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Abstract: Nitrous oxide (N2O) and nitric oxide (NO) are detrimental reactive gaseous oxides of
nitrogen. Excessive application of nitrogen fertilizers in cropping systems has significantly increased
the emissions of these gases, causing adverse environmental consequences. Previous studies have
demonstrated that biochar amendment can regulate soil-N dynamics and mitigate N losses, but they
lacked simultaneous assessments of soil N2O and NO emissions. Thus, the factors influencing the
emissions of nitrogen oxides are still unclear. Therefore, this study examined the impact of biochar
application on simultaneous N2O and NO emissions based on 18 peer-reviewed papers (119 paired
observations). A machine learning model (boosted regression tree model) was adopted to assess the
potential influencing factors, such as soil properties, biochar characteristics, and field management
conditions. The addition of biochar reduced N2O and NO emissions by 16.2% and 14.7%, respectively.
Biochar with a high total carbon content and pH, from woody or herbaceous feedstock, pyrolyzed at a
high temperature, applied at a moderate rate and to soil with a high-silt content, a moderate pH, and
coarse texture, could simultaneously reduce soil N2O and NO emissions. Biochar amendment, thus,
has the potential to lower the environmental impact of crop production. Furthermore, the influence
of soil properties, biochar characteristics, and field management should be considered in the future to
enhance the efficacy of biochar.

Keywords: N2O emissions; NO emissions; biochar; influencing factors

1. Introduction

Nitrogen (N) fertilizer application can improve crop yield, economic benefits, and
ensure food security [1,2]. In the pursuit of high yields, excessive N fertilizer application is
prevalent in agricultural practices, resulting in a N surplus in the crop-soil system and caus-
ing reactive N (Nr) release into the environment [3,4]. Nitrous oxide (N2O) and nitric oxide
(NO) are detrimental Nr gases, and their emissions have increased. N2O is an important
long-lived greenhouse gas, and its centennial scale global warming potential is 265 times
higher compared to CO2 [5–9]. NO is a key substance in tropospheric chemistry, partici-
pating in complex photochemical reactions and contributing to acid rain and secondary
inorganic aerosol formation [9–11]. Soil nitrification and denitrification are the primary
production pathways for NO and N2O emissions. Thus, the simultaneous monitoring of
these trace N-gases is important to understand the soil-N cycle. To simultaneously mitigate
NO and N2O release, relevant influencing factors must be understood; the “hole-in-the-
pipe” model suggests that factors which control the N transformation rate and number of
oxidized/reduced molecules produced are key to regulating NO and N2O emissions [12].

Biochar is a carbon-rich material, with a high-ash content, alkalinity, and stabil-
ity [13,14]. Biochar amendment in arable soils is a promising technique and has shown
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great potential to improve carbon sequestration and pollutant reduction [15,16]. Addi-
tionally, introducing external C would change the composition of microbial communities
and the abundance of functional genes, and subsequently affect the soil-N cycle, including
nitrification and denitrification [17,18]. Biochar amendment might enhance soil adsorption
capacity due to its fine surface porosity and functional groups and then substantially limit
the availability of NH4

+-N which is a substrate for N losses [19–21]. Previous studies have
widely reported significant N2O reduction after biochar amendment, and the relevant
influencing factors were determined [18]. The “hole-in-the-pipe” model revealed a trade-
off effect for these trace N-gas emissions, suggesting that high NO emissions may relate
to lower N2O emissions. Therefore, after biochar amendment, it is essential to evaluate
NO and N2O emissions simultaneously. Factors which affect biochar efficacy including
biochar characteristics, as well as soil properties and field management practices need to be
further investigated.

Therefore, this study collected published research on simultaneous NO and N2O obser-
vations after biochar application; analyzed simultaneous reduction potential; and further
interpreted the effects of soil properties, biochar characteristics, and field management on
the reduction efficiency, using a meta-analysis combined with machine learning models.
The aim of the study was to promote biochar application and provide recommendations
for mitigating N oxide emissions, which would reduce environmental impacts.

2. Materials and Methods
2.1. Database Compilation

In this study, peer-reviewed scientific papers published from 1970 to 2022 were ob-
tained from the Web of Science, Scopus, and the China National Knowledge Infrastructure
(CNKI) database; the keywords used for the search were ‘biochar’, ‘black carbon’, ‘N2O
emissions’, and ‘NO emissions’. Duplicate data were removed by screening experimental
details including location, year, and author. Articles were then selected using the follow-
ing criteria:

(I) The study must have a paired experiment design, with a treatment group (biochar
amendment) and control group (without biochar), both of which had similar field
management (including fertilization, irrigation, and tillage regimes).

(II) Soil N2O and NO emissions were monitored simultaneously.
(III) The mean and standard deviation values of the cumulative emissions of the two N

oxides, as well as the number of replicates, were documented.

A total of 18 peer-reviewed articles with 119 paired observations met the selection
criteria, and the detailed selection procedure referred to PRISMA statement (Figure S1).
Data were collected from these articles and extracted by using a digitized tool in Origin 2019
(Northampton, Massachusetts, USA). The soil properties, biochar characteristics, and field
management conditions were also collated. Soil properties included: pH, organic carbon
(SOC, g kg−1), total nitrogen (g kg−1), clay (%), silt (%), sand (%), and texture. Biochar
characteristics included: pH, application rate (BCAR, t ha−1), total carbon content (TC, %),
total nitrogen content (TN, g kg−1), source feedstock, and pyrolysis temperature (PT, ◦C).
Field management conditions included: experiment type, fertilizer type, and nitrogen
application rate (NAR, kg N ha−1). The details of each were categorized as follows:

(A) Soil properties:

(i) Soil pH: pH ≤ 6; 6 < pH ≤ 8; and pH > 8.
(ii) Soil organic carbon g kg−1: SOC ≤ 10; 10 < SOC ≤ 20; and SOC > 20.
(iii) Total nitrogen g kg−1: TN ≤ 1; 1 < TN ≤ 2; and TN > 2.
(iv) Clay %: clay ≤ 30 and clay > 30.
(v) Silt %: silt ≤ 30 and silt > 30.
(vi) Sand %: sand ≤ 30 and sand > 30.
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(vii) Soil texture: fine (sandy clay, silty clay, and clay); medium (sandy clay loam,
clay loam, and silty clay loam); and coarse (sandy, loamy sand, sandy loam,
loam, silt loam, and silt) [21].

(B) Biochar properties:

(i) Biochar pH: pH ≤ 7; 7 < pH ≤ 9; and pH > 9.
(ii) Biochar application rate t ha−1: BCAR ≤ 10; 10 < BCAR ≤ 20; and BCAR > 20.
(iii) Total carbon %: TC ≤ 45; 45 < TC ≤ 65; and TC > 65.
(iv) Total nitrogen g kg−1: TN ≤ 6; 6 < TN ≤ 12; and TN > 12.
(v) Pyrolysis temperature ◦C: PT ≤ 400; 400 < PT ≤ 500; and PT > 500.
(vi) Feedstock types: herbaceous waste; wood; and manure.

(C) Field management conditions:

(i) Experimental types: field; greenhouse; pot; and incubation.
(ii) Fertilizer types: urea; ammonium; compound; and organic.
(iii) N Application rate kg N ha−1: NAR ≤ 200; 200 < NAR ≤ 400; and NAR > 400.

2.2. Meta-Analysis

In this study, the natural logarithmic response ratio ln(RR) was used to calculate
the magnitude of the effect of biochar amendment in each study by using the following
calculation formula [22]:

ln(RR) = ln(
XT

XC
) (1)

where XT is the cumulative N2O or NO loss in biochar amendment treatment, and XC is the
cumulative N2O or NO loss in the control (without biochar amendment). The magnitude
of the effect of each study was weighted by the inverse pooled variance [22,23]:

Vi =
ST

2

NTXT
2 +

SC
2

NCXC
2 (2)

where NT and NC are the sample sizes of the treatment and control groups, respectively,
and ST and SC are the standard deviations of the treatment and control groups, respectively.

The mean effect of N2O and NO emissions and confidence interval (CI) of each sub-
group was calculated using a hierarchical mixed-effect model, which included the random
effects among different studies and study sampling variations [24,25]. Restricted maximum
likelihood was used to estimate each parameter in the meta-analytical models. Heterogene-
ity of effect size (Qm) was also calculated to assess the influence among different groups.
Egger’s regression test was used to examine publication bias of the meta-analysis [26]
(Table S1).

The subgroup analysis mainly considered the effects of soil and biochar properties,
and field management conditions on the efficacy of biochar amendment to mitigate N
oxide emissions. A meta-analysis was conducted using R 4.1.3 (University of Auckland,
New Zealand) and ‘Metafor’ package. The results (mean effect size and its 95% CI) were
then converted to percentage change using the formula: %change = (eln(RR) − 1) × 100 [13].
Negative or positive values indicated that the biochar amendment decreased or increased N
oxide emissions, respectively, after biochar amendment. The effect of biochar amendment
on N oxides emissions was considered significant if the 95% CI did not overlap with the
zero line. The subgroups significantly differed if the 95% CI did not overlap with each
other. The results were presented in forest plots which are drawn using ‘ggplot2’ package
in R 4.1.3 (University of Auckland, New Zealand).

2.3. Analysis of Influencing Factors Affecting Biochar Amendment Efficacy

Traditional linear regression cannot process complex non-linear relationships between
response variables and explanatory variables. Therefore, a boosted regression tree (BRT)
analysis and machine learning models were adopted to rank the variable’s influence on
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N oxide emissions after biochar amendment [13,27]. The BRT model fits thousands of
simple models to describe the relationship between explanatory variables and response
variables (effect size), and then summarizes the results of multiple single tree models using
the boosting method. This improves the performance and predictive ability of the model,
and avoids model overfitting [28,29]. Additionally, the BRT model can manage missing
values in the dataset [30]. The model in R4.1.3 (University of Auckland, New Zealand) uses
the ‘gbm’, ‘dismo’, and ‘ggBRT’ packages [31,32]. The model was established using the
“Gaussian” error structure, and a 10-fold cross-validation was adopted to assess predictive
error of individual models [33]. The parameters were obtained by systematically adjusting
the learning rate (0.1, 0.005, and 0.001) and bag fraction (0.5, 0.6, and 0.75). A final learning
rate (0.001) and bag fraction (0.75) were chosen [34]. The BRT model analysis shows that
the factors with significant contributions can be analyzed and screened, based on the
number of explanatory variables [32]. Subsequently, the correlation between response and
explanatory variables was determined by fitting a linear mixed-effect model (for continuous
variables only).

3. Results
3.1. Effects of Biochar Application on Soil-Nitrogen Oxide Emissions

Biochar application to agricultural soil simultaneously reduced the emissions of N2O
(RR: −16.2%, CI: −29.6 ~ −0.2%) and NO (RR: −14.7%, CI: −24.8 ~ −3.4%) (Figure 1A).
There was no significant difference in the molar ratio of NO and N2O between the amend-
ment and control groups (Figure 1B).
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Figure 1. Effects of biochar amendment on soil−nitrogen oxide emissions. (A) Changes in emissions
of the two N oxides after biochar amendment. The numbers on the right indicate the number of ob-
servations and the asterisks (*) on the left indicate significant effects of biochar amendment. (B) Mole
ratio of NO and N2O emissions between the biochar amendment and control. The difference between
biochar and CK was evaluated using student’s t-test, and ns indicated no significant difference.

3.2. Effects of Soil Properties on Nitrogen Oxides Mitigation Potential of Biochar Amendment

Biochar applied to acidic and alkaline soils had no significant effect on N2O and NO
emissions. However, in neutral soils (6 < pH ≤ 8), the emissions were reduced significantly
(Figure 2). N2O (RR: −36.7%, CI: −50.1~−19.7%) and NO (RR: −42.7%, CI: −54.3~−28.2%).

N2O emissions were further significantly reduced by adding biochar to soils with
moderate organic carbon content (10 < SOC ≤ 20), high-silt content, and a lower sand and
clay content (RR: −29.1%, CI: −44.9 ~ −8.8%). Results showed that soils with a higher silt
content or coarse texture significantly reduce N2O and NO emissions simultaneously.
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3.3. Effects of Biochar Characteristics on Nitrogen Oxide Mitigation Potential of
Biochar Amendment

A high biochar application rate (>20 t ha−1) reduced NO emissions by 25.3%, while
a moderate rate (10 < BC AR ≤ 20 t ha−1) resulted in further reduction for both N2O
(RR: −29 %, CI: −45.6~−7.4%) and NO (RR: −22%, CI: −38.3~−1.2%) (Figure 3). Addi-
tionally, biochar with a high pH and total carbon content, pyrolyzed at high temperature
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or produced using herbaceous waste or wood, also significantly reduced both N2O and
NO emissions. NO emissions also decreased after the application of biochar pyrolyzed at
moderate temperature (400 < PT ≤ 500 ◦C), or with moderate pH, and using biochar with a
relatively high (TN > 12) or low (TN ≤ 6) total nitrogen content (TN).
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3.4. Effects of Field Management Conditions on the Nitrogen Oxide Mitigation Potential of Biochar
Amendment

Experiments were conducted under different field conditions; however, no differ-
ences were observed. Applying urea (RR: −20%, CI: −34.3~−2.3%) or compound fertilizer
(RR: −18.3%, CI: −33~−0.5%) with biochar amendment can significantly reduce N2O
emissions. However, using ammonium fertilizer had the opposite effect (Figure 4). Fer-
tilizer types had little impact on NO emissions, but a relatively low N application rate
(N ≤ 200 kg N ha−1) reduced 23.2% of NO emission compared to that from the control
sample (no biochar amendment)
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3.5. Influencing Factors Affecting Soil-Nitrogen Oxide Emissions after Biochar Amendment

Based on the results of the BRT model, total carbon content of biochar, soil-silt content,
fertilizer type, and nitrogen application rate had a significant effect on the N2O emission
after biochar addition (Figure 5A). Soil-silt content and biochar application quantity exerted
a significant impact on NO emissions. Combined with the mixed-effect model, the increase
in the total carbon and pyrolysis temperature of biochar enhanced its N2O and NO emission
mitigation potential. The change in silt content showed a similar trend; however, the biochar
pH change showed the opposite correlation (Figure 5 and Figure S1).
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(Figures on the left) was obtained using the boosted regression trees model (BRT), the importance
crossing the black dash line denotes the factors significantly impacting the effect size. A mixed-
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4. Discussion
4.1. Effects of Soil Properties on N2O and NO Emissions after Biochar Amendment

The results of the meta-analysis showed that biochar amendment significantly reduced
N2O and NO emissions from fertilized agricultural soils; however, the potential for reduc-
tion varied depending on the characteristics of the soil, biochar, and field management
conditions. The BRT model indicated that soil texture contributes significantly to changes
in nitrogen oxide emissions after biochar application to the soil. In contrast to fine textured
soils, biochar added to coarsely textured soil resulted in higher N2O and NO reduction
potential, which may be attributed to the soil’s enhanced nutrient-retention capacity [35].
Nitrogen oxide emissions correlated negatively with soil-silt content. High-silt content soils
are often associated with poor aeration and thus a higher denitrification process related to
nitrogen oxide emissions. However, biochar application can improve soil aeration due to
its porous structure and large specific surface area, thereby inhibiting the denitrification
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derived N2O and NO emissions [36,37]. Soil with a low-clay content can enhance the
cation exchange capacity and ammonium adsorption by soil, thereby reducing nitrification
substrates and N losses [38,39].

Soil pH was also a key factor affecting the soil-nitrogen dynamics [40,41]. The results
showed that biochar application to soil with moderate pH (6 < pH ≤ 8) had a significant
impact on N2O and NO reduction, in line with the study by Cayuela et al. (2014) [36].
Ammonia oxidation was found to be the first and critical rate-limiting step for nitrification.
Ammonia-oxidizing bacteria (AOB) carrying the amoA gene play an important role in N
losses from soil. Biochar addition to relatively neutral soils reduced AOB significantly,
thereby suppressing nitrification [42]. However, due to the “liming effect” of biochar
addition, the increased soil pH in an aerobic micro-environment can stimulate the activity
of nitrogen oxide reductases (norB and nosZ) and result in complete denitrification to
nitrogen gas (N2) [36,43,44]. Xiao et al. (2019) [42] found that biochar amendment increased
the nosZ gene abundance in moderately alkaline soil. The effect of soil moisture on NO
and N2O emissions cannot be ignored; when the soil water filled pore space (WFPS) is
less than 60%, the NO:N2O molar ratio is typically greater than one, indicating that the
N2O production pathway is dominated by nitrification. However, higher soil WFPS would
lead to a greater denitrification contribution to N2O emissions and an NO:N2O ratio lower
than one [45–47]. In this study, the NO:N2O molar ratio did not change much after biochar
amendment, but previous studies have confirmed that biochar addition increased the field
water capacity by 20.4%, with some variations based on the soil texture, biochar porosity,
and surface area [48,49].

4.2. Effects of Biochar Characteristics on N2O and NO Emissions

In comparison to manure biochar, the application of biochar derived from woody or
herbaceous feedstocks can decrease N2O and NO emissions significantly because they gen-
erally have a higher C/N ratio. This leads to N immobilization and subsequent reduction in
the substrates in the soil for nitrification-denitrification processes [40,50–52]. Additionally,
a larger surface area, more developed pore structure, and a higher degree of aromatization
were observed in woody biochar. Aromatic structures with conjugated π-electron system
can act as an “electron shuttle” and facilitate the redox reactions of N-cycle functional
microorganisms [18,53,54], thereby suppressing N emissions.

Biochar that has been pyrolyzed at high temperatures has higher redox activity and,
consequently, redox-active moieties on the biochar surface [55]. Chen et al. [53] found the
electron accepting quinones, dominant in high-temperature produced biochar, decrease
N2O emissions. On the other hand, using such biochars would promote N2O and NO
reduction by increasing enzyme activities, such as nitrous oxide reductase (NOS) and
nitric oxide reductase (NOR) [43,56]. This further supports the negative correlation be-
tween pyrolysis temperature and N oxide emissions. However, the intensity of C=O bond
stretching was high in low-temperature pyrolyzed biochar due to the broken conjugated
π bonds, which may impede its ability to transfer electrons [53,54,57]. Additionally, the
acid functional groups decreased, and alkaline functional groups increased on the biochar
surface, resulting in an increase in pH [58,59]. This also created a favorable environment
for the stability of nitrite and limited its chemical decomposition to NO [17]. This further
confirmed that the application of high-pH biochar is an effective measure to reduce soil-N
oxide emissions.

Biochar application rate was also a vital indicator affecting soil-N oxide emissions.
By using the X-ray photoelectron spectroscopy technique, Quin et al. [60] observed a
significant adsorption of N2O by surface functional groups (C=C) of biochar and increasing
the amount of biochar adjusted the redox potentials, favoring the reduction in N2O to
dinitrogen (N2). A relatively high biochar addition rate would also create a N-limiting soil
environment, inhibiting the substrate source for net nitrification [47,52].
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4.3. Effects of Field Management Conditions on N2O and NO Emission after Biochar Amendment

N fertilization induced pulse emissions of N2O and NO, which were generally posi-
tively related to the N input rate [61,62]. The reduction efficiency of biochar amendment
was low in high-fertilizer input cases, which may be related to insufficient adsorption, or a
reduction in the capacity of biochar to handle the accumulating N fertilizer in the soil. This
can result in substantial amounts of N undergoing nitrification or denitrification [63].

Urea added to the soil is rapidly hydrolyzed to NH4
+-N by urease, providing suffi-

cient substrate which stimulates the activity of ammonia-oxidizing archaea (AOA), thereby
increasing the nitrification rate [64,65]. However, biochar amendment decreased N2O
emissions by improving the soil C/N ratio and decreasing soil-mineral nitrogen avail-
ability [41,66,67]. Biochar combined with organic fertilizer had no significant effect on
N emissions; however, due to the small sample size of this subgroup, there is a need for
further investigation of this aspect. The addition of ammonium fertilizers to soils increased
nitrification substrates and promoted nitrification dominated N2O emissions [2,66]. Mul-
vaney et al. [68] concluded that the addition of ammonium nitrogen fertilizers promoted
the denitrification process by affecting the water-soluble organic carbon content and pH of
the soil. Feng et al. [66] demonstrated that the effect of biochar combined with ammonium
fertilizer on N2O depended on TC/IN in the soil. An increase in TC/IN caused the am-
monium utilization path to gradually change from nitrification to immobilization. Biochar
can increase soil pH [66]. Thus, the application of ammonium fertilizer under high-pH
conditions can easily lead to the accumulation of NO2

−, which reacts with Fe2+ in the soil
to generate N2O [69,70].

Our analysis confirmed that biochar can mitigate N2O and NO emissions simultane-
ously under certain conditions. For agricultural applications, it is recommended to use
moderate biochar (10 < BC AR ≤ 20 t ha−1) and fertilizer (≤200 kg N ha−1) application
rates. Biochar pyrolyzed at relatively higher temperature (≥500 ◦C) have a strong redox
capacity and should be considered to reduce the emissions of N2O and NO. However,
there was limited information about the mitigation efficiency of biochar produced under
extremely high pyrolysis temperatures (>650 ◦C), which tend to have a larger surface area
and a higher pH, and this should be further studied [56]. Silty soils are usually weakly
structured and compacted easily [71], so biochar amendment would improve soil qual-
ity and reduce Nr emissions [37]. However, there is still considerable uncertainty about
biochar-induced mitigation of N emissions, which deserves further research to advance the
use of biochar for nitrogen oxides emission reduction.

5. Conclusions

In this study, the meta-analysis method was combined with the BRT model and
used to analyze simultaneous soil N2O and NO emissions after biochar application. The
contributions of soil properties, biochar characteristics, and field management conditions
to this process were further evaluated. Overall, biochar addition significantly reduced N2O
(16.2%) and NO (14.7%) emissions simultaneously from soil. The total carbon content of
biochar, soil-silt content, fertilizer type, and nitrogen application rate were the main factors
affecting N2O emissions. However, soil-silt content, biochar application rate, and total
nitrogen content were the main factors affecting NO emissions. This study comprehensively
determined the simultaneous reduction potential of soil N2O and NO emissions after
biochar amendment. It also determined the significant influencing factors impacting
the emission process and provides recommendations for future biochar application and
management, which will benefit sustainable agricultural development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su15032384/s1, Table S1: Publication bias of meta-analysis;
Figure S1: Literatures retrieval and screening process; Figure S2: Analysis of influence factors of
soil nitogen oxides emissions after biochar amendment. (A) N2O emissions and (B) NO emissions.;
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