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Abstract: In order to investigate the use of unmanned aerial vehicles (UAVs) for future application in
road damage detection and to provide a theoretical and technical basis for UAV road damage detec-
tion, this paper determined the recommended flight and camera parameters based on the needs of
continuous road image capture and pavement disease recognition. Furthermore, to realize automatic
route planning and control, continuous photography control, and image stitching and smoothing
tasks, a UAV control framework for road damage detection, based on the Dijkstra algorithm, the
speeded-up robust features (SURF) algorithm, the random sampling consistency (RANSAC) algo-
rithm, and the gradual in and out weight fusion method, was also proposed in this paper. With
the Canny operator, it was verified that the road stitched long image obtained by the UAV control
method proposed in this paper is applicable to machine learning pavement disease identification.

Keywords: unmanned aerial vehicle (UAV); road damage detection; continuous photography; route
planning algorithm; image stitching method

1. Introduction

Road maintenance is critical to extend the life of roads and to increase the sustainability
of road facilities [1]. A scientific and reasonable road maintenance strategy cannot be
achieved without pavement damage detection and assessment. The traditional pavement
damage detection method is visual inspection, that is, an inspector walks or is passenger in a
slow-moving vehicle to observe and manually record the type of pavement disease, severity,
location, etc. [2–5]. With the continuous improvement of automated equipment technology,
inspection vehicles equipped with various automated pavement inspection equipment
have been gradually developed and used in pavement damage inspection. These include a
road surface breakage shooting vehicle developed by the French LCPC road management
department [6], an automatic pavement-distress-survey system (APDS) developed in
Japan [7], a pavement camera evaluation system (PCES) developed by Earth Technology
Corporation in U.S. [8], an automatic road analyzer (ARAN) developed by Roadware
Corporation in Canada and the Hakeye2000 rapid inspection system developed by the
Australian Road Research Board (ARRB) [9]. Furthermore, there are also some scholars who
are devoted to pavement crack identification and use various sensor technologies, including
polymer optical fiber sensing technology [10], ground penetrating radar (GPR) [11,12], or
fiber Bragg grating sensors [13,14]. Each of these pavement detection methods have
disadvantages; manual detection, for instance, requires significant human effort [15], has
low efficiency and is high-risk [16]. Furthermore, road survey vehicles are usually expensive
to build or purchase, with prices reaching up to $500,000 [17], and still suffer from low
detection efficiency and lack of accuracy [18,19].

As unmanned aerial vehicle (UAV) technology has developed, it has begun to be
used in an increasing number of engineering fields engaged in dangerous operations and
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efficiency gains [20–23]. In the field of road damage detection, there are few studies related
to the use of UAVs. Compared with the use of the traditional manual detection method
or with road survey vehicles, UAVs can obtain information about road cracks in a more
convenient way and without affecting road traffic [24], thus it may be considered a very
promising method for rapid and extensive road damage detection in the future.

The main principle of road damage detection using UAVs is that the disease identifica-
tion method should be based on machine learning image recognition of aerial pavement
images, on which there has been an increasing amount of relevant research. These include
the convolutional neural network-based disease morphology feature extraction technique
developed by Lin et al. [25], the deep learning-based white noise suppression algorithm
developed by Koziarski et al. [26], the Gabor filter-based crack detection method developed
by Salman et al. [27], and the crack disease detection method with non-uniform illumination
and strong texture images developed by Sorncharean et al. [28]. In terms of the flight route
planning methods for UAVs, current research has focused on traditional algorithms [29],
learning algorithms [30,31] and fusion algorithms [32,33].

In general, there are many challenges to the practical application of UAVs in the
detection of pavement damage. For example, there is a lack of optimal camera parameters
and flight parameters for UAVs to perform full-road continuous image acquisition on
pavements, a lack of specialized and reliable route planning algorithms and shooting
control algorithms for automatic road damage detection by UAV, and a lack of efficient
methods for stitching single images of pavements into a long road image to perform
machine learning to identify road damage. As a reference for solving the above problems,
the aim of this paper is to determine the optimal camera and flight parameters of a UAV
during road image acquisition, and to propose a flight planning control algorithm and
image stitching processing method from the demand of UAV road damage detection tasks.

2. Methods
2.1. The Framework of Road Damage Detection by UAVs

The general framework of the UAV road damage detection task proposed in this study
could be described as follows:

In order to ensure that the UAV flies strictly over the detected road, and to ensure
that the image quality obtained by the UAV satisfies the requirements of pavement disease
detection, this framework requires two steps before the UAV takes off. The first of these
is to determine the best flight parameters and camera parameters, including pixel values,
flight altitude, shooting interval, shutter speed, flight speed, etc. Secondly, it is necessary to
obtain a positive-weighted directed graph by AMAP and input it into the route planning
algorithm to control the flight route of the UAV. After the UAV takes off, because each
image taken by the UAV during flight has the same size, it is necessary to shoot images at
the same distance along the detected road so as to effectively cover all the detected road
sections. An isometric shooting algorithm is then developed and adopted to realize the
isometric shooting in the framework.

After the original images are collected, in order to realize the automatic recognition
of pavement diseases (mainly pavement cracks), the original pavement images need to be
calibrated, spliced and smoothed, in this framework, an image calibration algorithm, an
image stitching algorithm and an image smoothing algorithm are developed and finally
adopted to realize the automatic image processing for the road detection tasks.

The previous steps are displayed in Figure 1.

2.2. Determination of UAV Parameters
2.2.1. Camera Parameters

During image acquisition, in order to not affect any vehicles on the road, a camera
height of at least 5 m from the road should be maintained. At the same time, in order to
reduce the distortion of the road image, it is also inadvisable to choose a wide-angle lens
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whose focal length is too short. Therefore, the lens used in this study is of 35 mm fixed
focal length.
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Furthermore, in order to ensure satisfying image stitching results, it is necessary to
ensure that the lens is perpendicular to the road when shooting. Therefore, the pitch angle
of the UAV was set to 0◦ and the pitch angle of the gimbal(camera) to 90◦ (perpendicular to
the road) when shooting in this study.

2.2.2. Minimum Requirements for Image Pixels

When the UAV performs a road surface detection task, its flight altitude will determine
the proportion of the detected road in the image. Field tests in this study show that, for
road images, the feature points extracted by the image-matching algorithm are often
concentrated on trees, plants, green belts and other roadside facilities on both sides of
the road, and it is difficult to extract features from the road itself. In order to facilitate
image stitching, a certain net width needs to be maintained on both sides of the road when
acquiring images; or, in other words, the image range should be larger than the road range.
The lateral width D of the image range can be calculated by the Equation (1):

D = b× n + 2a (1)

where b represents the lane width, n represents the number of lanes, and a represents the
net width maintained on both sides of the road.

According to previous research [34], the success rate of pavement disease identification
is highly dependent on the definition of the image. A road image of 100 × 100 pixels or
200 × 200 pixels is usually needed for machine learning and pavement disease recognition.
To guarantee the success of crack identification in a 50 cm × 50 cm road surface region, an
image of 200 × 200 pixels will be needed, if the crack is relatively mild. According to this,
the demand of image definition is identified as 2.5 mm/pixel. When the lateral width of
the image range D is fixed, the definition of the road surface image could be calculated by
Equation (2):

Total Pixels = D× 400× D× k (2)

where k is the aspect ratio of the image.
According to Equations (1) and (2), the required lateral width D for various road

widths, as well as the definitional demands of the road images, are listed in the Table 1:



Sustainability 2023, 15, 2182 4 of 26

Table 1. Recommended minimum pixel values for various road widths.

Number of Lanes Road Width (m) Lateral Width of the
Image Range (m)

Recommended Pixel
Value

1 3.75 7.75 5.6 million
2 7.5 11.5 12 million
3 11.25 15.25 21 million
4 15 19 33 million
5 18.75 22.75 47 million
6 22.5 26.5 62 million

2.2.3. Minimum Requirements for Flight Altitudes

According to the lens imaging principle of the camera vision system, the relationship
between the lateral width of the image range and the focal length of the lens can be
expressed through Equation (3):

h× a = f × D (3)

where h is the distance between the sensor and the photographed object, which is also
the flight height in this study, while a is the lateral width of the sensor in the camera, and
f is the focal length of lens. According to Equation (3), the flight height h could thus be
calculated by the Equation (4):

h =
f × D

a
(4)

The length of the sensor a in the camera used in this study is 36 mm, and the focal
length f of the lens is 35 mm. The suggested flight heights of the UAV are listed in Table 2:

Table 2. Recommended flight heights for various road widths.

Number of Lanes Road Width (m) Lateral Width of the
Image Range (m)

Recommended
Flight Height (m)

1 3.75 7.75 7.6
2 7.5 11.5 11.2
3 11.25 15.25 14.9
4 15 19 18.5
5 18.75 22.75 22.2
6 22.5 26.5 26.0

2.2.4. Optimal Equidistant Shooting Intervals

The images collected by the UAV are continuous single images, which need to be
stitched to form a complete long image of the pavement. If the image overlap ratio is
too low while the images are being stitched together, this will affect the accuracy of the
matching algorithm and will thus cause distortion in the final image. Figure 2 shows that,
when the overlap ratio is low, a large offset angle (α) may be caused in the stitched image.
On the other hand, an excessively demanding image overlap rate will occupy too much
memory resources and increase the calculation cost.

To obtain an optimal overlap ratio, one that guarantees the quality of the stitched
image while incurring the lowest possible calculation cost, and thus further calculate the
optimal shooting interval distance, a series of image stitching experiments were conducted
in this study. The relationship between the overlap ratio and the offset angle of the stitched
image is shown in Figure 3:

As can be seen from Figure 3, when the overlap ratio reaches 15% or more, the
offset angle of the stitched image will drop to 0◦, i.e., no distortion will occur. Previous
research [35] has also proved that, when the overlap ratio is larger than 20%, the stitching
result is satisfactory. Considering the above conclusions, the overlap ratios adopted in this
study are between 20% and 25%.



Sustainability 2023, 15, 2182 5 of 26Sustainability 2023, 15, 2182 6 of 28 
 

  
(a) (b) 

Figure 2. The distortion (at large offset angles (𝛼)) of the stitched image when the overlap ratio is 
low. (a) The stitched image when the overlap ratio is 4.2% and (b) the stitched image when the 
overlap ratio is 7.4%. 

To obtain an optimal overlap ratio, one that guarantees the quality of the stitched 
image while incurring the lowest possible calculation cost, and thus further calculate the 
optimal shooting interval distance, a series of image stitching experiments were con-
ducted in this study. The relationship between the overlap ratio and the offset angle of the 
stitched image is shown in Figure 3: 

 
Figure 3. The relationship between the overlap ratio and the offset angle. 

As can be seen from Figure 3, when the overlap ratio reaches 15% or more, the offset 
angle of the stitched image will drop to 0°, i.e., no distortion will occur. Previous research 
[35] has also proved that, when the overlap ratio is larger than 20%, the stitching result is 
satisfactory. Considering the above conclusions, the overlap ratios adopted in this study 
are between 20% and 25%. 

Figure 2. The distortion (at large offset angles (α)) of the stitched image when the overlap ratio is low.
(a) The stitched image when the overlap ratio is 4.2% and (b) the stitched image when the overlap
ratio is 7.4%.

Sustainability 2023, 15, 2182 6 of 28 
 

  
(a) (b) 

Figure 2. The distortion (at large offset angles (𝛼)) of the stitched image when the overlap ratio is 
low. (a) The stitched image when the overlap ratio is 4.2% and (b) the stitched image when the 
overlap ratio is 7.4%. 

To obtain an optimal overlap ratio, one that guarantees the quality of the stitched 
image while incurring the lowest possible calculation cost, and thus further calculate the 
optimal shooting interval distance, a series of image stitching experiments were con-
ducted in this study. The relationship between the overlap ratio and the offset angle of the 
stitched image is shown in Figure 3: 

 
Figure 3. The relationship between the overlap ratio and the offset angle. 

As can be seen from Figure 3, when the overlap ratio reaches 15% or more, the offset 
angle of the stitched image will drop to 0°, i.e., no distortion will occur. Previous research 
[35] has also proved that, when the overlap ratio is larger than 20%, the stitching result is 
satisfactory. Considering the above conclusions, the overlap ratios adopted in this study 
are between 20% and 25%. 

Figure 3. The relationship between the overlap ratio and the offset angle.

Similar with Equation (4), the longitudinal width L of the image range can be calculated
by Equation (5):

L =
hb
f

(5)

where b is the longitudinal width of the sensor in the camera, which is 24 mm in this study.
The calculation results of equidistant shooting intervals are listed in the Table 3:

Table 3. Recommended equidistant shooting intervals for various road widths.

Number of Lanes Road Width (m) Longitudinal Width of
the Image Range (m)

Equidistant Shooting
Interval (m)

1 3.75 5.16 3.87
2 7.5 7.67 5.75
3 11.25 10.17 7.63
4 15 12.67 9.5
5 18.75 15.17 11.38
6 22.5 17.67 13.25
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2.2.5. Recommended Shutter Speeds

According to the previous study [36], The longest shutter time tmin can be calculated
by Equation (6):

tmax =
di× c
f × s

(6)

where di is the camera distance, which is the flight height h in this study, c is the diameter of
the dispersion circle, which is 0.033 mm in this study, and s is the speed of object movement
relative to the camera, which is the flying speed of the UAV in this paper.

According to Equation (6), the longest shutter times were calculated and are listed
in Table 4:

Table 4. Recommended longest shutter time for various roads and flying speeds.

Number of
Lanes

Flying Speed (m/s)

4 5 6 7 8

1 1/558 1/697 1/837 1/976 1/1116
2 1/378 1/473 1/568 1/662 1/760
3 1/298 1/373 1/448 1/522 1/597
4 1/299 1/286 1/343 1/401 1/458
5 1/191 1/238 1/286 1/334 1/328
6 1/163 1/203 1/244 1/285 1/326

Considering that an asphalt road is a dark object compared with the surrounding
environment, to guarantee the success of asphalt road disease identification, the image
should not be too dark. The issue of the brightness of the image is essentially a matter of
exposure. In addition, camera parameters, such as aperture, exposure mode, sensitivity
and white balance, also have an effect on the brightness of the image. Furthermore, the
ambient light intensity, shooting angle and color temperature will also have an effect on
the image. In this paper, other factors affecting the brightness of the captured road images
will not be further studied, as only the influence of the shutter time was investigated.

A shorter shutter time usually leads to a lower image brightness, as shown in Figure 4
where the brightness of the image whose shutter speed was 1/1200 s is significantly lower
than that of the image whose shutter speed was 1/800 s. In general, the shutter speed
of 1/800 s can ensure both the sufficient brightness and clarity of most urban road and
highway images, so the shutter speed adopted in this study is 1/800 s.
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2.2.6. Recommended Flying Speed

The fastest flying speed of the UAV in this study is mainly dependent on the maximum
shooting frequency T and shooting interval:

s = T × ShootingInterval (7)
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The minimum shooting time interval is 1 s in this study. The fastest flying speed of
the UAV can thus be calculated according to Table 4, and is listed in Table 5. Since there is
no upper limit for the shooting time interval, the fastest flying speed of UAV is set as 5 m/s
under all the conditions except for the one-lane road condition (under which the fastest
flying speed is 3.87 m/s).

Table 5. Recommended fastest flying speeds for various road widths.

Number of Lanes Road Width (m) Equidistant Shooting
Interval (m)

Fastest Flying Speed
Limitation (m/s)

1 3.75 3.87 3.87
2 7.5 5.75 5.75
3 11.25 7.63 7.63
4 15 9.5 9.5
5 18.75 11.38 11.38
6 22.5 13.25 13.25

2.3. The UAV Control Method for Road Performance Testing
2.3.1. The Route Planning Method Based on the Modified Dijkstra Algorithm

The route planning task refers to the task of deciding the best route based on the given
planning space under certain constraints and presenting the planned route in a certain
form. The basic process of the route planning algorithm can be divided into the following
key steps:

(1) The planning space description:

Since the movement route of the actual object is planned according to the traffic
network, it is necessary to match the real geographical environment with the abstract
simulation environment of the computer, that is, to build a world in the “computer’s eyes”.
The common methods are the raster and the graph methods. In the raster method, the
planning space is divided into several grids, then the intensity and density of obstacles
in these grids are expressed by the pass cost. In the graph method, the planning space is
composed of nodes and weighted undirected line segments. The weight can represent the
cost of passage, and the higher the cost, the more difficult the passage between nodes.

(2) The constraints determination:

There are many trajectories that consume more time or resources, thus not all trajecto-
ries are worth being realized in the real world. At the same time, the real situation is more
complex than the abstract simulation, so it is necessary to screen the trajectories through
constraints. For the UAV flight route in this study, the flight height should be stable at a
fixed value because the prime lens is used, and the yaw angle and depression angle of the
UAV have maximum limits to ensure safety. Therefore, these constraints should be taken
into account when planning and screening trajectories.

(3) Cost evaluation:

The cost function K is mainly composed of path length cost L, obstacle cost B and
height cost H. Since this study does not consider the change of height, the final K function
could be described as in Equation (8):

K(s) = µ1L(s) + µ2B(s) (8)

where s is the result of route calculation, which is usually a linear table, and µ1 and µ2
represent the weights of the path length cost and obstacle cost, respectively. In road
detection tasks, UAVs usually perform tasks directly above the road, thus obstacles such
as buildings or trees on either side of the road do not affect the route calculation, which
means L has a larger weight than B, and that µ2 is thus ignored in this study.
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(4) The route calculation:

On the basis of planning space and cost evaluation, the next step is to calculate the
minimum cost route according to the given constraints, which is also the core of the whole
route planning algorithm.

(5) The determination of the result form:

Once the route calculation result corresponding to the minimum cost is obtained, it
needs to be resolved into path information in a form which is understandable by the users,
such as route equation, waypoint, etc. In order to reduce and adjust the algorithm cost,
waypoint representation has been chosen for this study. The waypoint representation mode
is the official flight mission execution mode of DJI, so it is easy to import into the UAV
flight control system, and the execution time and accuracy of the algorithm can be adjusted
by controlling the number of generated waypoints.

The commonly used wireless communication range of commercial UAVs is within
1 km, so if it is beyond this range, it would be easy to lose contact and crash. The range
of the single road detection task is not very large because of this limitation. Therefore, in
the route calculation step, the basic and relatively simple optimized Dijkstra algorithm has
been selected for this study.

The Dijkstra algorithm can calculate the shortest path from a node to any other
node in the graph. Once a positive weighted directed graph is input, the algorithm can
correctly calculate the shortest path of any two nodes in the graph, thus the Dijkstra
algorithm is a deterministic algorithm. A positive weighted directed graph could be
usually described as G = (V, A), where V is the node set in the graph, and A is the matrix
which describes the line set. In a traffic network, the weight l(v, w) refers to the length
of line l which links node v and node w, and a route P could be represented as a set
of several nodes, P(v0, v1, v2 . . . vm), so that the length of route P could be described as:
l(P) = ∑m−1

i=0 l(vi, vi+1). The aim of the algorithm is to find the shortest route Popt and the
shortest length l

(
Popt

)
between the given two points s and t.

A mathematical model of a traffic network can be represented as a node set V and a
matrix A which describes the line set. In the node set V = {v0, v1, v2 . . . vm}, each node is
assigned a number by subscript. In the matrix A, the element A[i][j] is the weight value of
the line between node vi and node vj, which could also be represented as l

(
vi, vj

)
. If there

are no lines to link the two nodes, the symbol ∞ can be used. The basic principle of the
Dijkstra algorithm is to start from an initial node, to successively include nodes into the
path according to the shortest path principle, and to use a table to record the added nodes
until the shortest path of all the nodes is generated. For example, for the abstract traffic
network shown in Figure 5, the process of the Dijkstra algorithm could be concluded in
Table 6, where the orange cells represent the shortest flight route derived by the algorithm.

Table 6. The process of the Dijkstra algorithm.

Node Round 1 Round 2 Round 3 Round 4

v1 v0 → v1 = 10 v0 → v4 → v1 = 8 v0 → v4 → v1 = 8
v2 ∞ v0 → v4 → v2 = 14 v0 → v4 → v3 → v2 = 13 v0 → v4 → v1 → v2 = 9
v3 ∞ v0 → v4 → v3 = 7
v4 v0 → v4 = 5

The set of solved points {1, 5} {1, 5, 4} {1, 5, 4, 2} {1, 5, 4, 2, 3}

The Dijkstra algorithm implements the greedy strategy and adopts the double-loop
method to gradually expand the scale of the problem. In the algorithm, there are three
assistant tables: s[], p[], and d[]. For the node vi and the initial node v0, the table d[vi] is used
to store the distance between the initial node v0 and the node vi. If there are no pathways
between those two nodes, the distance would be ∞. p[vi] is used to record the previous
node on the shortest route between v0 and vi for the backtracking after comparison. s[vi] is
used to record whether node vi has already been concluded in the shortest route.
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The whole algorithm can be divided into two loops. The outside loop extracts d[vm]
from d[], sets s[vm] as 0, then the inner loop traverses all nodes to check whether vj has
already been in the table s[], if not, then it checks whether the new node will make the
original route shorter, which is to compare the length of d

[
vj
]

and d[vu] + l
(
vu, vj

)
. If the

new route is shorter, then it updates the new shortest route and adds node vm into the
shortest route. In practice, only the shortest route from the initial node to a certain target
node is needed, so it is necessary to add the specific condition to stop the loop, that is, once
s[vm] is 1, the algorithm should be terminated immediately.

The disadvantage of the Dijkstra algorithm is that the time complexity will increase
rapidly once the scale of nodes in the problem increases. Therefore, for large-scale problems,
in order to simplify the problem, it is necessary to rewrite the original traffic network
diagram without changing its traffic logic [37].

The raster method is usually used to model the traffic network in the road database.
The raster cuts the road into several small segments, with each segment regarded as two
nodes and a line in the algorithm. When the UAV flies along the actual road, some sections
of the road will be less curved than others, therefore requiring less nodes, as is shown
in Figure 6. Therefore, a specific strategy [38] to omit those unnecessary nodes has been
adopted in this paper to maintain the scale of the Dijkstra algorithm and to reduce the time
and memory cost.
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To omit the unnecessary nodes, we must first, from the initial node, traverse the node
set by the layer sequence to check the sub-line set arci =

{〈
vi, vj

〉
, 〈vi, vk〉, . . . , 〈vi, vm〉

}
where all the lines with a point vi as the end are temporarily stored in the table arc[vi]. Then,
all sub-line sets Arc =

{
arcj, arck, . . . , arcm

}
of the nodes at the next layer are checked. The

elements in these sub-line sets are to be potentially merged with the lines in arc[vi]. If the
three-point connection angle is greater than 103◦, then their corresponding lines must be
merged into a shortcut line, as shown in Figure 6.

Since DJI MobileSDK is the only route navigation execution method provided by
the official open-source library of DJI, the DJI MobileSDK with WayPointMission was
adopted to realize the control of UAV by route planning algorithm in this paper. The
positive weighted directed graph required by the input of the route planning algorithm
was obtained from AMAP. It has been proved that the route planning method based on the
modified Dijkstra algorithm introduced above can complete a 5 km route plan for a UAV
within 5 s, which meets the application requirement.

2.3.2. The Control Method of Continuous Image Acquisition at Equal Distances

The Callbacks function provided by the DJI client can be used to read the speed
information of the UAV, as shown in Figure 7. In the flight process, at the beginning of each
flight segment the UAV adjusts its heading so as to face the best direction in which to fly
toward the end point from the starting point (which is the end point of the previous flight
segment), and then accelerates to the end point (which is the starting point of the next flight
segment) of the current flight segment. In the process of flight, the UAV first accelerates to
the optimal speed, then flies at a constant speed, and slows down to 0 continuously when
approaching the end point. When the flight segment is not long enough, there would be
no constant speed flight process (as is shown in the red circles in Figure 7). The speed of
the UAV is therefore not constant when flying along a curved road, indicating that the
equal distance shooting mode, rather than the equal time interval shooting mode, should
be adopted when taking pictures in UAV road continuous image acquisition tasks.

Sustainability 2023, 15, 2182 12 of 28 
 

speed of the UAV is therefore not constant when flying along a curved road, indicating 
that the equal distance shooting mode, rather than the equal time interval shooting mode, 
should be adopted when taking pictures in UAV road continuous image acquisition tasks. 

 
Figure 7. The speed profile of the UAV during flight. 

The core idea of the isometric shooting mode is the integral method, as shown in 
Figure 8. The y axis represents the speed of the UAV, the x axis represents time, and the 
area between the curve and the x axis represents the UAV’s flight distance. When the time 
interval is small enough, the areas of the rectangles will add up to a distance which is very 
close to the real flight distance. In this study, the selected time interval is 0.1s, and the 
flight distance of the UAV is calculated by adding the rectangular areas. When the flight 
distance reaches the threshold (shooting interval), a picture will be taken, and then the 
distance will be reset to 0 for the distance calculation of the next picture. The process of 
the isometric shooting can be summarized in Figure 9. 

 
 

(a) (b) 

Figure 8. The principle of the isometric shooting method: (a) the principle of integral method and 
(b) the actual UAV integral path along the road. 

Figure 7. The speed profile of the UAV during flight.

The core idea of the isometric shooting mode is the integral method, as shown in
Figure 8. The y axis represents the speed of the UAV, the x axis represents time, and the
area between the curve and the x axis represents the UAV’s flight distance. When the time
interval is small enough, the areas of the rectangles will add up to a distance which is very
close to the real flight distance. In this study, the selected time interval is 0.1 s, and the
flight distance of the UAV is calculated by adding the rectangular areas. When the flight
distance reaches the threshold (shooting interval), a picture will be taken, and then the
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distance will be reset to 0 for the distance calculation of the next picture. The process of the
isometric shooting can be summarized in Figure 9.
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2.4. The Road Images Splicing Method
2.4.1. The Preprocessing Method of Road Images

In the road image acquisition tasks, if the road is wide and the acquisition camera
is of high definition, the UAV will take pictures at a large angle. At this time, if the focal
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length of the camera lens is short, it is easy for barrel or radial distortions to appear. Most
of the lenses carried by ordinary UAVs are non-professional photography lenses with a
small focal length and easily produce optical distortions. After the road image is obtained,
the image distortion needs to be calibrated for the subsequent image stitching. The most
commonly used method for image distortion calibration is to obtain intrinsic and extrinsic
matrixes by using the Zhang Zhengyou camera calibration method [39], and then adjusting
the pixels of the image with the back-calculation method according to the intrinsic matrix.

Image deformation includes mainly radial and eccentric distortions. Previous research [40]
has shown that the radial distortion is the main part of the optical distortion, while the
eccentric distortion is only 1/7 to 1/8 of the radial distortion. Furthermore, when the radial
distortion is eliminated, the influence of the eccentric distortion can also be alleviated, so
the eccentric distortion can be ignored in the image calibration. The image distortion model
can be expressed as Equations (9) and (10):

∆x = (x− x0)
[
k1r2 + k2r4

]
+ p1[r2 + 2(x− x0)

2] + 2p2(x− x0)(y− y0) (9)

∆y = (y− y0)
[
k1r2 + k2r4

]
+ p2[r2 + 2(y− y0)

2] + 2p1(x− x0)(y− y0) (10)

where ∆x and ∆y are the pixel-point displacements caused by image distortion, (x0, y0)
is the coordinate of the main point of the image (the intersection of the optical axis of the
camera with the image plane), k1 and k2 are the radial distortion coefficients, p1 and p2 are
the tangential distortion coefficients, r2 = (x− x0)

2 + (y− y0)
2 refers to the parameters of

the lens.
To determine the distortion coefficients of the camera, the camera calibrator in MAT-

LAB_R2020a was used in this study. As for the calibration plate, a plate in the form of a
checkerboard was adopted, one composed of 16 × 16 black and white squares alternating
with each other, and with a side length for each square of 13 mm. The camera and the
calibration plate are shown in Figure 10:
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Figure 10. The camera and the calibration plate adopted in this study. (a) The camera attached to the
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2.4.2. The Road Images Splicing Method

At present, the most commonly used feature point extraction methods include the
scale invariant feature transform (SIFT) method, the speeded-up robust features (SURF)
method, the Harris corner point method, the features from accelerated segment test (FAST)
method, etc. [41]. The SURF method was adopted in this paper to conduct the feature point
extraction and image registration because of its advantages of stability, distinctiveness,
quantity, high speed and expansion. The basic principle of the SURF method is similar to
the SIFT method, and can be concluded as follows:
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(1) The detection of the extremum in the scale space.

Firstly, continuous down-order sampling is carried out on the images. All the obtained
images are arranged layer by layer according to their size, the original image is placed at
the bottom layer, and the size of the upper image decreases successively. Thus, the images
would be arranged in the form of pyramid, as shown in Figure 11a. At the same time, the
difference of gaussian (DOG) function is generated with the convolution and gaussian
difference kernel of images of different scales. Then, for each pixel in the image, the pixel
point is compared with all the other pixel points in the scale space and image space. If its
value is larger than or smaller than all the surrounding points, then this point is regarded
as the extreme point in the DOG space, and the extreme points are regarded as the feature
points of the image. The comparison within the same scale ensures the existence of extreme
points in the two-dimensional image space, while the comparison at different scales ensures
the existence of extreme points in the scale space.
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(2) The precise positioning and principal direction assignment of feature points.

The fitting of a 3D quadratic function was adopted to precisely position and measure
the feature points obtained in step (1). The pixel gradient amplitude and pixel gradient
direction could be calculated as Equations (11) and (12):

m(x, y) =
√
(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y− 1))2 (11)

Θ(x, y) = tan−1[
L(x, y + 1)− L(x, y− 1)
L(x + 1, y)− L(x− 1, y)

] (12)

where L(x, y) is the value of the scale space, and (x, y) is the coordinate of the pixel. The
gradient histogram and orientation histogram which contain the orientation and gradient
information of pixels can be obtained with the calculation results. The peak value of the
gradient histogram refers to the principal direction of the feature point, while the peak
value of the direction histogram refers to the direction of the neighborhood gradient at the
feature point.

(3) The description of feature points.

To ensure that the feature points will not be affected by the disturbance of external
factors, such as the change of illumination condition or angle of view in subsequent
processing, descriptors are established for each extracted feature point. The descriptor of
a feature point includes the feature point itself and all the contributing pixels around it.
The image area around the feature point is divided into blocks, and the unique vector is
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generated by calculating the gradient histogram in each small block. The obtained vector
can abstractly represent the image information in the corresponding region and is regarded
as the descriptor.

(4) The matching of feature points.

The descriptor sets of the feature points (which is of 128 dimensions) for both the
reference image (template image) and observed image (real-time image) are established.
The descriptor of feature points in the reference image is Ri = (ri1, ri2, . . . , ri128), while that
of the real-time image is Si = (si1, si2, . . . , si128). The similarity between any two descriptors

is measured with Euclidean distance d(Ri, Si) =
√

∑128
j=1
(
rij − sij

)2, and the feature point

descriptors are matched when
d(Ri ,Sj)
d(Ri ,Sp)

< Threshold. Where Sj is the closest point to Ri in

the real-time image, and Sp is the second closest point to Ri in the real-time image.
To solve the problem of high mismatch rate in image matching, the random sampling

consistency (RANSAC) algorithm [42] was used in this paper to eliminate the incorrect
matching pairs. After the incorrect matching pairs are eliminated, the transformation
matrix T of the connecting image relative to the basic image should be calculated, the image
should then be affine transformed according to the T matrix to ensure that the connecting
part is smooth. Affine transformation is a two-dimensional projection that maps points in
one plane to another plane, including translation, rotation, scale transformation and so on.
Affine transformation maintains the “flatness” of two-dimensional graphics and has high
practicability, being used for image matching, image correction, texture correction, creating
panoramic images, etc. The mathematical expression of affine transformation is given in
Equation (13): {

u = a1x + b1y + c1
v = a2x + b2y + c2

(13)

where the corresponding homogeneous coordinate matrix is:wx′

wy′

w

 =

h00 h01 h02
h10 h11 h12
h20 h21 h22

x
y
l

 (14)

After the affine transformation process, the coordinates of pixels of different images
are mapped to the same world coordinate system. With all the pixels displayed in the
world coordinate system, the final, spliced image can be shown.

2.4.3. The Smoothing Method for Spliced Images

If the images are simply connected together, uneven brightness around stitching seams
will occur, as shown in the red circles in Figure 12, and will greatly affect the recognition
of pavement diseases. Therefore, the brightness of pixels at the junction should also be
adjusted after the image stitching process is completed. Thus, the optimize gradual in and
out weight fusion method was used in this paper to eliminate the unevenness between
light and dark parts.
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The basic principle of the optimize gradual in and out weight fusion method is that
the original image and the image to be matched are given the same weight, and the pixel
value at the joint is taken as the weighted average of the pixel values of the two images, so
as to realize the smooth transition of the joint of the stitched image [43].

To eliminate the uneven part of light and dark in the stitched image, the range of the
image placed in the world coordinate system after image registration is calculated first.
Then the biaxial range of the two images is compared to obtain the range of the overlap in
the world coordinate system. On this basis, the mask matrix sub-information with the same
size as the two images is established. In the mask matrix, the value of the non-overlapping
area is 1, and the value of the overlapping area gradually decreases from 1 to 0 from the
non-overlapping area to the edge. The establishment and structure of the mask matrix are
shown in Figure 13. The three channels of the two color images are dotted with the mask
matrix, and finally placed in the world coordinate system. The overlapping regions cover
each other directly, and then the smooth stitched image is obtained.
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3. Results
3.1. The Test of UAV Control Method

The UAV control method developed in this paper was tested on a straight road and a
curved road. The path planning results of the path planning algorithm for two roads are
shown in the Figure 14:
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It can be seen from Figure 14 that the route planning algorithm has good route
calculation ability. For the route on the curved road in Figure 14a, 12 waypoints were given
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(excluding the start and end points), while for the route on the straight road, few waypoints
were given, which means that the division of the curved section is more accurate, and the
division of the straight section is rougher. This indicates that the algorithm proposed in
this paper can dynamically adjust the accuracy of the calculation results according to the
actual road alignment, so the algorithm has good robustness.

The real-time status parameters of the UAV, including longitude and latitude coordi-
nates at 0.1 s intervals, were obtained through callback function, so that the actual flight
route of the UAV could thus be obtained. The planned route and real flight route are drawn
in the Figure 15, where the red line is the planned route given by the algorithm, and the
black line is the actual flight route of the UAV.
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For the curved road, it can be seen that most of the trajectories of the UAV’s actual
flight overlap with the planned route, but there are still some offsets, such as the areas
marked in Figure 15a. The reason for the offset is mainly because the AMAP map uses
the GCJ02 coordinate system, while the UAV uses the WGS84 coordinate system in flight.
Therefore, the results of the AMAP-based route planning algorithm need to be converted
by coordinates before they can be used for control of the UAV’s route. Additionally, the
coordinate conversion will produce accuracy loss and when there are more waypoints, the
accuracy loss will be more obvious. In the straight road, the actual UAV trajectories almost
completely overlap with the planned route because there are fewer waypoints.

By reading the attribute information of the road images taken by the UAV, the coordi-
nates of the shooting position of each image could be obtained. The shooting points were
then plotted in the map, as is shown in Figure 16. From this, it can be seen that each image
was taken at the same interval.

3.2. The UAV Flight Parameters Testing

Three road sections with different road widths were selected for UAV image acquisition
tests in this study. The weather conditions at the time of testing were clear and breezy. As
is described in the Section 2.2.2, the camera was of 60 megapixels, and the flight parameters
during image acquisition were determined according to Section 2.2.

Test 1 is the image acquisition test on a three-lane road. According to the conclusions
in Section 2.2, the parameters selected for the image acquisition process are listed in Table 7.

Table 7. The parameters for a three-lane road.

Number of Lanes Flight Height Flying Speed Focal Length Shutter Speed Shooting Interval

3 14.9 m 5 m/s 35 mm 1/800 s 7.7 m
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The results for continuous road image acquisition at equal distance intervals is shown
in Figure 17, and the image is partially enlarged as shown in Figure 18.
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Test 2 is the image acquisition test on a two-lane road. The parameters selected for the
image acquisition process are listed in Table 8:

Table 8. The parameters for a two-lane road.

Number of Lanes Flight Height Flying Speed Focal Length Shutter Speed Shooting Interval

2 11.5 m 5 m/s 35 mm 1/800 s 5.8 m

The results for continuous road image acquisition at equal distance intervals is shown
in Figure 19, and the image is partially enlarged as shown in Figure 20.
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Test 3 is the image acquisition test on a six-lane road. The parameters selected for the
image acquisition process are listed in Table 9:

Table 9. The parameters for a six-lane road.

Number of Lanes Flight Height Flying Speed Focal Length Shutter Speed Shooting Interval

6 26.0 m 5 m/s 35 mm 1/800 s 13.3 m

The results for continuous road image acquisition at equal distance intervals is shown
in Figure 21, and the image is partially enlarged as shown in Figure 22.
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From the above results, it can be found that the ranges and the net widths calculated by
the method developed in Section 2.2 meet the requirement of covering the whole pavement
surface. Furthermore, the cracks and other diseases could also be identified clearly from
the images, which indicates that the definitions of the images obtained in the three tests
also meet the requirements of pavement disease identification.
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3.3. The Road Images Processing Result
3.3.1. The Feature Point Extraction and Matching Result

As an optimized version of the SIFT algorithm with improved robustness, the SURF
algorithm was used in this study to extract and match the feature points. The MATLAB
toolbox function detectSURFFeatures was called to extract the feature points in the image,
and the extractFeatures function was called to establish the feature point descriptors. The
result of feature extraction is shown in Figure 23:
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There are many wrongly matched pairs as a result of the matchFeatures function, 
which will significantly influence the accuracy of the conversion matrix calculation and 
image stitching. The estimateGeometricTransform function, which is based on the RAN-
SAC algorithm, was used to eliminate the wrongly matched pairs and calculate the trans-
formation matrix. The matching result after the modification of estimateGeometricTrans-
form function is as shown in Figure 25, in which all the wrongly matched pairs were elim-
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The coarse matching of feature points between two images was achieved by the
matchFeatures function. Two sets of feature point vectors were inputs, and the function
returned the matched point pairs. The coarse matching result is as shown in the Figure 24:
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There are many wrongly matched pairs as a result of the matchFeatures function,
which will significantly influence the accuracy of the conversion matrix calculation and im-
age stitching. The estimateGeometricTransform function, which is based on the RANSAC
algorithm, was used to eliminate the wrongly matched pairs and calculate the transforma-
tion matrix. The matching result after the modification of estimateGeometricTransform
function is as shown in Figure 25, in which all the wrongly matched pairs were eliminated.

3.3.2. The Image Splicing Result

The result of multiplying the pixel values of the RGB trichromatic channels with the
mask matrix is shown in Figure 26, and the final stitched image is shown in Figure 27.
The images were stitched accurately to each other without uneven brightness around the
stitching seams, which indicates that the image splicing and smoothing methods in this
study are valid.
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3.3.3. The Image Smoothing Result

The aim of this study is to provide a feasible image acquisition method for UAV
pavement disease detection, so it is necessary to make sure that the aerial pavement long
images acquired by the above algorithm can be applied to machine learning for pavement
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disease identification. A prerequisite for the successful use of the stitched image so that
machine learning can be used to identify cracks is that the pavement cracks in the stitched
image can be clearly displayed. Zooming in and observing Figure 27, four crack damage
areas can be clearly identified, as is shown in Figure 28.
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Figure 28. The disease recognition in the stitched image. (a) The location of the four diseases,
(b) disease 1, (c) disease 2, (d) disease 3, and (e) disease 4.

When machine learning is used to identify pavement diseases, an important step is
to extract the morphology and dimensions of the object of the disease, i.e., to establish an
effective training library of pavement disease models. The most common methods used in
morphology and dimension extraction operations of diseases is edge detection processing.
There are two common edge detection operators, Canny and Otsu [44–46], among which
the Canny operator works better for square pictures [47].

The stitched images without smoothing process will greatly affect the extraction of
disease objects in the Canny operator due to the uneven brightness at the junction, as is
shown in Figure 29. In Figure 29b, due to the uneven brightness around them, the stitching
seams were also extracted by the Canny operator into the edge detection result, which could
be easily misidentified by machine learning as pavement transverse cracks. In order to test
whether the stitched images after the smoothing process in this paper would still have an
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effect on the extraction of disease objects, the extraction of disease objects by Canny was
conducted on the stitched images after the smoothing process, as shown in Figure 30. After
the smoothing process, the stitching seams were no longer extracted by the Canny operator
as edges, while the cracks on the road surface were still successfully extracted. This means
that the long road stitched image obtained by the image stitching and smoothing method
in this paper can be applied for machine learning recognition and evaluation of pavement
distress, and that the UAV road surface image continuous acquisition method developed in
this paper is valid and can be applied in the future practical application of UAV pavement
disease detection tasks.
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4. Conclusions

Due to the demand for UAV pavement disease detection, this paper studied and
determined the suggested values of camera parameters and flight parameters for UAV
continuous road image acquisition tasks, and proposed the UAV flight route planning
method, continuous photography control method and image stitching and smoothing
processing method for road disease detection tasks. The following conclusions can be made:
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1. In the UAV road disease detection tasks, the image overlap ratio should be guaranteed
to be above 15%, and it is recommended to be between 20% and 25%. The lateral
width of the image range should be between 7.75 m and 26.5 m according to the width
of the road, the longitudinal width of the image range should be between 5.16 m and
17.67 m. Camera pixels are recommended to be between 5.6 million and 62 million,
flight height should be between 7.6 m and 26 m, shutter speed should be controlled
between 1/800 s and 1/1200 s, and the flight speed is recommended to be 3.5 m/s or
5 m/s. The exact values of the parameters should be determined by the number of
lanes and the width of the road.

2. The route planning method based on the modified Dijkstra algorithm proposed in
this study can complete a 5 km route plan for a UAV within 5 s, which meets the
application requirement. With the continuous image acquisition method, the UAV
can fly along the road median and take road pictures at equal distance automatically.

3. Based on the correction of camera optical distortion using Zhang Zhengyou’s camera
calibration method, a road image stitching method using SURF and RANSAC algo-
rithm to extract and match feature points, an affine transformation to stitch the road
long image, and an optimized gradual in and out weight fusion method to smooth
the stitched image were all proposed in this paper. The stitched road long image
obtained with this method is applicable for machine learning of asphalt pavement
disease identification based on the Canny edge extraction method.

There are still some limitations in this study, such as the impacts of camera exposure
mode, aperture setting, sensitivity, white balance and other parameters that were not
considered in the determination of the shutter speed. Furthermore, the impact of natural
lighting conditions was also not considered. In addition, the question of how to add
obstacle avoidance algorithms into the route planning method to enhance the flight safety
in automatic UAV pavement disease detection tasks was also not considered in this paper.
Therefore, the question of how to more comprehensively consider the shutter speed to
ensure image brightness, as well as of how to optimize the route planning algorithm to
further ensure the safety of the UAV’s flight are recommended to be the focus of research
in the future.
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