with three optimizing algorithms: teaching–learning-based
optimization (TLBO), genetic algorithm (GA), and invasive weed optimization (IWO). The
combination will result in six models: ANFIS-TLBO, ANFIS-GA, ANFIS-IWO, SVM-TLBO,
SVM-GA, and SVM-IWO. A total of 12 predictive variables were used in the prediction,
including geologic, topographic, geomorphologic, and climatic factors. First, the predictive
variables were classified into classes, the frequency ratio (FR) of each class was calculated,
and the probability weight for each class was assigned. The study’s next step was intro-
ducing the predictive variables’ classes and their weights into the models in two sets: a
training set and a validation (test) set. In the final step, the prediction capabilities of the six
models were compared and evaluated using runtime, mean square error (MSE), root mean
square error (RMSE), and area under the receiver operating characteristic curve (AUROC).
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2. Study Area and Data
2.1. Study Area

The study area covers about 60% of the central parts of the Azraq Basin in central
Jordan. Azraq Basin is one of Jordan’s major groundwater basins, covering an area of about
12,000 km2. In total, 94% of the Azraq Basin area is within Jordan, 5% is in Syria to the
north, and about 1% is in Saudi Arabia to the south (Figure 1). The study area selected is
in the central part of the basin. In this area, most of the groundwater-utilizing wells are
located in the basin’s populated area, with about 60,000 people living in 32 settlements [35].
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Figure 1. Location map of the study area.

The Azraq Basin is part of the arid lands of Jordan that covers more than 80% of
the country’s area. Like most of Jordan’s arid land, the climate of the Azraq Basin is
characterized by hot and dry summers and cold and wet winters, with the rainfall season
extending between October and May. The annual rainfall in the basin ranges from less
than 50 mm in the southeastern parts to more than 500 mm in the northwestern parts [35].
Groundwater in the Azraq Basin is found in three aquifer systems: a shallow system
in alluvium, basalt, and Um-Rijam (B4) geologic formations; a middle aquifer system
found in upper cretaceous calcareous limestone formations (B2/A7); and a deep aquifer
system found in a deep sandstone formation. The recharge for these aquifer systems varies
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from local recharge, mainly to the upper aquifer, to recharge from the northern highlands
(Jabal Al-Arab in Syria), the western highlands of Amman and Madaba, and the southern
highlands of Karak and Tafila, mainly to the middle and deep aquifers [35,36].

2.2. Dataset

A total of 12 factors affecting groundwater potential mapping (GPM) are considered
in this study, including elevation, slope, aspect, length of the slope, plan curvature, soil
type, geology, lithology, rainfall, distance from drainage, topographic wetness index (TWI),
and stream power index (SPI)). In the GIS environment, these variables were classified into
several classes. The topography-dependent variables, namely, elevation, slope, length of
the slope, aspect, and plan curvature, were used for the GPM of the Azraq Basin. Land
elevation and topography affect the rate of water infiltration into the ground. The high
elevation of a region decreases the infiltration rate and causes an increase in the runoff [37];
in contrast, with decreasing elevation, further surface water infiltrates the ground [37].

Furthermore, the elevation of a region influences the direction and velocity of surface
runoff. An elevation map of the study area was prepared in a GIS environment in five
classes based on the digital elevation model (DEM) with a cell size of 30 m. The minimum
and maximum elevations of the study area are 518 and 977 m, respectively. These elevation
differences caused a surface slope leading to surface water infiltration and the distribution
of groundwater [19,38]. The presence of a reliable groundwater aquifer is largely dependent
on the land slope [39]. A slope map of the study area was prepared in seven classes based
on the DEM. Using the DEM, an aspect map was prepared in GIS in nine classes of cardinal,
ordinal, and flat directions.

The lands on the northern and eastern slopes receive less solar radiation than those
on the southern and western slopes. This affects the vegetation in the northern and
eastern slopes, so denser vegetation in these regions causes an increase in the infiltration
of runoffs and the further recharging of the groundwater. Surface curvature plays a key
role in the environmental analysis, runoff, and infiltration rates. Accordingly, the plan
curvature map was prepared in three classes, convex, concave, and flat, based on the
DEM. The topographic wetness index (TWI) is another factor used to find groundwater
resource potential. According to this index, with an increasing slope, the available moisture
decreases due to the more rapid inaccessibility of surface water. In contrast, more moisture
is available in regions with a lower slope. This index represents the relationship between
the surface slope and moisture content on the ground surface. The TWI is obtained from
Equation (1) [40]:

TWI = ln
(

A
tan α

)
(1)

where A is the cumulative upslope area (m2), and a is the slope gradient (in degrees). The
TWI map was prepared and classified into three classes.

The stream power index (SPI) is another topographic index related to the stream
weight and local ground slope. The SPI characterizes the potential of flowing water to
cause water movement and soil erosion. It is proportional to the accumulation area and
local ground slope. The SPI can be calculated using Equation (2) [40]:

SPI = A tan α (2)

where A is the cumulative upslope area (m2), and a is the slope gradient (in degrees). The
SPI map was prepared and classified into four classes.

Soil texture is a key factor influencing the water infiltration rate [41,42]. The soil
texture significantly affects the infiltration rate’s increasing and decreasing rates. A soil
map of the study area was prepared in three classes. On the other hand, there are different
geological formations with different porosities depending on the type of rocks and their
geological ages [43]. The infiltration rate and recharge of the groundwater increase with
increasing porosity. A lithological map of the study area was prepared in four classes using
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1:1000 maps developed by the Natural Resources Authority (NRA) of Jordan (Table 1).
Geology is also important since it influences surface runoff and surface geomorphology
and controls infiltration to the subsurface groundwater aquifers [44]. Table 2 lists the main
surface geological formations in the study area.

Table 1. Lithological units of the study area (NRA open files).

Lithology Type

Group 1 Alluvium
Group 2 Mudflat
Group 3 Basalt
Group 4 Volcano

Table 2. Geological formation units outcropped in the study area.

Geology Type

Group 1 Different basalt flows in northeast Jordan
Group 2 Pelitic sediments in mud flats
Group 3 Chalk, marl bituminous limestone, phosphorite
Group 4 Limestone with chert layers
Group 2 Terrestrial, fluviatile, and lacustrine sediments
Group 3 Fluviatile gravel lacustrine limestone
Group 4 Limestone with chert concretions
Group 8 Sandstone, conglomerate, marland evaporate
Group 9 Other

Drainage lines can be considered the weak zones of formations developed by dissolu-
tion and turned into today’s shape. The drainage lines are inversely correlated with the
water penetration rate. The density of the drainage network represents water transfer and
a reduced infiltration rate. The distance to the watercourse map was prepared based on the
digital layer of the drainage network. Figure 2 shows the classes of the 12 predictive factors.
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3. Methodology

This study used hybrid models consisting of the two well-known machine learning
algorithms, SVM and ANFIS, in combination with the IWO, GA, and TLBO models for
GPM. Figure 3 shows the adapted research methodology flowchart. Once the factors
effective for GPM and inventory mapping were prepared, the FR method was used for
correlation analysis between each class of factor and the well locations. The six hybrid
models were then employed to produce the groundwater potential maps. In the final step,
all model outputs were evaluated using MSE and AUROC.
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3.1. Support Vector Machine (SVM)

SVM is a widely used machine learning algorithm for solving classification and
regression problems [45]. This algorithm searches for special linear models in which the
margin of the hyper-plane is maximized, consequently maximizing the separation between
the considered classes [46]. The training points closest to the maximum-margin hyperplane
are referred to as the support vectors and are used to identify the boundaries between the
classes [46]. Assuming the training points are selected using Equation (3),

D = {(xi, yi)}n
i=1 (3)

where xi is the input vector, yi is the ith label associated with each training sample, and n
is the total number of samples. In case the data are linearly separable, the classification
function is then expressed by Equation (4) [46]:

y = sign

(
n

∑
i=1

yiai(X, Xi) + b

)
(4)
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where parameters a and b determine the hyperplane equation. However, if the data are not
linearly separable, Equation (4) is transformed into Equation (5), as follows [46]:

y = sign

(
n

∑
i=1

yiaiK(X, Xi) + b

)
(5)

where K(X, Xi) is the kernel function transferring the training samples to a higher-dimension
space where the data can be linearly separated [46]. The RBF kernel has been frequently
reported in the literature as the best kernel function [47–49]. Hence, the present study used
this kernel for modeling. The equation used for the RBF kernel is presented in Equation (6).

K(x, y) = exp
(
−γ‖x− y‖2

)
(6)

Finding an optimal value for γ in the RBF kernel is very important in achieving an
efficient SVM. Moreover, the error function for the SVM model is defined in Equation (7) [46]:

1
2

wTw + C
N

∑
i=1

(ξi + ξ∗i ) (7)

In Equation (7), C, w, and ξ are the regularization parameters, the weight vector, and
the bias, respectively. Finding the appropriate value for C is another important factor in
achieving a reliable SVM model. Hence, the present study employed the GA, IWO, and
TLBO algorithms to find the proper values for C and γ.

3.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Proposed in 1993 by Jang et al. [50], the ANFIS combines neural networks and fuzzy
logic to increase the efficiency of models. This model uses a set of input–output data to
build an inference system. The ANFIS has five layers: a fuzzification layer, a product
layer, a normalization layer, a defuzzification layer, and a single summation node [50].
In the training stage, the input values approach the real ones as the membership degree
parameters are modified based on an acceptable error level [50].

The ANFIS employs neural networks and fuzzy logic to design the nonlinear mapping
between input and output spaces. As an advantage, this algorithm allows for the extraction
of fuzzy rules from numerical information or expert knowledge and creates a rule base.
The learning rule in this method is based on the error backpropagation algorithm, aimed at
minimizing the mean squared error between the network output and the real output.

Achieving a suitable model using the ANFIS depends on how the membership func-
tion and the FIS parameters are determined, for which various methods have been proposed
in different studies [31,51–53]. Metaheuristic algorithms are among the most widely used
methods in this regard. In order to incorporate these algorithms in the structure of the
ANFIS model, the initial FIS is built based on the considered dataset. Subsequently, the
metaheuristic algorithms are used to find the optimal values for the considered parameters
based on an objective function, for which most studies use RMSE [31,51,52]: The main
objective is to minimize the RMSE function. The termination criterion is commonly based
on the number of iterations. Afterward, the optimal output values for the ANFIS model
are calculated.

3.3. Teaching–Learning-Based Optimization (TLBO)

TLBO is a metaheuristic algorithm inspired by classroom teaching and learning pro-
cesses [54]. Similar to students expanding their knowledge by learning from a teacher
or exchanging information with other students, this algorithm attempts to improve the
solutions in two phases, namely, the teacher and learner phases [54]. The problem includes
np students taking D different courses, corresponding to a total of np × D feasible solu-
tions (dimensions), where np denotes the population size, and D is the number of design
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variables. The solutions are randomly initialized, and then, the teacher and learner phases
are executed.

3.3.1. Teacher Phase

In the first phase, teachers attempt to transfer their knowledge to the students to raise
the students’ knowledge level to theirs. Mi represents the average score of students in the
ith position. The teachers attempt to increase this score through their skills and knowledge.
The new scores are calculated as follows [54]:

Xnew,i = Xold,i + ri(Mnew − TF Mi) (8)

where ri is a random number in the range (0, 1), and TF is the teaching factor. The solutions
move toward the best feasible solution and improves the students’ position. The current
solution is replaced by the new solution if superior (i.e., its objective function is better).

3.3.2. Learner Phase

The students can gain new knowledge by exchanging information through group
discussions, presentations, etc. In this phase, the following Algorithm 1 is executed [54]:

Algorithm 1

For i = 1 : Pn
Randomly select two learners Xi and Xj, where i 6= j

If f (Xi) < f
(

Xj

)
Xnew,i = Xold,i + ri

(
Xi − Xj

)
Else
Xnew,i = Xold,i + ri

(
Xj − Xi

)
End If
End For
Accept Xnew if it gives a better function value.

Two solutions are randomly selected in this phase, and the better solution improves
the other. The new solution replaces the current solution if superior.

The steps taken in the TLBO algorithm are as follows:
Step 1: Initialize the problem parameters, such as the number of iterations.
Step 2: Initialize the solutions randomly.
Step 3: Improve the solutions by executing the teacher phase.
Step 4: Improve the solutions by executing the learner phase.
Step 5: Repeat Steps 3 to 5. The final solutions are ultimately obtained.

3.4. Genetic Algorithm (GA)

A genetic algorithm (GA) is a heuristic algorithm inspired by genetic science for solving
optimization problems [55]. The algorithm starts with an initial population composed of a
number of chromosomes (solutions), each comprising a number of genes (variables). This
population is randomly initialized in the first iteration of the algorithm. A new generation
of solutions is then produced by selecting and combining the solutions with a higher chance
of producing better solutions. This process uses three operators: selection, crossover, and
mutation [55].

3.4.1. Selection

The selection operator assesses the chromosomes (solutions) using a fitness function
and selects the better ones as the parents for producing the next generation [55].
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3.4.2. Crossover

In this stage, two new chromosomes are produced from the parent chromosomes
through crossover. Different methods are available for the crossover, the simplest of which
is the single-point crossover at which the parent chromosomes swap their chromosomes on
one side of the selected point [55].

3.4.3. Mutation

In this stage, a few genes are randomly altered. Although the mutation probability
is low, this stage is important, as it increases the population diversity, preventing the
algorithm from being trapped in local optima [55].

3.5. Invasive Weed Optimization (IWO)

Inspired by weeds in nature, IWO is a metaheuristic algorithm used in optimization
problems [56]. The main four steps in this algorithm are as follows:

Initialization: The initial solutions are dispersed with random positions across the
d-dimensional search space.

Reproduction: The population members can produce seeds, the number of which is
calculated based on Equation (9) [56]:

weedn =
f − fmin

fmax − fmin
(smax − smin) + smin (9)

where f is the fitness value of a considered member (weed), fmax and fmin denote the
maximum and minimum values for the population fitness, and smax and smin are the
maximum and minimum values of a weed, respectively. Based on this formula, smaller
fitness values for a weed indicate the weed’s ability to produce a smaller number of seeds
and vice versa [56].

Spatial dispersal: The produced seeds are dispersed randomly based on a normal
distribution, with zero mean and variable variance in the d-dimensional space [56]. This
allows the seeds to be dispersed randomly but remain around the parent seeds. The
standard deviation in each iteration is calculated based on Equation (10) [56]:

σiter =
(itermax − iter)n

(itermax)
n

(
σinitial − σf inal

)
+ σf inal (10)

where itermax represents the iteration threshold, and n indicates the nonlinear modula-
tion index. This formula has been designed to reduce the standard deviation by each
iteration, consequently allowing the fitter weeds to gather closer and eliminate the
inappropriate ones.

Competitive exclusion: Since the population size rapidly increases through reproduc-
tion, the maximum size, pmax, is reached after a few iterations, in which case, a competitive
mechanism is applied to all members (both the initial members and those produced through
reproduction) to eliminate those with a low fitness value and let the better members re-
main [56]. In fact, by eliminating the weak members, this mechanism provides a chance
for the better members to produce new seeds and, therefore, produce better solutions for
the problem. This cycle continues until the maximum number of iterations is reached or
another termination criterion is met.

The algorithm can be summarized in six steps, as follows [56]:
Step 1: Initial weeds are initialized randomly.
Step 2: The fitness of population members is evaluated.
Step 3: Each population member produces a number of seeds so those with a higher

fitness can reproduce more.
Step 4: The seeds are appropriately dispersed in the problem’s search space based on

the positions obtained from Equation (10) (spatial dispersal).
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Step 5: Once the population size reaches its maximum value, pmax, those with a lower
fitness are eliminated so that the better members produce new seeds (competitive exclusion).

Step 6: Steps 2 to 6 are repeated in case the termination criterion is not reached;
otherwise, the member with the highest fitness is selected as the optimal solution, and the
algorithm terminates.

3.6. Statistical Analysis

The first step of statistical analysis is finding the correlation between the predictive
factors’ classes and the location of the wells. Frequency ratio (FR) statistical analysis was
used to find the quantitative correlation between the defined classes of the 12 predictive
factors and the wells’ locations [47].

The second stage of statistical analysis is assessing the goodness of the proposed
model. There are different statistical methods to evaluate a model’s performance. This
study used mean square error (MSE) and root mean square error (RMSE).

The other method used to assess a model’s performance is the receiver operating
characteristic (ROC) curve. As the ROC curve is closer to the upper left corner in this
method, the model performance is higher. Statistically, the area under the ROC curve is
evaluated to compare the performance of a set of models [47].

4. Results
4.1. Comparison of Class Factors’ Correlation with Well Locations

The FR analysis found the probability correlation between the 12 predictive factors’
classes and the well locations. The results of this analysis are listed in Table 3. Accordingly,
the greatest correlations came from heights below 571 m, the flat class of the aspect factor,
0–1.3° slopes, the flat class of the plane curvature factor, distances less than 200 m from
drainage, TWIs above 14.55, the group 1 class of the lithology factor, the group 2 class of
the geology factor, precipitation between 50 and 100 milliliters, sandy loam soil, SPI values
above 300, and 0–0.43 lengths of the slope.

Table 3. The correlation analysis by FR.

Conditioning Factors Classes No. of Pixels No. of Wells FR

Attitude (m) <571 2,339,888 312 3.09
571–642 2,438,111 3 0.03
642–725 1,166,062 1 0.02
725–819 969,833 8 0.19

819< 666,794 3 0.10
Aspect Flat 1,621,144 278 3.98

North 788,156 4 0.12
Northeast 848,123 7 0.19

East 868,080 9 0.24
Southeast 775,815 1 0.03

South 770,679 12 0.36
Southwest 651,062 6 0.21

West 635,448 5 0.18
Northwest 622,181 5 0.19

Slope 0–1.3 3,532,823 296 1.94
1.3–3.2 2,713,767 23 0.20
3.2–5.9 1,057,097 7 0.15

5.9< 277,001 1 0.08
Plan Curve Convex 2,432,776 24 0.23

Flat 2,851,341 288 2.34
concave 2,296,571 15 0.15

Distance from 0–200 2,576,117 147 1.32
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Table 3. Cont.

Conditioning Factors Classes No. of Pixels No. of Wells FR

Drainage (m) 200–400 2,055,061 101 1.14
400–600 1,456,195 47 0.75
600–900 1,085,977 20 0.43

900< 407,338 12 0.68
TWI 0–0.01 2,277,965 12 0.12

0.01–11.45 2,379,073 28 0.27
11.45–14.55 1,843,491 37 0.47

14.55< 1,080,159 250 5.37
Lithology Group 1 426,318 74 4.02

Group 2 6,265,017 215 0.80
Group 3 888,580 38 0.99
Group 4 773 0 0

Geology Group 1 865,369 31 0.83
Group 2 153,348 11 1.66
Group 3 135,175 1 0.17
Group 4 2,430,691 12 0.11
Group 5 1,772,489 168 2.20
Group 6 1,863,636 97 1.21
Group 7 121,284 7 1.34
Group 8 236,275 0 0

Other 2421 0 0
Rainfall (mm) 50–100 6,110,110 326 1.24

150–200 59,511 0 0
100–150 628,850 1 0.04

50> 782,217 0 0
Soil Type Loam 1,499,445 48 0.74

Sandy Loam 6,042,993 279 1.07
Silty Clay

Loam 38,250 0 0

SPI 0–100 2,337,509 12 0.12
100–200 941,212 15 0.37
200–300 484,199 5 0.24

300< 3,817,768 295 1.79
LS 0–0.43 7,511,462 326 1.01

0.43–1.96 592,77 1 0.39
1.96–4.78 8442 0 0

4.78< 1507 0 0

4.2. Comparison of the Runtimes of the Algorithms

The runtimes of the SVM-GA, SVM-IWO, and SVM-TLBO models were reported at
280, 60, and 4896 s, respectively, for 100 iterations. Therefore, SVM-IWO and SVM-TLBO
were identified as the fastest and the slowest algorithms, respectively. Moreover, the
runtimes of the ANFIS-GA, ANFIS-IWO, and ANFIS-TLBO models were reported to be 92,
56, and 23992 s, respectively. Among the hybrid algorithms based on the ANFIS, ANFIS-
GA was the fastest model, whereas ANFIS-TLBO was the slowest model. In addition, the
SVM-IWO and ANFIS-IWO algorithms had the shortest runtimes, whereas SVM-TLBO
and ANFIS-TLBO had the longest runtimes.

4.3. Comparison of the Accuracy of the Algorithms

During the execution of the ANFIS-based hybrid algorithms, measures such as MSE,
RMSE, mean, and standard deviation were calculated. Figures 4–6 show these values for
the ANFIS-GA, ANFIS-TLBO, and ANFIS-IWO models. As shown in the figures, the MSE
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values of the three models were reported as 0.054894, 0.04734, and 0.072158, respectively, in
the training step, in which ANFIS-TLBO was more accurate than the other two models. On
the other hand, the MSE values were reported as 0.055683, 0.050795, and 0.082486 for the
above algorithms in the test step, where ANFIS-TLBO outperformed the other two models
once again.
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The MSE values for the SVM-GA, SVM-TLBO, and SVM-IWO models in the training
step were 0.051009, 0.05199, and 0.1024, respectively, where SVM-GA was more accurate
than the other two models. The values of the MSE in the test step for the three SVM-based
models were 0.050538, 0.050612, and 0.20491, where SVM-IWO again exhibited a lower
MSE value than the other two models.

In terms of the MSE measure, therefore, ANFIS-TLBO was the most accurate among
the ANFIS-based hybrid models, as SVM-GA was among those based on SVM. Conversely,
ANFIS-TLBO was the most accurate model in the training step, just as SVM-GA was in
the test step in terms of MSE. Moreover, the ANFIS-TLBO model was more accurate than
ANFIS-GA and ANFIS-IWO in terms of the RMSE measure, and SVM-GA was identified
as the most accurate model with RMSE values of 0.22585 and 0.22481 in the training and
test steps, respectively. Regarding the RMSE measure, ANFIS-TLBO was the most accurate
model in the training step, just as SVM-GA was in the test step.

Figure 7 shows the ROC curves and AUC for the six hybrid models in the training and
test steps. As observed, SVM-GA and SVM-TLBO, with an AUROC of 0.984, were the most
accurate models in the training step, as ANFIS-TLBO was in the test step with an AUROC
equal to 0.975.
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5. Discussion

While many methods have been presented in various studies for GPM, few have
assessed and compared hybrid models based on the well-known, versatile algorithms
SVM and ANFIS. This research used the models GA, TLBO, and IWO in combination
with the above two models resulting in six hybrids (SVM-GA, SVM-TLBO, SVM-IWO,
ANFIS-GA, ANFIS-TLBO, and ANFIS-IWO) to obtain GPMs in the Azraq region in Jordan.
Furthermore, the FR model was used here for the correlation analysis of the examined
factors and the well locations.

The models were assessed and compared from two perspectives: (1) algorithm runtime
and (2) model accuracy. The performance indicators for the models are listed in the
following table (Table 4).

Table 4. Performance indicators for the different models used in this study.

Model Runtime (s)
MSE AUROC

Training Set Test Set Training Set Test Set

SVM-GA 280 0.051009 0.050538 0.984 0.971

SVM-TLBO 4896 0.051990 0.050612 0.984 0.971

SVM-IWO 60 0.102400 0.204910 0.963 0.958

ANFIS-GA 92 0.054894 0.055683 0.979 0.972

ANFIS-
TLBO 23,992 0.047340 0.050795 0.982 0.975

ANFIS-IOW 56 0.072158 0.082486 0.963 0.945

As can be seen in Table 4, the results demonstrated that the SVM-based hybrid models
were faster than those based on ANFIS. Moreover, the shortest runtimes among the six
hybrid models were exhibited by the IWO-based models, i.e., SVM-IWO and ANFIS-
IWO, and the longest by the TLBO-based models, i.e., SVM-TLBO and ANFIS-TLBO. The
hybrid models from the combination of GA with the SVM and ANFIS algorithms exhibited
average runtimes.

When looking at the overall performance, although they were fast, the IWO-based
hybrid algorithms, i.e., SVM-IWO and ANFIS-IWO, obtained lower accuracy than the
other hybrid models. Those based on TLBO, on the other hand, i.e., SVM-TLBO and
ANFIS-TLBO, obtained desirable and high accuracy despite their long runtimes. The GA-
based models exhibited average runtimes compared to the other hybrids based on TLBO
and IWO.

Comparing the performance of the different sets of models using the MSE, the ANFIS-
TLBO had the lowest MSE in the training set, and it was the most accurate model while
exhibiting the longest runtime (about 6.7 h). On the other hand, in the test set, SVW-GA
had the lowest MSE with a relatively low runtime (about 5 min).

Looking at the AUROC values for the six models, it can be seen that all models
performed well with AUROC values close to 1. In the training set, SVM-GA and SVM-
TLBO had the best performance, while ANFIS-TLBO had the highest performance in the
test set.

Figure 8 shows groundwater potential maps for the six models used in this paper. The
visual comparison of the six maps in Figure 8 reveals that most of the wells are located in
the high and very high zones for all models and that all the models are good for mapping
the potential areas for GW.
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6. Conclusions

In this study, groundwater potential maps were investigated in the central parts of the
Azraq Basin in central Jordan using six hybrid models: SVM–GA, SVM–IWO, SVM–TLBO,
ANFIS–GA, ANFIS–IWO, and ANFIS–TLBO. Subsequently, groundwater potential maps
were developed using 12 predictor variables (elevation, slope, aspect, length of the slope,
plan curvature, soil type, geology, lithology, rainfall, distance from drainage, topographic
wetness index (TWI), and stream power index (SPI)), and the wells’ locations were analyzed
using the frequency ratio (FR) statistical model. The receptor operating characteristics
(AUROC) curve was used for model evaluation and comparison.

Based on the findings of this research, it is concluded that, given the time efficiency of
the six hybrid models, the IWO-based algorithms, i.e., SVM-IWO and ANFIS-IWO, exhib-
ited the shortest runtimes, and those based on TLBO, i.e., SVM-TLBO and ANFIS-TLBO,
exhibited the longest. The runtimes of SVM-GA and ANFIS-GA were found to lie between
the IWO-based and TLBO-based models. Furthermore, the algorithms with average and
long runtimes obtained with AUC were better than those with short runtimes. However, all
six models provided more or less acceptable AUCs, and a manager or planner could select
the appropriate algorithm given the specific data size and the tradeoff between runtime
and accuracy. Furthermore, the SVM-based hybrid algorithms were faster than those based
on the ANFIS. In terms of accuracy, the models of the two classes obtained relatively close
results in the learning and test steps. Hence, the groundwater potential maps obtained in
this study can help water resource and environmental managers make managerial decisions
regarding the preservation and correct utilization of groundwater resources.

Based on that, it is recommended that the models used in this research be compared
to other machine learning algorithms, such as decision trees, with parameters tuned using
heuristic and metaheuristic algorithms, which can be considered a future research direction.
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