
Citation: Kilani, M.; Diop, O.; Diop,

N. Using Transport Activity-Based

Model to Simulate the Pandemic.

Sustainability 2023, 15, 2257. https://

doi.org/10.3390/su15032257

Academic Editor: Xiang Li

Received: 14 December 2022

Revised: 30 December 2022

Accepted: 6 January 2023

Published: 26 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Using Transport Activity-Based Model to Simulate
the Pandemic
Moez Kilani 1,* , Ousmane Diop 1 and Ngagne Diop 2

1 Lille Economie et Management, UMR 9221, Département Economie Gestion, Université du Littoral Côte
d’Opale, 59140 Dunkerque, France

2 Territoires, Ville, Environnement et Socialété, ULR 4477, Département Economie Gestion, Université du
Littoral Côte d’Opale, 59140 Dunkerque, France

* Correspondence: moez.kilani@univ-littoral.fr

Abstract: We use an activity-based transport model to simulate the progression of a virus at the
regional scale. We analyse several scenarios corresponding to distinct situations and describing
how small initial clusters of infected agents expand and reach a pandemic level. We evaluate the
effectiveness of some public restrictions and compare the number of infections with respect to
the base-case scenario, where no restrictions are in place. We consider the wearing of masks in
public transport and/or in some activities (work, leisure and shopping) and the implementation of
a lockdown. Our analysis shows that education, including the primary level, is one of the major
activities where infections occur. We find that the wearing of masks in transportation only does
not yield important impacts. The lockdown is efficient in containing the spread of the virus but,
at the same time, significantly increases the length of the wave (factor of two). This is because the
number of agents who are susceptible to be infected remains high. Our analysis uses the murdasp
tool specifically designed to process the output of transport models and performs the simulation of
the pandemic.

Keywords: activity-transport simulations; the dynamic of the pandemic (COVID-19); social and
physical distancing

1. Introduction

The COVID-19 is a highly transmissible and pathogenic coronavirus that spread since
2019 and caused 6.65 million deaths worldwide (more than 150,000 in France) until now
(https://www.worldometers.info/coronavirus/ (accessed on 2 December 2022)). Most
governments were not familiar with the situation and the absence of vaccine in the early
stage of the pandemic led to great difficulties in identifying the appropriate sanitary
measures to impose [1,2]. Severe restrictions, including strict lockdown, were in place for
several weeks and caused important disruptions in the social life and economic activities.
This crisis pointed out the importance of simulation tools that can be used to analyse the
dynamic of a pandemic under distinct contexts and depending on specific restrictions in
place [3]. This should fit with existing transport reforms that are dealing with challenges
of efficiency and sustainability (energy transition, accessibility to the low incomes). In the
post-pandemic perspectives, transport policies should deal with these multiple objectives in
the development of public transport services. Simulations tools, which use has dramatically
increased in the last decade, need to include the possible spread of the pandemic, so that
authorities can examine how public transport services should be tuned to deal with a
specific epidemic problem. While this research is concerned with the COVID-19 pandemic,
its extensions to any other epidemic context is straightforward.

The combination of transport simulation and epidemic models is one of the most
relevant uses of mathematical and computational models. The transport model provides
the population and interaction network of agents (individuals) to the epidemic model in
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order to produce the dynamic of infections. The epidemic model takes into account the
heterogeneity of the agents’ behavior, and thus, the risk of infection depending on several
factors such as barrier measures and social distancing. There are several methodological
approaches to model the pandemic [4]. For example, networks can be used to link distinct
geographical locations. Depending on the connectivity between the nodes, infections can
be more or less frequent [5]. This approach can take into account transport and can be used
to study how social distancing can reduce the number of infections. To provide a more
realistic and detailed description, however, agent-based simulation is more convenient.
Indeed, since all the individuals’ daily events are tracked, we can identify the locations and
the durations of all the interactions between the agents and infer the probability that an
infected agent contaminates a non-infected one. Consequently, by processing all events, all
the related characteristics of the dynamic of the pandemic can be identified and described.

At the time this paper is written, Europe, including France, is facing the ninth wave of
the COVID-19 pandemic. Even if the latest variants produced small and moderate fatalities
by comparison to the earlier waves, public authorities are still deploying important efforts
to deal with possible worst-case scenarios. There are great concerns that the medical system
reaches levels of tense activity, where some health operations will need to be postponed, and
even higher levels where medical services become overloaded. Our analysis contributes to
understand the dynamic of a wave of the pandemic and to evaluate how effective are the
sanitary measures, in connection with public transport services.

In this paper, we use an activity-based model of urban and regional transport for the
North of France to produce social interactions. Then, by applying an epidemic model, we
simulate the spread of the virus and characterize the dynamic with respect to time and
space. Indeed, we identify the locations of infections and evaluate the frequency of their
occurrence in public transport modes. This framework is used to compare some scenarios
such as the wearing of masks, social distancing, and the consideration of vaccination, with
respect to the base-case scenario where no sanitary measures are used.

The analysis developed below uses the murdasp tools, which is a set of scripts specifi-
cally written to process the output of a transport simulation model and build all interactions,
on which it applies applies an epidemic model. A detailed description of the murdasp tool
is given in [6]. The approach is transparent and flexible, allowing a fine tuning of all the
model parameters. Agents’ travel behavior is strongly related to their locations and to the
daily schedule of their activities. A comprehensive transport model should, to some extent,
take into account the nature of these activities, their durations and how they are chained
during a typical day [7]. Our analysis is based on the output of MATSim transport simulator
[8], but the used tool (i.e., murdasp) can be easily tuned to use the output of any simulator
that produces detailed description of the daily events.

The paper is organized as follows. Section 2 reviews epidemic models and how they
can be combined with transport models. The used transport model is briefly described
in Section 3. The epidemic model is calibrated in Section 4 and the simulation of several
scenarios is discussed in Section 5. Section 6 concludes.

2. Epidemic Models and Transportation: A Brief Review

We give a short review of the literature, focusing on recent works that have considered
transport and activity-based models, and then describe an epidemic model.

2.1. An Overview on the Literature

The first epidemic model dates back to [9], who setup a compartmental model where,
in case of viral infections, each agent is either susceptible (S), those who are not yet
infected, infected (I) or recovered (R) after the infection. A contamination rate β reflects
the intensity of contamination corresponding to transitions from (S) to (I) and recovery
rate corresponding to transitions from (I) to (R). The dynamic model that builds on these
transitions is referred to as SIR and is generally described, in continuous time, on the basis



Sustainability 2023, 15, 2257 3 of 14

of a set of ordinary differential equations. The solution to these equations describes the
evolution of the agents through the three compartments.

As illustrated in Figure 1, the SIR model has several extensions and improvements to
deal with further details like incubation delays or asymptomatic agents. The plain lines
(in blue) relate the three basic compartments “susceptible”, “infected” and “recovered”.
Extensions of the basic model add further compartments to provide a finer description
that takes into account more possible states like “exposed”, in “Quarantine” or “isolated”
which are interrelated as shown by the dotted lines in Figure 1.

Susceptible
�� ��

Exposed
!!

**

Infected
  

++

��

Recovered

Quarantine
>>Isolated

DD

Figure 1. The SIR model and extensions. The basic three compartments are shown in blue and
connected by plain lines. A Possible extension is illustrated through three further compartments
connected with dashed lines.

Another main limitation to the basic model is the hypothesis of homogeneity, making
all the individuals equally treated with respect to infections and recovery. Indeed, several
realistic features of the pandemic are directly dependent on individual attributes. The
extended models generally build on the individual centered features, called also multi-
agent models. This approach is based on simulation and uses individual behaviour and
attributes [10]. Interactions between agents are the source of contamination, the frequency
of which depends on the duration of these interactions and the places where they occur.
Sanitary measures can then be applied and tested to assess their impact on the spread of
the pandemic.

For the case of COVID-19, Ref. [11] is one of the first studies that have described
how the virus spreads in a population and suggested some policies to control it. The
authors’ results have been taken into account in Great Britain and abroad in developing
some public policies to face the pandemic. They show that, in the absence of vaccine, social
distancing plays an important role in reducing the transmission of the virus. Appropriate
application of these measures can reduce demand for emergency health care by 2/3 and
divides fatalities by half. However, the reduced contamination leaves a large part of the
population exposed, and strong measures, like school closing and isolation of risky persons,
are the only options to contain to pandemic on a longer perspectives.

With respect to transportation, the analyses in [12,13] combine activity-based simula-
tion models with epidemic models to describe the dynamic of the pandemic. The transport
simulator MATSim produces the activity schedules of all the agents [8]. This output is then
processed to produce social interactions on which the epidemic model is applied to simulate
infections. A dedicated tool, called Episim, was developed to perform the required opera-
tions [13]. The probability that an infection occurs depends on several factors, including
physiological respiratory characteristics. Their study area is the city of Berlin where they
notice that the behavior of the individuals has changed even before social distancing was
in place. The authors show that actions, like wearing of masks, can efficiently reduce the
speed of propagation of the virus. But, definitely, in a serious and risky situations, only
strong actions like the lockdown can effectively reduce the number of infections.

A related study was conducted in [14] for the city of Montreal. The authors have
used a similar approach based on multi-agent modeling. The main objective in this study
is the contribution of the distinct activities to infections. The probabilities of infections
are differentiated depending on the intensity of the contacts. The authors find that most



Sustainability 2023, 15, 2257 4 of 14

infections occur in houses, primary schools and workplaces. By comparison, the contribu-
tions of activities like leisure or shopping are quiet limited. When we focus on workplaces,
there is a significant difference between distinct economic sectors. For example, and for
obvious reasons, those working in medical activities are highly exposed by comparison to
the average level in the population. Related to this fact, there are differences with respect
to gender, since women and man are unequally distributed among distinct sectors.

2.2. The Structure of an Epidemic Model

An epidemic model has two stages. The first one describes infections (transmission of
the virus) and the second one describes progression of the disease in the infected agents.
So, at a first stage we estimate the probability of a susceptible agent to be infected when
exposed to a contagious agent. At the second stage, given that an agent is infected, we have
estimated when he is contagious and when he recovers. Of course in real situations, like
the COVID-19 pandemic, there are many other attributes that need to be accounted for.

For the first stage, the transmission of the SARS-CoV-2 virus generally occurs through
aerosol infections. Assume that when a susceptible agent is in contact with an infected
and contagious agent with index m for a time span τm the probability it is not infected is
exp(−θ τm), where the positive parameter θ reflects the transmission rate which depends
on the characteristics of the virus and the context of the interaction (intensity of the contact,
whether the agents are wearing masks, etc.). This probability is decreasing; when τm
is zero the agent is not infected with probability 1, and when τm = ∞, the agent is not
infected with probability zero. This formulation is thus consistent with basic assumptions.
When a susceptible agent interacts with several contagious agents m = 1 . . . , n, and if we
assume that the probabilities of infections are independent, then the probability he is not
infected is Πn

m=1 exp(−θ τm). Thus, the probability it is infected is the complement of this
expression. Indeed, the probability of an infection of an agent given it was exposed to other
infected agents is frequently computed accordingly and through the exponential expression
(see [13]) given by:

Pa(infection | n contacts) = 1− exp

(
−θa

n

∑
m=1

τm

)
. (1)

Here, we add an index to the transmission rate θ to indicate that it corresponds to
activity a. It is considered constant which is a reasonable assumption if the interactions
occur at the same location. For example, if we consider that interactions in leisure activities
are more favorable for infections than interactions in shopping activities we can consider
two parameter values θleisure and θshop, respectively, such that θleisure > θshop. By extension,
the index a covers both activities and transport modes.

The exponential distribution given in Equation (1) has the property of being memory-
less, i.e., P(X > x + y|X > y) = P(X > x), where P denotes the probability, x and y some
given positive values and X a random variable distributed according to the exponential
density function. Stated in simple words, the probability that an event occurs after noon
does not depend on whether it occurred before noon or not. This is useful in simulations
since the events are updated at fixed intervals of time, generally equal to one second. Based
on this feature, we simply compute the probabilities of infections for distinct intervals as
the simulation progresses.

To take into account physical attributes of the places where agents meet and interact,
other parameters can be added. For example, in closed areas the room size and the air
exchange are important and need to be taken into account. With respect to the agents, it
is usual to consider the shedding rate and the intake, which reflect more or less physical
interaction, and the main means for virus transmissions between distinct individuals. At
this first stage, it is important to know whether sanitary measures are in place, or not,
since they significantly impact the probabilities of transmissions. For example, wearing
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masks can be taken into account by reducing the shedding rate. These components enter
expression in (1) as multipliers of parameter θ.

At a second stage, we consider the model of the progression of the infected agents.
This stage is dependent on biological attributes of the virus and the infected bodies. A
compartmental approach, extending the SIR, can be used. For COVID-19, and based on the
literature, some extended models distinguish between seven compartments (cf. Figure 1):
susceptible, exposed (infected but not contagious), infectious, showing symptoms, seriously
sick (needing health care), critical (needing intensive health care), recovered. In the activity-
based model we consider here, it is not important to dive into the underlying biological
details related to these distinct states, since we mainly need to know whether an agent is
infected, whether he is contagious and when he recovered. Notice that the sequence of
states depends mainly on the date of the infection, and this date is the main variable to
keep in memory to determine the compartment where a given agent is in any period of
time. Our approach follows this strategy.

3. Activity-Based Transport Models and Social Interactions

The pandemic model builds on transport model based on agents’ activities. We use
the transport model described in [15], and we only report in this section its structure and
main features. Distinct agents have distinct schedules, which are more or less complex.
Two possible schedules are illustrated in Figure 2. Simple home-to-work round trip is first
shown in the left panel for an agent who uses private car only. In the second example
(on the right panel), the agent has more activities and he uses the private car, but also
public transport for some trips, for example those in downtown. Transport is thus a link
between distinct activities. Social contact occurs in these activities and in public transport.
By simulating daily transport, we construct schedules of all the agents and we can thus
evaluate when each agent interacts with another one, i.e., when they are at the same
location. Of course more complex schedules, where some users combine multiple modes
(intermodal transport) for the same trip, are also possible and are taken into account in
our framework. Indeed, we follow the schedules reported in the census data and that
correspond to realistic observations.

Shopping

bus
		

Home

car

��

Work

car

^^ Home

car
**
Work

bus

II

caruu
Leisure

car

^^

Figure 2. Examples of daily activities schedules.

The study region in given in Figure 3. It covers the departments “Le Nord” and the
“Pas-de-Calais” with a total population of about four million inhabitants (2.6 million in “Le
Nord” and 1.4 million in “Pas-de-Calais”). We take into account both urban, suburban and
intercity trips. Lille is the largest metropolitan area, with more than 1.1 million inhabitants.
Other major cities include Valenciennes, Dunkerque (Dunkirk), Calais, Boulogne-sur-Mer
and Arras. The historical mining activities partly explains the trip patterns observed
between the mining area (the shaded region in Figure 3) and major cities; Lille, in particular.
Motorways around this city are severely congested during the peak hours. Also, the “A1”
motorway, linking Lille to Paris, is a main connection for freight transport between northern
Europe, Paris region and other southern cities in the south of France and Spain. The region
itself is a main place for logistics activities, including warehousing, since it connects several
ports (Dunkerque, Calais and Boulogne-sur-Mer) and multimodal platforms (for example,
Dourge which is located in the south of Lille).
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Figure 3. The region covered by the model (North of France). The two departments, “Le Nord” and
“le Pas-de-Calais” are represented as well as the historical mining region.

The regional dimension of this model is particularly relevant for the spatial analysis
of the pandemic. Indeed, an initial cluster of infected agents at a given agglomeration or
a rural area expands, under the absence of restrictions, and spreads at the regional scale.
The transmission occurs through transport (collective modes, in particular) and because
several home-to-work trips are not within the same district. In particular, home-to-work
trips between the metropolitan area of Lille and the mining region (shown in Figure 3) are
important. Thus, a proper modeling approach should take into account urban transport
(including suburban areas), inter-city trips as well as transport in rural areas. As many other
regions in France, the North of France was largely impacted by the pandemic, especially
by 2020 and 2021 where a lockdown was in place for several weeks to limit the spread
of the virus. In the department “Le Nord”, and between 1 Marsh and 20 April mortal-
ity rate increased by 20%. (See https://www.coronavirus-statistiques.com (accessed on
2 December 2022)).

We take into account four transport modes “walk”, “bike”, “car” and “public trans-
port”, and allow for their combinations (to some extent). Public transport includes “bus”,
“train”, “metro” and “tramways” and each of these modes has a distinct parameter θ. Data
from the Regional Household survey of 2016 is used to build the schedules of daily trips.
The database covers a comprehensive description of the trips (origin, destination, departure
and arrival times, purpose, modes, etc.) and the travelers (age, job qualification, household
size, availability of a car, etc.). In the transport model, a “synthetic population” of agents is
considered: instead of the whole population, a representative sample is considered. This
practice is standard in transport simulation to speed-up computation time [8], and for case
studies with millions of inhabitants the size of the synthetic population is generally between
5% and 30% of the total population. To keep the simulation consistent with respect to traffic
flow dynamic [16], the capacities of the links in the network are downscaled accordingly.
For our case, the transport model was calibrated for 10% and 20% of the total population.
The analysis reported here is based on a synthetic population of 10%, which allows us to
keep the computation time for the epidemic model within a reasonable time limit (about
ten hours to run one scenario).

Mode shares are shown in Figure 4 (the right panel). The private car is the dom-
inant mode, and most short trips, less than one kilometer, are made by walk. Public
transport modes are used for urban (bus and metro) and intercity (train) trips. Other
modes, like tramways and intercity buses, have a very small share and are not reported
here (but are used in the model). The data we use covers all the trips departing and
arriving inside the study region, but also inflows and outflows with other regions in
France. Unfortunately, data on cross-border traffic is not available in the used survey.
Since these flows are important for the pandemic context, in particular with the neigh-
bouring cities in Belgium, we complement the dataset by census data (from INSEE (see

https://www.coronavirus-statistiques.com/stats-globale/coronavirus-nombre-de-morts-par-departement/
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www.insee.fr/fr/information/2008354 (accessed on 12 December 2022))) that accounts for
home-to-work trips for agents living in France and working in Belgium. The reverse flows
are not available, which is a limitation for our analysis. To overcome this problem, for each
trip departing from the study region and arriving to a location in Belgium a trip in the
reverse direction is added. This assumption may not correspond exactly to reality, but we
think it is useful to take into account spatial interaction with cross-border locations. From
the survey data, the purposes of the trips are obtained from the origin and destination
of each trip. As reported in the main part of Figure 4, the most important activities are
“Home”, “Work”, “Shopping” and “Accompaniment” (family or friends).
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Figure 4. The proportions of activities (left panel) and the proportion of transport modes (right panel)
as reported in survey data. These values are produced by the calibrated transport model.

In the simulation framework, a mode choice model is used to obtain the decisions of
each agent. The mode choice includes the transport mode (or modes) used for each trip, but
also the route choice (for private cars, in particular) and departure time. This mode choice
model is based on a utility maximization problem. The utility reflects several facts: agents
prefer to reduce time and money allocated to trips, they incur a schedule delay cost when
they arrive late to work, they prefer to spend enough time at home and in leisure activities,
and so on. One of the most important steps in setting the transport model is the calibration.
It corresponds to a fine adjustment of the model parameters so that the simulations produce
traffic flows that are comparable to those in the survey data. A detailed description of the
transport model and the calibration step is given in [15].

Once the model is calibrated, it produces a report of daily events providing detailed
information on all the trips: a given agent starts a trip at a given time, she arrives at the
destination at a given time, which mode has been used, and so on. This output is the
basis of the pandemic simulation that we develop using the model we have described in
Section 2.2. By using the multi-agent approach we easily scale both the transport data and
the epidemic data at the level of the agents. To simulate a wave of the pandemic, a random
set of infected agents is created. The transmission of the pandemic will depend on their
travel patterns and interactions with non-infected agents. Aggregation to urban or regional
scale is then straightforward.

4. Implementation and Calibration of the Pandemic Model

In a first step we adjust the values of parameters θ, for the activities and transport
modes so that the model produces realistic trend of the pandemic. In a second step we
examine the spatial dynamic of infections over the study region.

4.1. Calibration

Transport simulation of traffic flows for a whole day produces a detailed sequence
of the events that occur at each time interval (one second). The events indicate whether
a given agent has entered or existed a location or a vehicle. Processing this information
yields all the interactions during the day; that is, which agents have interacted together and
how long each interaction was. This step was conducted with the murdasp tool specifically
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developed for this purpose. It is a set of scripts that processes the output files of a transport
simulation and applies the pandemic model to simulate the spread of a virus.

The objective of the calibration is to find appropriate parameter values of the model
so that the simulations produce realistic dynamic of the pandemic. In this framework,
calibration comes down to finding appropriate values for parameter θ in each facility and
transport mode. The main difficulty in this process is the lack of data on the location of
infections. Indeed, even the number of the infected persons is not well reported, since
it depends on those who made the test. But, once the test is positive, it is difficult to
trace back the location where the infection has occurred. The available databases do not
report information on these locations. For a given wave of the pandemic, the most reliable
information is its duration, as well as the daily rate of relative change in infections. We
mainly consider these variables in our calibration and use suggestive values when it comes
to distinct facilities. Indeed, infection is a physical process where the virus is transmitted
from an agent to another. Several studies, as in [17], predict the probability of transmission
on the basis of cinematic laws. It is then possible to infer probabilities of infections from the
number of susceptible persons, the number of the infected, the size of the facility where
they meet and the duration of the interactions. For transport, ref [18] conducts a study on
the probability of infection depending on the duration of the contact and the relative seats
(in a train) of susceptible and contagious agents. The authors report that the probability
highly increases when the two agents have adjacent seats, it remains high for seats on the
same row, but significantly decreases as they are in distant rows. The values proposed by
the authors are suggestive and were taken into account into our calibration step.

The calibration of our model requires the adjustments of ten parameters corresponding
to values of θa in six activities (home, work, leisure, shop, education, primary) and four
transport modes (bus, train, tramway and subway). Given the difficulties to get detailed
data on the occurrence of infections we have adopted an aggregate approach where we
focus on the length of a wave of the pandemic and set the parameters for each activity (or
transport mode) to be consistent with basic intuition. For example, assuming the same
number of contagious passengers per vehicles, the probability of infection in a bus is
higher than that in a train since physical contact is generally stronger. This is taken into
account by considering (during the calibration of the epidemic model) numerical values
that satisfy θbus > θtrain. We start by generating a random set of values and then, at each
case, perform adjustments to reach a correct duration and trend of the pandemic wave.
This process was extensively repeated and we ended up with values given in Table 1. From
the expression of the probability in (1) and, for example, the value of θleisure in Table 1, a
non-infected agent interacting with a contagious agent for one hour in a leisure activity is
infected with a probability of 1.8% (the duration τ in (1) is measured in seconds). Similarly,
a one-hour bus trip yields a probability of infection equal to 3.7%. For these two cases if the
non-infected agent interacts for one hour with three contagious agents each (instead of one)
the probabilities of infection increase to 5.4% and 11.3%, respectively for leisure activity
and a bus trip.

Table 1. The calibrated values of parameters θ are obtained, for each activity of transport mode by
taking the value p in this table and then performing the computation θ = p× 5× 10−6.

Home Work Leisure Shop Educ. Primary Bus Train Tram Subway

0.1 0.3 1.0 0.08 0.009 0.15 2.1 1.2 0.9 1.75

4.2. From a Cluster to a Large-Scale Pandemic

Using the calibrated model obtained above, we consider, as a first application, the
simulation of a wave of the pandemic on the basis of initial clusters that appear in distinct
agglomerations in the study area. We compare the speeds of the spread of the virus
depending on whether the initial cluster is located in a dense urban zone or whether it is
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located in low density area. A cluster is a set of twenty contagious individuals living in the
same district.

Figure 5 illustrates the spatial progress of the pandemic. The situation starts with an
initial cluster of infected agents in Boulogne-sur-Mer and reports, for some subsequent
weeks, the evolution of the pandemic. On average, the growth of the pandemic is higher
when a cluster is located in a large agglomeration, like Boulogne-sur-Mer. During the
first week, the cluster extends to the neighbouring areas and within two weeks it reaches
the metropolitan area of Lille and the nearest main agglomerations. After three weeks
most infections are located in the dense area of Lille, and most locations in the study area
are concerned.

Figure 5. Dynamic of the pandemic spread following an initial cluster in Boulogne-sur-Mer (in the
West). Background legend: a dark color corresponds to a higher population density, and vice-versa.

At the end of the first month, daily infections count in thousands and the mining
area, as almost all other large urban areas (Dunkerque, Boulogne-sur-Mer, . . . ), are largely
concerned. Home-to-work trips which are the main flows between the mining area and
Lille play an important role at this stage. In the following weeks, the number of daily
infections continues climbing. By the second half of the second month, the number of
infections start decreasing in Lille and the other large agglomerations, but remains high in
the mining area until ten weeks (from the start of the pandemic). In the following weeks,
the number of infections decreases in all parts of the study region, and after three months
the number of infections falls below one hundred, scattered over several rural areas where
the number of susceptible agents remains relatively high.

One of the main features of this dynamic is the high correlation between the population
densities and the number of infections in the corresponding districts. The low density
areas (light colors in Figure 5) play a minor role in the transmission of the virus. The
main risk is at the early stage of the pandemic when it may expand to neighbouring dense
agglomerations and then spreads at a regional scale. In the examples we have considered
we find, however, that soft restrictions in these areas can, in general, effectively isolate the
infected agents and avoid reaching the pandemic level. We finally notice that clusters that
appear in large agglomerations expand relatively quickly, since we reach thousands of
infections within two or three weeks, while clusters that are located in small agglomerations
take longer time to expand and may need four or five weeks to produce the same numbers
of infections. In some rural areas, with very low densities, small clusters do not expand
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spatially even in the absence of restrictions. This is explained by the low level of physical
contacts and traffic flows with larger agglomerations.

5. The Impact of Social and Physical Distancing

In this section, we report a set of simulations we have conducted with the trans-
port model described above. We mainly consider imposing wearing of the mask and
lockdown restrictions.

5.1. Wearing of Mask

Wearing masks in public places is a basic step in limiting the spread of the virus.
We examine this sanitary measure by considering several scenarios, starting with public
transport and then considering other alternatives. In real cases, when masks are imposed,
all public transport modes are concerned. It is indeed unlikely to adopt such a sanitary
measure for some modes and not for others (An exception could be air transport which
is sometimes regulated by specific rules, but the scope of our analysis is limited to urban
and regional transport (less than 200 km)). But, since we are interested in identifying the
modes that play the most important roles, we consider a set of scenarios where wearing a
mask is imposed on some modes and not imposed for users of other modes. It follows that
with four public transport modes (bus, rail, tram and subway) there are sixteen possible
combinations to consider.

When agents are wearing masks, the probability of an infection decreases and the
exact magnitude depends on the type of the mask, among other facts. As reported in [19]
several types of masks (cloth, surgical and N95) yield significantly distinct impacts on the
probability of infections. For our analysis, we do not consider several types of masks and
instead consider a decreases in the probability of an infection by a factor of ten, which can
be considered as an average value. In our model, this measure is implemented by dividing
the value of the corresponding θa parameter by ten for the corresponding modes. Notice
that reducing the values of parameters θa is equivalent to reducing the shedding rate.

Figure 6 reports cumulative values of daily infections for all considered cases. In
the base-case, more than 88,000 infections occur as reported by the uppermost curve. By
considering wearing of masks we have two impacts: the spread of the virus is delayed and
the total number of infections decreases. When only one or two public transport modes are
considered, the impact is small, in particular for tram which is used by a tiny proportion of
users. The buses and the subway in Lille, which are much more used, yield higher decrease.
Not surprisingly, the highest impact is obtained when wearing of masks is imposed in all
modes. Notice that when tramways (in Lille and in Valenciennes) are excluded from this
measure, the number of infections is still the lowest, confirming the small marginal impact
of infections in tramways.
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Figure 6. Number of infections depending on public transport modes where the wear of a mask is
imposed. An initial cluster in Lille is considered.
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When masks are not mandatory, in the base-case scenario, the total number of infec-
tions is 85,111. With the obligation to wear the mask in all public transport modes, the total
number of infections decreases to 63,982, that is a decrease by 24.82%. We thus consider
extending masks to other activities. As in the previous case, we consider progressive
implementation in distinct activities as reported in Table 2. In the reference case, there
are no restrictions and this corresponds to the first line. We then consider the case where
masks are mandatory in all public transport modes, which is reported in the second line.
As the wear of masks extends, respectively, to work, leisure shop and education, including
primary schools, the number of infections decreases. Imposing masks in public transport
and at work, the number of infections decreases by 42.80% by comparison to the base-case.
Leisure activities seem also to be important since they contribute to reach a decrease in the
number of infections by 57.42%, but extending masks to shopping activities produces only
a small marginal impact, which is comparable to findings in [14]. Education, including
primary schools, in contrast, is very important and produces a significant marginal impact.
When the wear of a mask is generalized to all activities, the pandemic is almost contained
and the number of infections drops to 339 only (a decrease by 99.60% by comparison to
the base-case). We may notice that when sanitary measures are in place, the length of the
pandemic wave increases. This is particularly the case for the before last scenario, when
masks are imposed everywhere. It confirms that effective sanitary measures can limit the
spread of the virus, but they should not be lifted quickly since the number of susceptible
agents is still large.

Table 2. Scenarios where the wear of a mask is imposed in distinct activities.

Id Pub. Trans. Work Leisure Shop Education Primary Infections Impacts

1 no no no no no no 85,111 -
2 yes no no no no no 63,982 −24.82%
3 yes yes no no no no 48,680 −42.80%
4 yes yes yes no no no 36,238 −57.42%
5 yes yes yes yes no no 34,138 −59.89%
6 yes yes yes yes yes no 3652 −95.70%
7 yes yes yes yes yes yes 339 −99.60%
8 no yes yes yes yes yes 15,404 −81.90%

The last line in Table 2 refers to the case where the wearing of masks is in place in all
activities except in public transport. This scenario is unlikely in a real situation, but it helps
understand the relative role played by public transport in the spread of the virus. For our
case, and from the results reported in Table 2, public transport alone does not seem to play
a major role in growth of the pandemic since the number of infections still decreases by
81.90%, which is relatively large. Taking into account the second and the last lines, we can
infer from these simulations that public transport account for about 18% to 25% of the total
number of infections. Indeed, and a priori, it is not clear whether public transport plays a
major or a moderate role in the spread of the virus. On one hand, physical contacts between
users of public transport is intensive and makes the susceptible agents using this mode
highly exposed. This is particularly important during the peak period where most vehicles
are crowded. On the other hand, the share of public transport modes is relatively small in
the study region (about 7%), and the duration of the interactions are, on average, short by
comparison to other activities like work, or home. This explains why their contribution in
the growth of the pandemic is rather limited.

5.2. The Lockdown and Vaccination

We consider a lockdown, where all activities are running at their minimum level and
agents are only allowed to make basic shopping. In this case, and as shown in Table 2,
the number of interactions and their durations decrease significantly. Except in houses,
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wearing a mask is mandatory. During, the COVID-19 pandemic, the confinement of the
population was in place for several weeks and in many countries. It is perceived as the
most efficient sanitary measure, especially when no vaccine is available. We use our model
to evaluate the impact of lockdown by removing the interactions in all activities, except
houses and shopping.

The comparison between the base-case scenario, where no restriction is adopted, and
the case where most activities are shut-down (the lockdown) is given in Figure 7. In the left
panel the daily number of infections is reported for distinct initial clusters and without any
restriction. The same clusters are considered in the second case (right panel) where strict
social distancing is imposed through a lockdown. Daily infections are about ten times less
frequent and we may notice two facts. First, the length of the wave significantly increases
from hundred days to, for some cases, two or three hundred days. Second, some waves
display multiple peaks (multimodal distributions) and reach their maximum values with a
delay of two months or more.
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Figure 7. A comparison of infection rates between the base-case scenario (left panel) and lockdown
situation (right panel). Each curve corresponds to the city (indicated in the legend) where the initial
cluster appeared.

Figure 7 confirms that under a lockdown, the total number of infections remains small,
and initial clusters in large agglomerations (Lille and Valenciennes, for instance) yield the
highest rate of infections. Indeed, in low density areas, the implementation of a lockdown
is highly efficient in keeping the number of infected agents limited. In metropolitan areas,
since the population size is large, there are much more interactions in basic activities
(e.g., shopping). Thus, even when some (soft) restrictions are imposed, the number of
infections can remain high. The main difficulty with the lockdown alternative is that it
should be maintained several weeks, since the threat of a widespread of the virus is always
present. The duration of the lockdown has important economics and social costs [20,21],
making its usage conceivable for few times and in especially when no vaccine is available.

6. Conclusions

We have calibrated an epidemic model for the North of France and conducted several
simulations to examine the spread of the COVID-19 virus under distinct sanitary measures.

The analysis uses the murdasp tool and builds on the output of a multi-agent, activity-
based, transport model. By collecting the daily events for the agents in the simulation,
we identify all the interactions between the infected agents and the susceptible agents
and, by applying a stochastic epidemic model, we identify, in each case, whether the
transmission of the virus occurs or not. The probability of an infection depends on several
attributes corresponding to the location where the physical contact occurs (large or small
building, closed or open area, etc.) and the duration of the interaction. The simulation of
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the pandemic is a repetition of this process for all the agents along the whole simulation
period, which extends from the date when the first infected agents appear (a first cluster)
to the end of the pandemic (no more infections). More than three months are generally
required for a wave to dissipate.

Our simulations confirm a strong relationship between the densities of the population
and the number of infections. Rural areas with low densities play only a minor role in the
spread of the virus. By imposing sanitary restrictions, particularly the wearing of masks,
the number of infections decreases significantly, but the length of the wave increases, on
average, by a factor of two. Also, we find that the wearing of masks is significantly more
effective when it is not limited to public transport but extended to other activities. There
are important differences in the protection provided by medical masks and ordinary ones.
Conducted simulations, that are not reported in Section 5, confirm the intuition that the
agents wearing medical (or N95) masks are less concerned by infections (either as exposed
or transmitter).

This is a first application of the murdasp tool. The set of scenarios we have examined
can be enlarged in several directions to address other issues. For example, a more detailed
examination of the characteristics of the infected (and non-infected) agents and the structure
of their activities can be considered. We have used only limited statistics on these facts
because, for instance, there are no comprehensive databases that report the infections in
relation with the nature of the activities. Indeed, when an agent is infected, it is difficult
to trace back the exact location where the infection has occurred. Of course, inferences on
the locations are possible, but, due to the lack of data, their accuracy cannot be evaluated
by comparison to observed values. Another potential application that we plan to consider
in the near future is how public transport services can be adjusted to limit the spread of
the virus. Reducing the number of buses and trains may seem a natural response to the
decline in demand, but can increase the occupancy rate of the vehicles and, by so, reinforces
the occurrence of infections. By increasing the service frequencies at their usual level, or
keeping, the same level of frequencies we may obtain a better result, but this should be
balanced against the increase in operating costs.

Our analysis is based on the murdasp tool which is a set of scripts that process transport
simulation outputs to collect physical contacts between the agents, and then applies an
epidemic model to simulate the transmission of the virus. It is a flexible and transparent
tool, but several improvements can be considered. In particular, the computation speed
is relatively long and requires, for instance, about ten hours for each of our scenarios.
Computation speed can be improved by the parallelization of several parts in source code.
These issues will be considered in the future improvements.
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