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Abstract: The objective of this study is to valorize two waste products which, until now, caused
major problems concerning their management and impacts on the environment and health. This
study concerns the sludge of the wastewater treatment station of the city of Fez-Morocco and the
olive mill wastewater, which are produced, respectively, in quantities of around 51,100 t/year and
514,350 m3/year, by pyrolysis for the production of biochar. The obtained biochar was characterized
by physicochemical and spectroscopic analyses. The results show that the biochar is close to neutrality
and is characterized by an important organic and mineral load; further, it is endowed with a porous
surface, which could facilitate the adsorption of different polluting substances, composed mainly
by micropores. It is mainly composed of alcohol, phenol, carboxyl and phenyl groups, as well as
other mineral elements including silica and calcite. The composition, structure and morphology of
the biochar thus prepared recommend its use in various fields, such as the treatment of pollutants,
organic amendment, the reinforcement of polymers and as a secondary building material.

Keywords: sewage sludge; lagoons; biochar; pyrolysis; characterization; physicochemical; sur-
face; spectroscopic

1. Introduction

Population growth, industrialization, agricultural development and unthinking mod-
ernization are among the main sources of environmental pollution [1,2] in the form of the
excessive amounts of solid and liquid waste generated and not treated or recovered [3],
which can directly impact human health and the environment.

In addition, according to the United Nations Organization (UNO), by 2030, the need
for water will increase by almost 50% [4], which will lead to the reduction of water resources
and make it more difficult to access [5]. However, this crisis can also influence other sectors;
in particular, the needs of the agricultural sector.

On the one hand, the quantities of wastewater produced from different sources—
domestic, industrial, commercial or agricultural [6]—further aggravate the environmental
situation.
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In this regard, the National Office of Electricity and Drinking Water (NOEDW) aims
to increase the number of wastewater treatment stations (WWTS) to 164 by 2023 for a
total capacity of nearly 530,000 m3/d [7], to treat and minimize the impact of wastewater
on the environment. This is accompanied by the production of huge quantities of foul-
smelling sludge. The forecasts are for a national production of 300,000 tons/year by 2025
and 500,000 tons in 2030 (ONEP, Morocco) [8], with a quantity of approximately 150 to
200 kg/year per inhabitant equivalent [9]. Hence, there is need for well thought out
management of these wastes due to their increasing volume and the risks of pollution they
generate [8].

In Morocco, no national program (PNA, DMA, DD...) encourages the definition of a
regulation on the management of sludge from wastewater treatment stations [10]. Currently,
they are either dumped or recovered (73%) by spreading on agricultural land as an organic
amendment despite their high pollution load and dryness [11,12].

On the other hand, Morocco is among the Mediterranean countries producing olive oil;
it currently has a cultivated area of 998,000 hectares and an annual yield of 1,143,000 tons of
olives generating 514,350 m3 of olive mill wastewater [13]. According to the latest statistics
of the Regional Directorate of Agriculture of Fez-Meknes, the region Fez-Meknes monop-
olizes more than 36% of the national production of olives accompanied by 185,166 m3

of olive mill wastewater [14], of which less than 30% is transformed into solid waste by
natural evaporation. The rest is discharged into rivers, causing serious environmental
and technical problems that arise from the malfunction of wastewater treatment stations
during the period of olive crushing (November-February); this is due to the production’s
high acidity and large loads of settleable, non-biodegradable organic matter, including
polyphenols [14].

There are several studies on the treatment and valorization of these two types of
waste, in particular on the production of biochar which is a solid material resulting from a
pyrolysis, a thermal treatment [15] based on the action of heat in an inert atmosphere (no
oxidation or addition of other reagents) which allows us to obtain a carbonaceous solid, i.e.,
the biochar, an oil and a gas, i.e., the wood distillate [15,16]. Pyriolysis starts at a relatively
low temperature level (200 ◦C) and continues up to about 1000 ◦C or more.

Indeed, the biochar could be made from different sources, e.g., animal matter such
as manure chicken [17,18], bovine bones [19], fish waste [20] such as shellfish [21] and fish
scales [22], or vegetal waste [23,24], wood waste [25,26] or biomass [27].

In addition, the biochar can be used in many fields, especially in agriculture; in fact, it
can be used to promote soil fertility and increase agricultural yields [28] as well as reduce
salt stress [29] and detoxify the soils for the cultivation of lettuce [16,30].

The objective of this investigation is the elaboration of a biomaterial “biochar” based
on olive mill wastewater and the sludge of wastewater treatment stations, and the determi-
nation of its physicochemical and spectroscopic characteristics that determine the areas of
its further use outside the realm of agriculture.

2. Materials and Methods
2.1. Materials

To realize this work, we used sludge supplied by the wastewater treatment station of
the city of Fez (STEP) which was stabilized by anaerobic digestion, dehydrated by filter
band and brought to 80% of dryness by solar drying. The olive mill wastewater was issued
from a traditional olive crushing industry in the industrial quarter DOKKARAT of the city
of Fez.

Both wastes are conditioned, transported, stored and analyzed according to the stan-
dards approved by AFNOR NF EN 14742 [31] for sludge and enacted by Rodier for
wastewater [32].
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2.2. Preparation of Biochar

In a 100 L forced action mixer, Soroto model, a mass of sludge of 80% dryness was
mixed for 15 min with a volume of OM wastewater in order to reproduce a dryness of 50%
mixture of sludge and OM wastewater and to enrich the mixture in carbon owing to the
richness of the OM wastewater in organic and mineral matters. The obtained mixture was
dried again naturally or in a forced way in order to increase again its dryness to 80%. The
dry powder was slowly pyrolyzed, in the absence of oxygen, at 500 ◦C for 4 h in a tubular
furnace opening to 1700 ◦C, model HTRV-A 17/70/250. The cooled product constitutes the
biochar. This last one was analyzed by analytical and spectroscopic methods to foresee its
use in the depollution of the environments.

It should be noted that in the case where the olive mill wastewater was supplied from
a modern crushing unit where there is the addition of water in the crushing process, it is
necessary to take into account the dilution factor in order to obtain the expected results or
to reach the desired concentrations in carbon rate and/or mineral matter in the finished
product, i.e., the biochar.

2.3. Physicochemical Characterization of Biochar

The physicochemical characterization of the biochar was carried out by determining
the pH (ISO 10390-2005) with a pH meter type HANNA pH 209, the electrical conductivity
(ISO 11256-1994) with a conductivity meter type HANNA EC 214, the humidity of the
dry matter (ISO 11465-1993) with an oven type BOXUN, the organic matter (NF EN 13039-
2011) with a muffle furnace type Barustead Thermolyne 1400 ◦C. Total organic carbon and
mineral matter was deduced from the value of organic matter by a calculation according
to AFNOR standards. Total nitrogen Kjeldhal (ISO 11261-1995) was determined with a
SELECTA nitro-pro type distiller, fat content (NF EN ISO 734-1, 2000), and polyphenol
content was determined according to the Folin–Ciocalteu method (ISO 14502-1-March 2005)
with a spectrophotometer model UV-1800PC UV/VIS.

Trace elements and metallic trace elements are determined by inductively coupled
plasma atomic emission spectrometry (ICP-AES) model Activa of Horiba Jobin-Yvon,
equipped with an argon plasma.

It should be noted that the fat (MG), polyphenols (Phy) and metallic trace elements
(ETM) were analyzed to verify the non-toxicity of the biochar because the raw materials
which constitute it are waste.

2.4. Surface Chemical Characterization of Biochar

This was accomplished by evaluating the point of zero charge (PZC), performed
by the method developed by Kalay et al. [33]. The porous texture was studied by the
adsorption of methylene blue (BM) according to Pelekani and Snoeyink [34]. The mea-
surement of the indices of methylene blue was performed by spectrophotometry reported
by Hameed et al. [35] Iodine was determined by ASTM D4607- 94 [36], deduced from the
AWWA standard defined by Robinson and Hansen [37]. The type of surface functions were
analyzed by Boehm’s method [38], extracted from the work of Baudu et al. [39].

2.5. Spectroscopic Characterization of Biochar

Spectroscopic characterization was accomplished by analysis of the biochar by Fourier
transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron
microscopy (SEM) coupled with an EDX probe and UV spectroscopy.

FTIR analysis was performed using a Bruker (Germany) Vertex 70 IR-TF spectropho-
tometer, in the range of 400–4000 cm−1, using the ATR mode, and accumulating 16 scans
with a resolution of 4 cm−1.

The DRX diffractogram of the PM powder was obtained by PAN-Critical X’ Pert Pro
X-ray diffractometer equipped with a monochromatic Cu-Kα source (1.54 Å), operating at
a voltage of 40 kV and a filament current of 30 mA to assess the crystallinity of the biochar.
The DRX was recorded with a continuous scan from 5◦ to 80◦ with a scan step time of
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34 s. Abundant chemical components in the material are predicted by processing via the
International Diffraction Data Center (IDDC) powder diffraction database.

Scanning electron microscopy (SEM) was used to determine the surface morphology
of the biochar, and via an environmental scanning electron microscope equipped with an
EDX probe, model QUANTA 200 coupled to energy dispersive spectroscopy (EDS) at an
accelerating voltage of 15 kV.

Thermogravimetry (TGA) was used to determine the absolute mass loss of biochar
as a function of temperature. It was operated using a LINSEIS STA PT1600 instrument. A
mass sample of 18.9 mg was introduced into an alumina crucible supported on a balance
located in the instrument’s oven. The analysis was performed in an air atmosphere with a
ramp of 10 ◦C/min in the temperature range of 30 ◦C to 1000 ◦C.

3. Results and Discussions
3.1. Physicochemical Characterization of the Biochar

Physicochemical analyses (Table 1) show that biochar is almost neutral and non-
toxic [40] due to its negligible load of polyphenols, fatty matter (FM) and metallic trace
elements (Table 2). It has a high dryness (80%), an important mineral composition favoring
ionic exchange and heat transfer and thus can be used as a thermal conductor [41] or as an
addition to the manufacture of construction materials such as bricks and paving stones.

Table 1. Physicochemical characteristics of biochar.

Parameters pH EC
(µS/cm)

H
(%)

DM
(%)

MM
(%)

OM
(%)

Polyphénols
(%)

FM
(%)

TOC
(%)

NTK
(%) C/N

Values 6.65 1300 1.58 98.42 78.31 21.69 1.09 2.16 12.58 1.05 11.98

Table 2. Trace element and metallic trace element contents of biochar.

Elements Al Ca Cu Fe K Mg P Mn Na Zn

Concentration
(mg/g) 4.9396 64.009 0.2535 7.4737 3.6947 18.646 22.588 0.3118 25.336 0.7603

Elements B Ag Cd Co Cr Ni Pb Se Ti As

Concentration
(mg/g) <0.01 0.0458 <0.01 <0.01 1.0165 <0.01 <0.01 <0.01 <0.01 <0.01

In addition to its richness in trace elements (Table 2), including calcium (64.01 mg/g),
sodium (25.34 mg/g), potassium (22.59 mg/g), magnesium (18.65 mg/g), iron (7.47 mg/g),
aluminum (4.44 mg/g), potassium (3.70 mg/g) and the presence, in decreasing order, of
chromium, zinc, copper and silver, the biochar has an average organic composition (Table 1)
of which more than half is in the form of organic carbon and almost 1% in total nitrogen
Kjeldhal, leading to a C/N ratio between 10 and 15. This margin is recommended for
its use as an organic soil amendment in difficult climates, i.e., those poor in mineral and
organic elements.

The result obtained corroborates several research works that have shown the fertilizing
efficiency of biochar in combination with other organic amendments [42–44].

The acquired results could indicate the use of this biochar as an organic amendment
because of its richness in trace elements (Ca, Na, P, Mg, K, Fe, Zn, Mn, Cu, Zn and Ag) for
soils poor in these elements.

3.2. Surface Characterization of Biochar
3.2.1. Zero Charge Point pHpzc of Biochar

The pH of zero charge (pHpzc) corresponds to the pH of the solution for which the
curve C, representing the final pH versus the initial pH of the solution (Figure 1), crosses
the first bisector B (final pH = initial pH).
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Figure 1. Determination of the pH of zero charge (pHpzc) of the biochar.

It is relative to the pH of the aqueous solution in which the biochar exists under a
neutral electric potential. It is equal to 5.80, thus explaining why the biochar surface is
positively charged for pH of the medium lower than this value; it is thus protonated and
acidic. In addition, for a pH of a medium higher than the pHpzc, the biochar surface
is negatively charged and becomes deprotonated and basic. This type of surface could
be favorable for the adsorption of anionic pollutants (pH < pHpzc), as well as cationic
(pH > pHpzc).

3.2.2. Specific Surface of Biochar by the Methylene Blue Method (BM)

The mesoporous volume of biochar was estimated by adsorption experiments of the
cationic dye BM. The adsorption isotherm was established by stirring 0.5 g of biochar for
6 h in 50 mL of BM solution at initial concentrations ranging from 20 to 100 mg/L. The
mixture was centrifuged at 6000 rpm. The absorbance of the filtrate leads by extrapolation
to the residual concentration of the BM at equilibrium (Qe) via the following equation:

Qe = (Co − Ce) × V/m (1)

with Qe (mg/g) and Ce (mg/L) denoting, respectively, the amount of substance adsorbed
per gram of biochar and the concentration of BM in solution at equilibrium.

The adsorption isotherm of BM was simulated by the linear equation of the Langmuir
model [45]:

Ce

Qe
=

1
KLQmax

+
Ce

Qmax
(2)

with Ce (mg·L−1): residual solution concentration at adsorption equilibrium;
Qe (mg·g−1): amount of adsorbate adsorbed at equilibrium;
KL (L·mg−1): adsorption equilibrium constant, of the BM/biochar couple, of the

Langmuir model;
Qmax (mg·g−1): maximum amount of BM adsorbed.
The wavelength of the dye absorption maximum (Figure 2) is 663 nm.
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Figure 2. Absorption spectrum of methylene blue in the visible (C0 = 10 mg·L−1).

The calibration curve for methylene blue for concentrations between 0 and 10 mg/L is
as follows (Figure 3), the equilibrium isotherm and Langmuir isotherm are presented in
Figures 4 and 5, respectively.
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The specific surface area of the biochar covered by the BM molecule (SBM) is evaluated
from the Qmax of the adsorbed BM following the equation:

SBM = QmaxABM

(
6.02× 1023

MBM

)
(3)

with:
ABM: molecular surface area of BM = 1.30 nm2 [46];
MBM: molar mass of BM = 319.85 g·mol−1;
Qe: Quantity adsorbed at equilibrium (mg·g−1);
Ce: Concentration of the solution at equilibrium (mg·L−1).
The calculated surface area of the studied biochar is 694.71 m2/g. This encourages its

exploitation as an adsorbent material for environmental pollutants.

3.2.3. Methylene Blue Index (MBI)

The IBM of the elaborated biochar is evaluated by measuring the absorbance at 620 nm
via a spectrometer of a diluted filtrate obtained by the stirring of 1 g of biochar in 25 mL of
methylene blue solution of concentration 1.20 g/L for 30 min (Hameed et al., 2007), and
expressed in mg of adsorbed methylene blue per g of biochar according to the expression:

IBM =

[(
Ci −Cr ×mb

mb

)]
×V (4)

with:
Ci: Initial concentration of the solution (1.2 g/L);
Cr: Residual concentration after 30 min of agitation (mg/L): Mb: Mass of biochar (1 g);
V: Volume of BM (25 mL).
The IBM of the biochar is 9.2 mg/g, proving that the mesoporous surface is capable of

adsorbing some molecules of medium size (2–50 nm) and sizes larger than 50 nm.

3.2.4. Iodine Index (Ii)

Ii is obtained by stirring 0.2 g (Mb) of biochar in 10 mL of 5% hydrochloric acid, boiled
for 30 s, to which was added 20 mL (Vads) of 0.1 N iodine (C0) while maintaining stirring
for 30 s. The mixture was then filtered. Of the filtrate, 10 mL (VI2) is titrated with 0.1 N
sodium thiosulfate (Cn) in the presence of starch starch.
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Ii is the amount of iodine absorbed (mg) per g of biochar) according to the equation:

Ii

(
mg · g−1

)
=

[
C0 − CnVn

2VI2

]
MI2Vads

Mb
(5)

with:
Vn: Volume of sodium thiosulfate at equivalence (mL);
MI2: Molar mass of iodine (254 g·mol−1).
The Ii of the studied biochar reveals that it is microporous (462.35 mg·g−1). This

explains why the internal surface of the micropores of this material could retain small
molecules (<2 nm) [46] of polluting water, atmosphere or soil.

3.2.5. Surface Chemical Characteristics of Biochar

Oxygen and basic group contents are determined by mixing 0.15 g of the biochar
with 50 mL of a 0.1 mol·L−1 aqueous solution of each reagent (NaOH, Na2CO3, NaHCO3,
NaOC2H5, HCl). The solutions are stirred for 48 h and then filtered. Of each filtrate, 30 mL
is determined by pH-metry. The basic solutions are assayed by HCl (0.1 mol·L−1), the
acidic solution by NaOH (0.1 mol·L−1).

The results show that the content of oxygenated functional groups in the biochar
is 9.6%. The corresponding Boehm assays (Table 3) exhibit fewer basic groups (lactones
and carbonyls) than acidic groups (carboxyl’s and phenolics), indicating its slightly acidic
character.

Table 3. Surface chemical characteristics of the elaborated biochar.

Groups Carboxylic Phenolics Lactones Carbonyls Total Oxygenates Total Bases

Value
(meq/g) 0.007 1.814 0.005 2.302 0.018 0.416

Parameters pHPZC SBM (m2/g) Oxygenated Functional
Groups (%) Iodine Index (mg/g) BM Index

(mg/g)

Value 5.56 694.71 9.6 462.35 9.22

3.3. Spectroscopic Characterization
3.3.1. Fourier Transform Infrared

The analysis by Infrared spectroscopy was carried out in order to determine the
functional groups, and the bonds developed during the preparation of the biochar. The
FTIR spectrum (Figure S1) was scanned between 4000 and 500 cm−1 and confirms the
existence of several chemical functions: O-H C=O, C=C, Si-O et CaCO3.

The infrared spectrum results of the biochar show a bond at 3300 cm−1 of low intensity
corresponding to the O-H stretching vibration, probably attributed to the polyphenols
commonly found in olive mill wastewater [47,48]. The band observed near 1750 cm−1 is
probably related to C=O stretching, due to the carboxylic and carboxylate form. Moreover,
the peak around 1450 cm−1 could be attributed to the C=C vibrational mode of the phenyl
groups; this is qualitatively confirmed with those deduced from the study of surface
functions revealing the notable presence of lactone and phenol functions. While the
pronounced peaks around 1000 cm−1 can be attributed to the elongation vibrations of C-O
bonds characteristic of alcohols, this peak can also be attributed to the elongation vibrations
of Si-O bonds in silica [49]. The peak extending to 860 cm−1 is due to the presence of calcite
(CaCO3) [50].

3.3.2. X-ray Diffraction

The diffractogram of biochar presented in Figure S2 relates that the main diffraction
peaks are located in the 2θ zone from 20◦ to 70◦. Indexing of the most intense peaks revealed
the presence of three crystalline phases corresponding to calcium carbonate (CaCO3), silicon
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dioxide (SiO2) and dolomite (CaMg (CO3)2), respectively, identified via comparison with
database files reference code ICDD 01-086-0174, ICDD 01-078-1252 and COD 96-900-3514.

The peaks of CaCO3, in Rhombohedral form, are located at 2θ = 20.89, 23.14, 26.68,
29.47, 30.99, 36.06, 39.52, 41.22, 43.26, 47.58, 48.59 and 50.20◦. Those of SiO2, in the hexagonal
crystal form, are located at 2θ = 20.89, 23.14, 26.68, 29.47, 30.99, 36.06, 39.52, 41.22, 43.26,
47.58, 48.59 and 50.20◦. On the other hand, the peaks of CaMg (CO3)2, crystallized in
hexagonal form, are located at 20.89, 23.14, 26.68, 29.47, 30.99, 36.06, 39.52, 43.26, 47.58,
48.59 and 50.20. The result obtained is in agreement with a study of phosphorus adsorption
on a biochar substrate moistened with olive mill wastewater [51].

3.3.3. Scanning Electron Microscopy Coupled to an EDX Probe

SEM images at different magnifications (Figure 6) show that the surface of the BY1B
biochar is composed of condensed aggregates of small, spaced particles. Moreover, the
visible, rough and irregular surface of the material reveals its porous nature.
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(d) ×2000.

This character is considered as a factor that favors the adsorption of pollutants from
the environment by ion exchange mechanisms, and that leads to the fixation of cationic
or anionic particles. Indeed, several studies have used biochar as an adsorbent to remove
medical substances such as levofloxacin from aquatic environments as well as the reduction
of heavy metals such as arsenic, phosphate, lead and copper and the decolorization of
wastewater from textile industries. Furthermore, the biochar has the potential to have a
beneficial effect on soil contaminated by hydrocarbons [30,52,53].
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Elemental chemical microanalysis of the biochar surface allows for the quantification
of its major composition in mass and atomic content [54]. This is presented in the EDX
spectrum (Figure 7) and Table 4.
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Table 4. Mass and atomic percentages of the different elements of the biochar.

Elements Mass Percentage Atomic Percentage

C 43.59 ± 0.15 57.90 ± 0.21

O 29.24 ± 0.25 29.15 ± 0.25

Mg 0.97 ± 0.03 0.64 ± 0.02

Al 2.78 ± 0.05 1.64 ± 0.03

Si 6.60 ± 0.07 3.75 ± 0.04

P 2.53 ± 0.04 1.30 ± 0.02

S 1.47 ± 0.03 0.73 ± 0.02

K 0.63 ± 0.03 0.26 ± 0.01

Ca 10.26 ± 0.10 4.08 ± 0.04

Fe 1.94 ± 0.07 0.55 ± 0.02

Total 100.00 100.00

The spectrum relates the presence of intense peaks related to the elements carbon,
oxygen, silicon, phosphorus, sulfur, calcium, aluminum, iron and potassium.

The major mass percentages of biochar are noted for carbon, oxygen, calcium and
silicon at 43.59% and 29.24%, 10.26%, 6.60%, respectively. The other elements, adding up to
10.31%, constituted, in descending order, aluminum, phosphorus, iron, sulfur, potassium
and magnesium.

The same ranking was recorded for the atomic percentage; the elements strongly
present are carbon with 57.90, oxygen with 29.15, calcium with 4.08 and silicon with 3.75.
The other elements—aluminum, phosphorus, sulfur, magnesium, iron—constitute the
remaining 5.12%.

The results obtained seem to be due to the presence of different oxides, such as Al2O3,
FeO, MgO, CaO, SiO2, Na2O, K2O, etc.

3.3.4. Thermal Analysis

Thermal analysis of the biochar, shown in Figure 8, shows the variation in mass over a
temperature range of 0 to 1000 ◦C.
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Figure 8. Thermogravimetric analysis (ATG) spectrum of biochar.

The global mass loss was unfolded in four steps: The first loss is located between 0
and 300 ◦C; we noted a slight loss of 4% that could correspond to the traces of trapped
water molecules (seeing that the biochar was obtained by pyrolysis). The second loss begins
at 300 ◦C to end at 500 ◦C accompanied by an exothermic peak, while the third is in the
vicinity of 750 ◦C associated with an endothermic peak. These can be attributed to the
degradation of CaCO3 into calcium oxide (CaO) and carbon dioxide (CO2), according to
the following reaction [55]:

CaCO3(solid) ↔ CaO(solid) + CO2(gaz). (6)

Calcite is considered to be a major component in the studied biochar. Above 800 ◦C,
no mass loss was noticed. Indeed, an amount of 64% remains after the treatment at 1000 ◦C,
which shows that the biochar has an organic character.

4. Conclusions

In this study, our research into a new material, biochar—originating from two precur-
sors, sewage sludge and olive mill wastewater—allowed us to predict some potential fields
of use. We could mention its application as an organic amendment to promote the fertility
of soils lacking in mineral elements since its organic matter and trace element content is
very high, and as a thermal conductor thanks to its high electrical conductivity. In addition,
its porous morphology supports its use as an adsorbent of several pollutants exhibited
in wastewater metals, dyes or in gases produced by combustion and biomethanization,
including H2S, SOx and NOx. Furthermore, the material’s high dryness suggests its possible
application as a by-product in the manufacture of construction materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/su15032409/s1, Figure S1: Infrared spectrum of Biochar; Figure S2. X-ray spectrum of
Biochar (BY1B).
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