
Citation: Gupta, R.K.; Chawla, V.;

Pateriya, R.K.; Shukla, P.K.;

Mahfoudh, S.; Shah, S.B.H.

Improving Collaborative Intrusion

Detection System Using Blockchain

and Pluggable Authentication

Modules for Sustainable Smart City.

Sustainability 2023, 15, 2133. https://

doi.org/10.3390/su15032133

Academic Editors: Dhananjay Singh,

Paulo J. Sequeira Gonçalves, Pradeep

Kumar Singh, Pradip Sharma and

Pao-Ann Hsiung

Received: 21 November 2022

Revised: 27 December 2022

Accepted: 16 January 2023

Published: 23 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Improving Collaborative Intrusion Detection System Using
Blockchain and Pluggable Authentication Modules for
Sustainable Smart City
Rajeev Kumar Gupta 1 , Vedant Chawla 2, Rajesh Kumar Pateriya 2, Piyush Kumar Shukla 3,
Saoucene Mahfoudh 4 and Syed Bilal Hussain Shah 4,*

1 Computer Science and Engineering Department, Pandit Deendayal Energy University,
Gandhinagar 382007, India

2 Computer Science and Engineering Department, Maulana Azad National Institute of Technology,
Bhopal 462003, India

3 Computer Science & Engineering Department, University Institute of Technology, Rajiv Gandhi Proudyogiki
Vishwavidyalaya (Technological University of Madhya Pradesh), Bhopal 462033, India

4 School of Engineering, Computing and Informatics, Dar Al-Hekma University, Jeddah 22246, Saudi Arabia
* Correspondence: sshah@dah.edu.sa

Abstract: The threat of cyber-attacks is ever increasing in today’s society. There is a clear need for
better and more effective defensive tools. Intrusion detection can be defined as the detection of
anomalous behavior either in the host or in the network. An intrusion detection system can be used
to identify the anomalous behavior of the system. The two major tasks of intrusion detection are
to monitor data and raise an alert to the system administrators when an intrusion takes place. The
current intrusion detection system is incapable of tackling sophisticated attacks which take place
on the entire network containing large number of nodes while maintaining a low number of login
attempts on each node in the system. A collaborative intrusion detection system (CIDS) was designed
to remove the inefficiency of the current intrusion detection system which failed to detect coordinated
distributed attacks. The main problem in the CIDS is the concept of trust. Hosts in the network need
to trust the data sent by other peers in the network. To bring in the concept of trust and implement
the proof-of-concept, blockchain was used. Pluggable authentication modules (PAM) were also used
to track login activity securely before an intruder could modify the login activity. To implement
blockchain, an Ethereum-based private blockchain was used.

Keywords: sustainable smart city; intrusion detection system; collaborative intrusion detection
system; authentication; blockchain

1. Introduction

According to the report of the Indian Computer Emergency Response Team (2021),
more than 26,100 websites were victims of cyber-attacks in India in the year 2020 alone.
This clearly indicates the need for better and more effective defensive tools. The role of
blockchain in smart, sustainable cities is vital because it helps to foster the kind of trust
necessary for smart cities. Blockchain should serve as the cornerstone for the development
of a smart city and is a crucial assurance for the proper design and execution of the
management strategy and planning scheme. A smart city naturally combines smart energy,
smart transportation, smart government, and other services under the same umbrella.
Decentralization and the availability of clear data place strict constraints on the big data
service platform. Finding the problematic node among the hundreds of millions of nodes
in a network is a time-consuming operation if a network encounters a problem or is the
target of an attack. Most current Internet-of-Things networks are centralized. A huge
server or centralized cloud is connected to hundreds of millions of nodes, which causes

Sustainability 2023, 15, 2133. https://doi.org/10.3390/su15032133 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15032133
https://doi.org/10.3390/su15032133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-5317-9919
https://orcid.org/0000-0003-3340-1161
https://doi.org/10.3390/su15032133
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15032133?type=check_update&version=1

Sustainability 2023, 15, 2133 2 of 14

bottlenecks in the price and computer storage capacity. Blockchain-distributed technology
can guarantee that even if one or more nodes are hacked, the total network data remains
trustworthy and secure. Distributed computing makes use of point-to-point computing
to handle the hundreds of billions of transactions that the Internet-of-Things generates.
This significantly lowers the cost of computing and storage by utilizing the computing and
storage capabilities of a large number of idle devices deployed in unused locations.

In order to increase the degree of security for secure transmission and safe storage,
additional protection mechanisms need to be implemented due to the privacy of numerous
people involved. Blockchain has shown to be secure, dependable, and suitable for this
purpose. The disaster recovery system cannot be enhanced due to the high expense of
creating a data center and data storage. Therefore, a key issue at hand is how to lower
storage costs while enhancing disaster recovery capabilities. Blockchain, which connects
distributed and centralized services, can successfully stop an attack on the vital network
infrastructure. The main objective of intrusion detection is to observe anomalous behavior
either in a network or in a host. In the current scenario, the current IDS is not sophisticated
enough to detect the wide variety of threats. Collaborative intrusion detection has some of
the capabilities to at least detect some of those threats and send them for further processing.
Based on the deployed location, IDSs can be categorized as a host-based intrusion detection
system (HIDS) and network-based intrusion detection system (NIDS). A HIDS monitors the
characteristics of a particular node and the system events in a node for malicious activities,
whereas a NIDS monitors the network by placing packet sniffers in the network at various
points. These packet sniffers pick up the data and send the data to analysis units who
compare the present state of the system with that of an anomaly.

Based on the approach of the detection, an IDS can again be classified into two types:
signature-based IDSs and anomaly-based IDSs. Signature-based detection detects an attack
by comparing stored signatures with the observed system or network events for possible
occurrences. A signature (also known as a rule) is a pattern that describes a known attack or
exploit. Anomaly-based detection works by detecting large deviations between its pre-built
normal profile and the observed events, and hence detects suspicious activity. A normal
profile is frequently generated by observing the features of ordinary activity over time, and
it might represent the regular behavior of users, network connections, and programs [1]. If
an abnormal circumstance is discovered, an alert may be triggered. The main disadvantage
of IDS is that it cannot detect sophisticated attacks which take place on the entire network
of nodes cumulatively as they monitor only a single node or a single network. For example,
if we have a series of stand-alone IDSs, they are incapable of detecting a distributed attack
which takes place across multiple hosts in a network. This is because they do not have the
ability to co-relate the events which take place. To address this weakness, the concept of
CIDSs was introduced.

CIDSs were introduced to address the weakness of IDSs which can be seen during
distributed attacks. CIDSs generally consists of several monitor units and analysis units.
The monitor units jot down the information and send it to the analysis units, which process
the information and make decisions based on it. Based on the architectural differences,
CIDSs again can be classified into three categories as shown in Figure 1, namely: centralized,
decentralized, and distributed [2]. A centralized CIDS is the most basic version and the
simplest one. However, it is prone to a single point of failure (SPoF) and performance
bottleneck in cases of network overload. In distributed CIDSs, the SPoF disadvantage is
somewhat removed but it still has disadvantages. In this, information is lost at each level
of the hierarchy and hence is somewhat unreliable. In a decentralized CIDS, each node
behaves as both monitor and analysis units. It is a P2P architecture which facilitates data
sharing, correlation, and aggregation of data across all nodes. However, CIDS also has
some disadvantages. The network cost incurred is very high as all nodes are in constant
communication with each other. Furthermore, the idea of trust is very important among
these nodes. To remove the trust issue among the nodes, the concept of blockchain was

Sustainability 2023, 15, 2133 3 of 14

introduced. This problem, along with CIDS, is discussed in a detailed manner further in
the later stages. Figure 1 illustrates the architecture of CIDS.

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 17

which facilitates data sharing, correlation, and aggregation of data across all nodes.

However, CIDS also has some disadvantages. The network cost incurred is very high as

all nodes are in constant communication with each other. Furthermore, the idea of trust

is very important among these nodes. To remove the trust issue among the nodes, the

concept of blockchain was introduced. This problem, along with CIDS, is discussed in a

detailed manner further in the later stages. Figure 1 illustrates the architecture of CIDS.

Figure 1. Overview of a CIDS architecture.

The main contributions of this paper are:

Proposed system will be able to detect coordinated distributed attacks.

Hosts in the network need to trust the data sent by other peers in the network. To

bring in the concept of trust and implement the proof-of-concept, blockchain was used.

Pluggable authentication modules (PAM) were also used to track login activity se-

curely before an intruder could modify the login activity.

To implement blockchain, an Ethereum-based private blockchain was used

This paper is organized as follows: Section 2 discusses the basics of blockchain along

with the different components of blockchain, Section 3 discusses different existing intru-

sion detection systems, and Section 4 explains the proposed improved collaborative IDS

which uses blockchain and pluggable authentication modules. Section 5 discusses the re-

sult analysis and Section 6 summarizes the entire work and gives direction for future

work.

2. Blockchain

Blockchain can be defined as a distributed peer-to-peer network of blocks. Each block

is linked to the previous block using a cryptographic hash. Blockchain technology has

been applied to several fields such as healthcare, education, energy, etc. There are three

types of blockchain ledgers which are currently in use: public, consortium, and private.

Public blockchains (such as Ethereum) are accessible to anyone with internet access and

anyone can read the blockchain and maintain the blockchain ledger, i.e., there is no mem-

bership mechanism in place. The consortium blockchains (such as the Hyperledger Fabric)

are maintained by an established body which grants access to others and has a pre-defined

consortium of peers maintaining the chain. Private blockchains are maintained by one

entity that provides access to others and there is no consensus process.

2.1. Block Structure

The most basic definition of blockchain is that it is a chain of blocks with each block

connected to the one before it with the help of a mathematical relationship. The block in

itself is a container of data. The main premise underlying blockchain is that each block

contains a unique self-identifying hash that ensures the chain’s integrity. The hash of the

block index, data, timestamp, and, of course, the hash of the previous block hash, make

Figure 1. Overview of a CIDS architecture.

The main contributions of this paper are:
Proposed system will be able to detect coordinated distributed attacks.
Hosts in the network need to trust the data sent by other peers in the network. To

bring in the concept of trust and implement the proof-of-concept, blockchain was used.
Pluggable authentication modules (PAM) were also used to track login activity securely

before an intruder could modify the login activity.
To implement blockchain, an Ethereum-based private blockchain was used
This paper is organized as follows: Section 2 discusses the basics of blockchain along

with the different components of blockchain, Section 3 discusses different existing intrusion
detection systems, and Section 4 explains the proposed improved collaborative IDS which
uses blockchain and pluggable authentication modules. Section 5 discusses the result
analysis and Section 6 summarizes the entire work and gives direction for future work.

2. Blockchain

Blockchain can be defined as a distributed peer-to-peer network of blocks. Each block
is linked to the previous block using a cryptographic hash. Blockchain technology has been
applied to several fields such as healthcare, education, energy, etc. There are three types
of blockchain ledgers which are currently in use: public, consortium, and private. Public
blockchains (such as Ethereum) are accessible to anyone with internet access and anyone
can read the blockchain and maintain the blockchain ledger, i.e., there is no membership
mechanism in place. The consortium blockchains (such as the Hyperledger Fabric) are
maintained by an established body which grants access to others and has a pre-defined
consortium of peers maintaining the chain. Private blockchains are maintained by one
entity that provides access to others and there is no consensus process.

2.1. Block Structure

The most basic definition of blockchain is that it is a chain of blocks with each block
connected to the one before it with the help of a mathematical relationship. The block in
itself is a container of data. The main premise underlying blockchain is that each block
contains a unique self-identifying hash that ensures the chain’s integrity. The hash of the
block index, data, timestamp, and, of course, the hash of the previous block hash, make
up this self-identifying hash. It also contains a record of the transactions, called a ledger,
which took place during the time of blockchain production. As each block references the

Sustainability 2023, 15, 2133 4 of 14

one before it, there is a record of all transactions that took place prior to the current block’s
generation. The Figure 2 shows the structure of the block chain generation.

Sustainability 2023, 15, x FOR PEER REVIEW 4 of 17

up this self-identifying hash. It also contains a record of the transactions, called a ledger,

which took place during the time of blockchain production. As each block references the

one before it, there is a record of all transactions that took place prior to the current block’s

generation. The Figure 2 shows the structure of the block chain generation.

Figure 2. Structure of a blockchain [3].

2.2. Consensus

Consensus algorithms allow the participants to reach an agreement about the state

of the network without the presence of a central authority. Any blockchain model is only

as effective as its consensus model. There are two major consensus algorithms in the block-

chain world which are the proof-of-work and the proof-of-stake. The proof-of-work algo-

rithm is implemented by Bitcoin, whereas the proof-of-stake algorithm is implemented by

Ethereum and is currently in deployment. Proof-of-work is founded on the premise that

a participant establishes its identity by demonstrating that it worked. In the case of Bitcoin,

each participant’s purpose is to find a hash value that is less than a number set by the

network as the difficulty level. This is an example of a computational puzzle where a

brute-force, guess-and-check method is the most effective way to solve it. This process,

known as mining, ensures that no single player has an edge in creating the next block. As

a result, miners are not required to provide any authentication or a-priori knowledge. The

chances of a block being modified successfully diminishes exponentially with the size of

the blockchain. Proof-of-work, on the other hand, is subject to the 51 percent attack, in

which a coalition with more than half of the possible mining power can insert blocks into

the blockchain. To counter this, Ethereum built a new consensus algorithm called proof-

of-stake. Proof-of-stake relies on a group of validators with a financial stake in the network

voting and proposing the next block in turn. The method chooses validators for block

production in a pseudo-random manner, preventing advance knowledge of when a spe-

cific participant would create a block. The quantity of cryptocurrency, or stake, that a par-

ticipant has determines his or her chances of being chosen as a validator. While there are

several drawbacks to this method of implementation, it does address the 51 percent attack

problem which the proof-of-work had and is currently being developed by Ethereum. Ta-

ble 1 illustrates the fields of block structure in blockchains and their uses.

Figure 2. Structure of a blockchain [3].

2.2. Consensus

Consensus algorithms allow the participants to reach an agreement about the state
of the network without the presence of a central authority. Any blockchain model is only
as effective as its consensus model. There are two major consensus algorithms in the
blockchain world which are the proof-of-work and the proof-of-stake. The proof-of-work
algorithm is implemented by Bitcoin, whereas the proof-of-stake algorithm is implemented
by Ethereum and is currently in deployment. Proof-of-work is founded on the premise
that a participant establishes its identity by demonstrating that it worked. In the case of
Bitcoin, each participant’s purpose is to find a hash value that is less than a number set by
the network as the difficulty level. This is an example of a computational puzzle where
a brute-force, guess-and-check method is the most effective way to solve it. This process,
known as mining, ensures that no single player has an edge in creating the next block.
As a result, miners are not required to provide any authentication or a-priori knowledge.
The chances of a block being modified successfully diminishes exponentially with the size
of the blockchain. Proof-of-work, on the other hand, is subject to the 51 percent attack,
in which a coalition with more than half of the possible mining power can insert blocks
into the blockchain. To counter this, Ethereum built a new consensus algorithm called
proof-of-stake. Proof-of-stake relies on a group of validators with a financial stake in the
network voting and proposing the next block in turn. The method chooses validators for
block production in a pseudo-random manner, preventing advance knowledge of when a
specific participant would create a block. The quantity of cryptocurrency, or stake, that a
participant has determines his or her chances of being chosen as a validator. While there
are several drawbacks to this method of implementation, it does address the 51 percent
attack problem which the proof-of-work had and is currently being developed by Ethereum.
Table 1 illustrates the fields of block structure in blockchains and their uses.

Sustainability 2023, 15, 2133 5 of 14

Table 1. Fields in a blockchain [4].

Name Description

Version It refers to the protocol’s identifying rules.

Timestamp

Nodes can use timestamps to properly change the mining difficulty for each block
creation period. Timestamps allow the net- work to calculate how long it takes to

extract blocks during a certain time period and alter the mining difficulty
parameter accordingly.

Previous Hash Used to link the previous block with the current block in the chain.

Target It defines the difficulty level of the consensus algorithm.

Nonce
Nonce is an abbreviation for “number only used once” which is added to a hashed
block in a blockchain that when rehashed, fits the difficulty level limitations. In

order to receive cryptocurrency, blockchain miners must solve for a nonce.

Merkle Root A Merkle Root is the hash of all the hashes of all the legitimate transactions that
make up a block.

Hash
Hashing transaction occurs by Merkel tree, where each node is related with its
parent node; therefore, if the transaction is modified, then it will affect all hash

trees from the leaf node to the Merkle Root, respectively.

3. Literature Survey

Kanth et al. [5] implemented a collaborative intrusion detection system capable of
recording login activity via a private blockchain-based ledger and hence it is immutable. In
initial stages the authors were successfully capable of proving that blockchain-based CIDSs
were a viable method to detect doorknob-rattling attacks and hence can prevent any act of
an intruder trying to modify the activity records. The author [6] uses CPU utilization as a
metric to accurately determine whether an intrusion is taking place or not.

Golomb et al. [7] introduces CIoTA, which is a blockchain-based solution for collab-
orative anomaly detection across a large number of IoT devices. While staying resilient
to adversarial attacks, CIoTA constantly trains an anomaly detection model. CIoTA can
also distinguish between uncommon benign events and malevolent activity by harnessing
the knowledge of the crowd. One downside of CIoTA is that each IoT model/firmware
must have its own chain published. As a result, CIoTA is best suited to large industrial
settings and smart cities in its current state. We intend to develop CIoTA in the future
to support a variety of frameworks and increase its detection capability, for example, by
investigating API flows rather than lower-level control flows. Ide et al. [8] presented a
system (CollabDict) based on blockchain and the Gaussian mixture learning algorithm
for collaborative anomaly detection. The major challenges which the author faced here
were building the consensus, validating the data, and security of the data. However, the
performance of the CollabDict is better than the fuses multitask learning algorithm.

Kumari et al. [9] primarily examine the issue of harmful behaviors occurring in blockchain
networks, and then attempt to remedy the problem using the clustering protocol. As a result,
the authors keep a check on each node’s behavior pattern. Had the authors tried to perform
manually for each node, it would have been practically impossible to do so for all the nodes.
The K-means clustering approach was utilized to perform the clustering. However, with that
algorithm, considerable improvisation was required. As a result, an adapted version of the
k-means method was used. This in turn made the blockchain safer against any unlawful or
unusual activity. However, the major disadvantage is that the authors used the mean value
for each cluster, thus an inaccurate cluster head could be selected.

Dey [10] employs game theory and supervised machine learning techniques to identify
anomalous player behavior in a blockchain network. The author provides the probability
for each attack based on the value of each transaction; however, the implementation was
still in its early phases and hence required a lot of improvements in the defense mechanism.
Signorini et al. [11] proposed BAD (blockchain anomaly detection). BAD, in particular,
enables the detection of abnormal transactions and the prevention of their propagation.

Sustainability 2023, 15, 2133 6 of 14

While forks can occur naturally in the blockchain life cycle owing to network delays, they
can also be generated purposefully by attackers and used to commit fraud. Malicious
acts are dispersed throughout the chain. By gathering data, BAD enables the avoidance
of repeated attacks and builds a tamper-proof threat database that is distributed (thus
preventing any single point of failure), trusted (the majority of the network collects and
verifies any behavioral data), and private.

Kanth et al. [5] implemented a collaborative intrusion detection system capable of
recording login activity via a private blockchain-based ledger and hence it is immutable. In
initial stages the authors were successfully capable of proving that blockchain-based CIDSs
were a viable method to detect doorknob-rattling attacks and hence can prevent any act of
an intruder trying to modify the activity records. The author also uses CPU utilization as a
metric to accurately determine whether an intrusion is taking place or not.

Steichen et al. [12] discusses security issues regarding private or consortium blockchains.
In this paper, the authors discussed how an attacker can target individual nodes since the
number of nodes undertaking blockchain-related tasks is generally restricted. As a result,
ChainGuard, which is built as an SDN module and identifies and intercepts excessively
large flows at the network level, was proposed in this study. ChainGuard’s implementation
specifics were discussed and trials were carried out. The tests conducted by the author indicate
that ChainGuard can effectively resist DoS and DDoS assaults while allowing a restricted
number of packets to cross the SDN network, and hence permits communication between
benign blockchain nodes to continue in the case of an attack. Zhu et al. [13] discussed a
novel approach to achieving the controllable blockchain CBDM, which is used to obtain
storage efficiency in the cloud computing network and to reduce the risk of attacks which are
malicious in the blockchain. Though not tested in a real environment, it provides huge scope
for development of the prototype.

Hu et al. [14] discussed the multi-microgrid system which it creates a collaborative
intrusion detection (CID) paradigm based on blockchain technology. It stores the CID
goal in a blockchain and uses a consensus mechanism to create a multi-microgrid system
correlation model. It also reduces the false-negative rate and considerably improves the
DPoS consensus algorithm by continuously using multiple patterns. However, the major
drawback here is that this method does not provide a higher level of true-positive rates
and is also limited to fewer types of attacks. N. Alexopoulos et al. [15] uses blockchain
technology to improve CIDSs and also provides a combined architecture based on the CIDS
and blockchain. This paper proposes a model which considerably reduces the overhead
and volume of the blockchain. However, the author has provided a prototype, or a higher
view, and the model was not tested in the real environment.

Li et al. [16] focused on signature-based collection in their study and proposed a
CBSigIDS, a general framework for a collaborative blockchained, signature-based IDS
that used blockchains to help gradually share and construct a trusted signature database,
inspired by previous blockchain applications. It improved the effectiveness of signature-
based IDSs. However, a major drawback is that it was prone to advanced attacks, and the
need for verification and updates in the blockchain resulted in the diminishing performance
of the overall network.

In recent years, many other IDSs have been proposed [17–21]. These IDSs can be
used in any domain to identify intrusions or abnormalities, which can then lead to the
development of a secure solution for smart cities. In smart cities, everything is connected
to the internet so a smart IDS can play a significant role to provide the security for this
created network. Aloqaily et al. [22] proposed an IDS for securing transportation. This IDS
will help in vehicular service management to secure the network from attacks and ensure
the quality-of-service availability. Elrawy et al. [23] discussed the role of IDSs and the IoT
in the smart environment. This article first discusses various existing works that have
contributed to the smart environment using IoT sensors, and then discusses the existing
IDSs used to provide security in an IoT context. Elsaeidy et al. [24] introduced a smart IDS
to prevent distributed denial of service (DDoS) attacks in smart cities. This article used

Sustainability 2023, 15, 2133 7 of 14

the restricted Boltzmann machines (RBMs) technique to design the IDS. Saba et al. [25]
proposed an ensemble-based IDS for smart city hospitals.

The current IDS is not sophisticated enough to detect distributed, parallel attacks that
take place throughout the nodes in the network instead of a single node. In the case of
CIDSs, the ability to correlate events is crucial. The events occurring across all nodes in the
network must be aggregated for further processing and raising of alerts. The concept of
trust is crucial among the nodes. While the discussed approaches have their advantages,
there was clearly a lack of scalable architecture in the case of the CIDS. The main aim
of this paper is to demonstrate an approach through which a scalable architecture could
be developed, and trust could be established among the nodes in the CIDS architecture.
Blockchain was proposed to solve the trust issue in the case of the CIDS.

4. Proposed Methodology and Implementation

In the case of the doorknob-rattling scenario, there is a clear need for a CIDS as
demonstrated by Alexopolous et al. [15]. The doorknob-rattling scenario can be further
explained. In this case, suppose 50 stand-alone nodes in the network are using IDSs and
tracking login attempts. The threshold for an individual machine could be set to 4. Instead
of making 4 incorrect attempts on each node, the attacker would make a series of 2 incorrect
attempts until he successfully logs on to a particular node. To utilize this, the attacker
uses the common list of user-ids and passwords available. If the system is using an IDS,
these activities would go unnoticed. However, in the case of a CIDS, these activities would
clearly be noticed, and a clear spike would be seen as in Figure 3.

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 17

Figure 3. Doorknob-rattling attack [5].

Table 2 indicates the parameters necessary for the building of a CIDS system. While

these are necessary, some of them are complementary to each other. That is, while satis-

fying one of the requirements, there would be a high chance of violating the other. For

example, accountability means disclosing some of the information about the node in the

system while that would clearly defy the rules of privacy. Hence, there are clear trade-offs

between one and another.

Table 2. Requirements of a CIDS system [26].

Accountability Nodes must be responsible for the actions taken by them.

Integrity Data cannot be manipulated once entered into the system.

Resilience The system should be free from SPoF.

Consensus Nodes in the system must trust the data sent by other nodes.

Scalability The system must be able to scale as the number of nodes increases.

Overhead The overhead cost must be minimized to achieve scalability.

Privacy Privacy must be a concern for the participants in the system.

The main challenge here was to develop a CIDS framework which would decrease

the overhead costs and would be scalable in cases where the size of the network increases.

Blockchain was used to implement the proof-of-concept described earlier. A private

Ethereum-based ledger was used in our case. In order to log the successful attempts made,

pluggable authentication modules were used. The pluggable authentication modules

were used in order to securely log the attempts made in the system so that these attempts

could be transferred to the blockchain as environment variables. In order to use this, the

pam_exec.so was used to run a shell script login_success.sh and the pam_exec file passed

the login information to the shell script to the shell script as environment variables. These

variables were then sent to the log files which were stored automatically. In order to send

data to blockchain, cron utility software was used in Linux which scheduled the transfer

of data from the log files directly to the blockchain by running a python script at a contin-

uous interval of 5 minutes. If the login was successful, data from the logs would immedi-

ately be sent to the blockchain. This is because a scenario was imagined where the attacker

would gain access to these log files and could tamper or remove them in order to remove

the proof of his presence in the node. In order to simulate an attack, continuous login

attempts were made from different machines using SSH (secure shell) to check whether

Figure 3. Doorknob-rattling attack [5].

Table 2 indicates the parameters necessary for the building of a CIDS system. While
these are necessary, some of them are complementary to each other. That is, while satisfying
one of the requirements, there would be a high chance of violating the other. For example,
accountability means disclosing some of the information about the node in the system
while that would clearly defy the rules of privacy. Hence, there are clear trade-offs between
one and another.

Sustainability 2023, 15, 2133 8 of 14

Table 2. Requirements of a CIDS system [26].

Accountability Nodes must be responsible for the actions taken by them.

Integrity Data cannot be manipulated once entered into the system.

Resilience The system should be free from SPoF.

Consensus Nodes in the system must trust the data sent by other nodes.

Scalability The system must be able to scale as the number of nodes increases.

Overhead The overhead cost must be minimized to achieve scalability.

Privacy Privacy must be a concern for the participants in the system.

The main challenge here was to develop a CIDS framework which would decrease
the overhead costs and would be scalable in cases where the size of the network increases.
Blockchain was used to implement the proof-of-concept described earlier. A private
Ethereum-based ledger was used in our case. In order to log the successful attempts made,
pluggable authentication modules were used. The pluggable authentication modules were
used in order to securely log the attempts made in the system so that these attempts
could be transferred to the blockchain as environment variables. In order to use this, the
pam_exec.so was used to run a shell script login_success.sh and the pam_exec file passed
the login information to the shell script to the shell script as environment variables. These
variables were then sent to the log files which were stored automatically. In order to send
data to blockchain, cron utility software was used in Linux which scheduled the transfer of
data from the log files directly to the blockchain by running a python script at a continuous
interval of 5 minutes. If the login was successful, data from the logs would immediately be
sent to the blockchain. This is because a scenario was imagined where the attacker would
gain access to these log files and could tamper or remove them in order to remove the proof
of his presence in the node. In order to simulate an attack, continuous login attempts were
made from different machines using SSH (secure shell) to check whether the attempts were
being logged or not. To make continuous attacks from another host, cronjobs were again
used to call shell script files at an interval of 5 min. This shell script would make a series of
wrong attempts trying to log in as different users in the target machine. This is undertaken
to reduce the overhead cost incurred every time a transaction is made on the blockchain.

In order to make the system more secure, another parameter was used. This was
measuring the CPU utilization of the target machine. There may be a case where an
attacker, after gaining access to the system, would try to run malicious programs. In order
to detect this, CPU utilization was also logged and stored in log files. To measure CPU
utilization, the command used was top | head -3 | tail -1. This command would give
the CPU utilization at that given instant. Our system was designed in such a way that
if the CPU utilization would exceed a given threshold, this would be logged on the log
files. After being logged, these files would be sent to the blockchain at an interval of every
5 min. The spike in the gas cost which can be seen through the Ganache UI would warn
the system administrator of the possible attacks which might be taking place in the node.

5. Results Discussion
5.1. CPU Utilization

A simple experiment was performed to confirm that our CIDS setup would be able to
precisely record CPU utilization information. The system would record CPU utilization
every minute and record the result. If the CPU utilization exceeded a particular threshold,
for example, 50%, it would get recorded in a log file named cpu.log. To spike the CPU
utilization, another program (prime) was running in the background. The purpose of prime
was to spike the CPU utilization, utilizing 10 threads so that the results could be logged
onto the cpu.log file. Based on the usage of the current system, a threshold was set to 50%
to trigger the sending of data to the log files. This threshold could be modified according to

Sustainability 2023, 15, 2133 9 of 14

the usage of the system and based on user needs. Figure 4 illustrates the cpu.log recording
all CPU utilization.

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 17

the attempts were being logged or not. To make continuous attacks from another host,

cronjobs were again used to call shell script files at an interval of 5 min. This shell script

would make a series of wrong attempts trying to log in as different users in the target

machine. This is undertaken to reduce the overhead cost incurred every time a transaction

is made on the blockchain.

In order to make the system more secure, another parameter was used. This was

measuring the CPU utilization of the target machine. There may be a case where an at-

tacker, after gaining access to the system, would try to run malicious programs. In order

to detect this, CPU utilization was also logged and stored in log files. To measure CPU

utilization, the command used was top | head -3 | tail -1. This command would give the

CPU utilization at that given instant. Our system was designed in such a way that if the

CPU utilization would exceed a given threshold, this would be logged on the log files.

After being logged, these files would be sent to the blockchain at an interval of every 5

min. The spike in the gas cost which can be seen through the Ganache UI would warn the

system administrator of the possible attacks which might be taking place in the node.

5. Results Discussion

5.1. CPU Utilization

A simple experiment was performed to confirm that our CIDS setup would be able

to precisely record CPU utilization information. The system would record CPU utilization

every minute and record the result. If the CPU utilization exceeded a particular threshold,

for example, 50%, it would get recorded in a log file named cpu.log. To spike the CPU

utilization, another program (prime) was running in the background. The purpose of

prime was to spike the CPU utilization, utilizing 10 threads so that the results could be

logged onto the cpu.log file. Based on the usage of the current system, a threshold was set

to 50% to trigger the sending of data to the log files. This threshold could be modified

according to the usage of the system and based on user needs. Figure 4 illustrates the

cpu.log recording all CPU utilization.

Figure 4. Snapshot from cpu.log recording all CPU utilization.

5.2. Login Attempts

After the CIDS was set up, the main objective was to capture different authentication

requests, including the login attempts. Figure 5 shows the output of the log file when a

person tries to become a super-user. This is determined by the $PAM_RUSER field be-

cause both sudo and su can change the context of the user.

Figure 4. Snapshot from cpu.log recording all CPU utilization.

5.2. Login Attempts

After the CIDS was set up, the main objective was to capture different authentication
requests, including the login attempts. Figure 5 shows the output of the log file when a
person tries to become a super-user. This is determined by the $PAM_RUSER field because
both sudo and su can change the context of the user.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 17

Figure 5. Output of auth.log when someone tries to become a super-user.

Table 3 illustrates the results when the user tries to become a super-user using the

sudo and su commands.

Table 3. The attempts when the user tries to become a super-user using the sudo and su commands.

$PAM_USE

R

$PAM_TYP

E

$PAM_SER-

VICE

$PAM_RUS

ER
Date Success/Failure

vedant auth sudo vedant
Tue May 27

01:56:00
Success

vedant auth su vedant
Tue May 27

01:59:00
Success

Table 4 shows the use of an external host by making use of the ssh command to log

onto the CIDS remotely. This example makes use of the $PAM_RHOST field, containing

information about requesting hosts. In the current example, an external agent

(192.168.87.4) successfully logged into the CIDS node as ‘vedant’ via the ssh

vedant@192.168.87.3 command. This is a crucial use case as the doorknob-rattling attack

typically involves remote users attempting to penetrate the target network [27].

Table 4. Login attempt evidence.

$PAM_USER $PAM_TYPE
$PAM_SER-

VICE
$PAM_RHOST Date

Suc-

cess/Fail-

ure

vedant auth sshd 192.168.87.3
Wed May 27

01:56:23
Success

Using the current method to record the external login attempts evidenced by Table

4, a simulated doorknob-rattling attack was tried against one of the machines in the net-

work. During the test, the intruder tried using different user accounts on a single machine.

The output from the log files is shown in Figure 6. The attacking machine tried to pene-

trate the machine thrice using a secure shell (SSH) into each of the user accounts. Each of

these attempts was recorded and sent to the blockchain as transactions [28,29].

Each transaction had a varying gas cost based on the number of attempts the intruder

made to penetrate the machine. All records from the log files were pushed onto the block-

chain either at the end of a specified time interval (in the case where all the attempts dur-

ing the interval were failed login attempts) or were sent immediately to the blockchain if

there were any successful logins [30,31].

Figure 5. Output of auth.log when someone tries to become a super-user.

Table 3 illustrates the results when the user tries to become a super-user using the
sudo and su commands.

Table 3. The attempts when the user tries to become a super-user using the sudo and su commands.

$PAM_USER $PAM_TYPE $PAM_SERVICE $PAM_RUSER Date Success/Failure

vedant auth sudo vedant Tue 27 May
01:56:00 Success

vedant auth su vedant Tue 27 May
01:59:00 Success

Table 4 shows the use of an external host by making use of the ssh command to log
onto the CIDS remotely. This example makes use of the $PAM_RHOST field, containing
information about requesting hosts. In the current example, an external agent (192.168.87.4)
successfully logged into the CIDS node as ‘vedant’ via the ssh vedant@192.168.87.3 command.
This is a crucial use case as the doorknob-rattling attack typically involves remote users
attempting to penetrate the target network [27].

Sustainability 2023, 15, 2133 10 of 14

Table 4. Login attempt evidence.

$PAM_USER $PAM_TYPE $PAM_SERVICE $PAM_RHOST Date Success/Failure

vedant auth sshd 192.168.87.3 Wed 27 May
01:56:23 Success

Using the current method to record the external login attempts evidenced by Table 4,
a simulated doorknob-rattling attack was tried against one of the machines in the network.
During the test, the intruder tried using different user accounts on a single machine. The
output from the log files is shown in Figure 6. The attacking machine tried to penetrate
the machine thrice using a secure shell (SSH) into each of the user accounts. Each of these
attempts was recorded and sent to the blockchain as transactions [28–30].

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 17

Figure 6. Doorknob-rattling attack in a ledger.

Figure 6. Doorknob-rattling attack in a ledger.

Each transaction had a varying gas cost based on the number of attempts the intruder
made to penetrate the machine. All records from the log files were pushed onto the
blockchain either at the end of a specified time interval (in the case where all the attempts
during the interval were failed login attempts) or were sent immediately to the blockchain
if there were any successful logins [31].

A brief summary of the doorknob-rattling attack events in the case of a single attacker
is shown in Table 5. The transaction which took place in Ganache can be seen in Figure 7.

Table 5. Summary of doorknob-rattling attack.

User IP Address of Request Number of Login Attempts

user1 192.168.87.3 1

user2 192.168.87.3 2

user6 192.168.87.3 3

user7 192.168.87.3 2

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 17

A brief summary of the doorknob-rattling attack events in the case of a single attacker

is shown in Table 5. The transaction which took place in Ganache can be seen in Figure 7.

Table 5. Summary of doorknob-rattling attack.

User IP Address of Request
Number of Login At-

tempts

user1 192.168.87.3 1

user2 192.168.87.3 2

user6 192.168.87.3 3

user7 192.168.87.3 2

There was a total of eight login attempts over four different user accounts. Figure 7

shows the transaction which was submitted to the blockchain and the transaction hash

and all the other details.

Figure 7. Transactional data which were sent to the blockchain.

Figure 8 shows a list of all the blocks which were mined during the entire process. It

also shows the gas cost incurred during the entire attack.

Figure 7. Transactional data which were sent to the blockchain.

Sustainability 2023, 15, 2133 11 of 14

There was a total of eight login attempts over four different user accounts. Figure 7
shows the transaction which was submitted to the blockchain and the transaction hash and
all the other details.

Figure 8 shows a list of all the blocks which were mined during the entire process. It
also shows the gas cost incurred during the entire attack.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 17

Figure 8. List of all the blocks mined and the respective gas costs.

The timestamps of these transactions show that the attacks were permanently rec-

orded in the CIDS distributed ledger. The given sequence of events and protection of re-

lated data shows that the nodes can be protected, and the system administrator would be

made aware of the possible intrusion immediately. This also proves that Ethereum and

Ganache work smoothly with Linux and the integration between them to achieve data

ingest for intrusion detection is successful.

5.3. Detecting an Anomaly: Thwarting a Doorknob-Rattling Attack

The main aim of our CIDS architecture was to record data that could be used to detect

anomalies. This is because data collection at the end is not enough. It needs to be processed

and the analysis should be performed to find potential threats. Subroutines were created

which were scheduled to run at specific time intervals using the cron utility software. This

made the traffic steady over a period of time. The cron software utility in Linux was used

to schedule the bash script anomaly.sh. The anomaly.sh is used to ensure that 20 to 30

login attempts were made from random users on the virtual machine at an interval of

every five minutes. This was continued for several iterations. All these attacks were

logged into our target machine and data were being sent to the blockchain. The main idea

behind this approach was that an increase in the number of transactions would mean

higher gas cost. The gas cost for each transaction is further used to analyze whether an

attack has actually taken place or not. Table 6 shows the transactions which took place

during the attack and the total gas cost incurred. There were three instances where the

number of attacks crossed the threshold. The time instances were 10:40, 11:20, and 11:45.

Table 6. Transactions and their respective gas costs in an interval of five minutes.

Time Number of Transactions Total Gas Cost

10:20 1 22,280

10:25 1 22,280

10:40 18 44,184

10:45 1 22,280

10:50 4 26,152

11:00 4 23,576

11:15 2 23,576

11:20 8 26,152

11:25 1 22,280

11:30 1 22,280

11:35 26 54,488

Figure 8. List of all the blocks mined and the respective gas costs.

The timestamps of these transactions show that the attacks were permanently recorded
in the CIDS distributed ledger. The given sequence of events and protection of related data
shows that the nodes can be protected, and the system administrator would be made aware
of the possible intrusion immediately. This also proves that Ethereum and Ganache work
smoothly with Linux and the integration between them to achieve data ingest for intrusion
detection is successful.

5.3. Detecting an Anomaly: Thwarting a Doorknob-Rattling Attack

The main aim of our CIDS architecture was to record data that could be used to detect
anomalies. This is because data collection at the end is not enough. It needs to be processed
and the analysis should be performed to find potential threats. Subroutines were created
which were scheduled to run at specific time intervals using the cron utility software. This
made the traffic steady over a period of time. The cron software utility in Linux was used
to schedule the bash script anomaly.sh. The anomaly.sh is used to ensure that 20 to 30 login
attempts were made from random users on the virtual machine at an interval of every five
minutes. This was continued for several iterations. All these attacks were logged into our
target machine and data were being sent to the blockchain. The main idea behind this
approach was that an increase in the number of transactions would mean higher gas cost.
The gas cost for each transaction is further used to analyze whether an attack has actually
taken place or not. Table 6 shows the transactions which took place during the attack and
the total gas cost incurred. There were three instances where the number of attacks crossed
the threshold. The time instances were 10:40, 11:20, and 11:45.

The transactions were then plotted onto a graph with the number of transactions on
the primary axis and the number of attempts on the secondary axis. The peaks show that
the number of transactions crossed the threshold as shown in Figure 9. Figure 10 shows the
bar chart of gas costs in various time frames. Although the inability to detect all the attacks
was problematic, this statistical method did correctly identify that there was an anomaly,
which would lead a system administrator to further investigate.

Sustainability 2023, 15, 2133 12 of 14

Table 6. Transactions and their respective gas costs in an interval of five minutes.

Time Number of Transactions Total Gas Cost

10:20 1 22,280

10:25 1 22,280

10:40 18 44,184

10:45 1 22,280

10:50 4 26,152

11:00 4 23,576

11:15 2 23,576

11:20 8 26,152

11:25 1 22,280

11:30 1 22,280

11:35 26 54,488

11:45 1 22,280

11:50 4 26,152

11:55 1 22,280

Sustainability 2023, 15, x FOR PEER REVIEW 14 of 17

11:45 1 22,280

11:50 4 26,152

11:55 1 22,280

The transactions were then plotted onto a graph with the number of transactions on

the primary axis and the number of attempts on the secondary axis. The peaks show that

the number of transactions crossed the threshold as shown in Figure 9. Figure 10 shows

the bar chart of gas costs in various time frames. Although the inability to detect all the

attacks was problematic, this statistical method did correctly identify that there was an

anomaly, which would lead a system administrator to further investigate.

Figure 9. Graph showing number of attempts and corresponding gas costs at an interval of five

minutes.

0

5

10

15

20

25

30

0

10,000

20,000

30,000

40,000

50,000

60,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u

m
b

er
 o

f
at

te
m

p
ts

G
as

 C
o

st

Gas Cost Number of attempts

Figure 9. Graph showing number of attempts and corresponding gas costs at an interval of five minutes.

Sustainability 2023, 15, x FOR PEER REVIEW 15 of 17

Figure 10. Bar chart of gas costs in various time frames.

6. Conclusions and Future Work

The sharing of information is extremely crucial between the nodes in a CIDS system

in order to prevent the system from attacks as a whole. Information sharing is extremely

important in a scenario where distributed attacks are taking place increasingly. CIDSs,

along with blockchain, appears to be highly suitable for the ingesting of data, especially

in the case of building a smart sustainable city. This paper showed that commercial and

open-source blockchain technologies may be used to create an information-sharing sys-

tem that records both doorknob-rattling attacks using pluggable authentication modules

and CPU utilization data as blockchain transactions. This also proves that a blockchain

system can also be used as a logging mechanism for multiple machines and hence can be

used to aggregate data which could be later processed for intrusion detection. This re-

search provides positive indications that blockchain technology could be used on a large

scale for solving the intrusion detection problem and building a CIDS at a very large scale.

The most significant contribution made in this paper is that it provides an end-to-end

proof-of-concept for CIDS. It also showed at an initial level that attacks or intrusions can

be detected using blockchain as a backbone of the CIDS framework. However, there is a

need to consider the cost of setting up such a system and how sound it is. The proof-of-

concept, which was discussed in the literature, was not implemented at an end-to-end

level.

The main aim of this paper was to build an IDS which could be potentially used to

detect system abnormalities and intrusions. There are several avenues which are left to

explore in this paper for additional work. The main aim going further would be to create

a large-scale system which could detect anomalies, block them, and trigger alerts to the

system administrator. Further research is also required to see how the overhead cost of

running the blockchain client would be taken care of. Currently, Ganache (a private block-

chain running at a particular node) is used for testing and carrying out transactions in the

blockchain. Public or other test nets could be used to carry out system tests.

Author Contributions: Methodology, V.C.; Formal analysis, S.M.; Investigation, R.K.P.; Resources,

R.K.G.; Writing—original draft, S.B.H.S.; Writing—review & editing, P.K.S. All authors have read

and agreed to the published version of the manuscript.

Funding: This research received no external funding.

2
2

2
8

0

2
2

2
8

0

4
4

1
8

4

2
2

2
8

0

2
6

1
5

2

2
3

5
7

6

2
3

5
7

6

2
6

1
5

2

2
2

2
8

0

2
2

2
8

0

5
4

4
8

8

2
2

2
8

0

2
6

1
5

2

2
2

2
8

0

0

10,000

20,000

30,000

40,000

50,000

60,000

G
A

S
C

O
ST

TIME

Figure 10. Bar chart of gas costs in various time frames.

Sustainability 2023, 15, 2133 13 of 14

6. Conclusions and Future Work

The sharing of information is extremely crucial between the nodes in a CIDS system
in order to prevent the system from attacks as a whole. Information sharing is extremely
important in a scenario where distributed attacks are taking place increasingly. CIDSs,
along with blockchain, appears to be highly suitable for the ingesting of data, especially
in the case of building a smart sustainable city. This paper showed that commercial and
open-source blockchain technologies may be used to create an information-sharing system
that records both doorknob-rattling attacks using pluggable authentication modules and
CPU utilization data as blockchain transactions. This also proves that a blockchain system
can also be used as a logging mechanism for multiple machines and hence can be used
to aggregate data which could be later processed for intrusion detection. This research
provides positive indications that blockchain technology could be used on a large scale for
solving the intrusion detection problem and building a CIDS at a very large scale.

The most significant contribution made in this paper is that it provides an end-to-end
proof-of-concept for CIDS. It also showed at an initial level that attacks or intrusions can be
detected using blockchain as a backbone of the CIDS framework. However, there is a need
to consider the cost of setting up such a system and how sound it is. The proof-of-concept,
which was discussed in the literature, was not implemented at an end-to-end level.

The main aim of this paper was to build an IDS which could be potentially used
to detect system abnormalities and intrusions. There are several avenues which are left
to explore in this paper for additional work. The main aim going further would be to
create a large-scale system which could detect anomalies, block them, and trigger alerts to
the system administrator. Further research is also required to see how the overhead cost
of running the blockchain client would be taken care of. Currently, Ganache (a private
blockchain running at a particular node) is used for testing and carrying out transactions in
the blockchain. Public or other test nets could be used to carry out system tests.

Author Contributions: Methodology, V.C.; Formal analysis, S.M.; Investigation, R.K.P.; Resources,
R.K.G.; Writing—original draft, S.B.H.S.; Writing—review & editing, P.K.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data that support the findings of this study are available on request
from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jose, S. A Survey on Anomaly Based Host Intrusion Detection System. J. Phys. Conf. Ser. 2018, 1000, 1–11. [CrossRef]
2. Li, W. Surveying Trust-Based Collaborative Intrusion Detection: State-of-the-Art, Challenges and Future Directions. IEEE

Commun. Surveys Tuts 2021, 280–305. [CrossRef]
3. “What Is Hashing? Step-by-Step Guide-Under Hood of Blockchain. August. 2017. Available online: https://blockgeeks.com/

guides/what-is-hashing/ (accessed on 2 July 2022).
4. Salam, A.-E.; Mohammed, A.; Yousef, S.; Selvakumar, M.; Iznan, H. Intrusion Detection Systems Using Blockchain Technology:

A Review, Issues and Challenges. Comput. Syst. Sci. Eng. 2021, 40, 87–112. [CrossRef]
5. Kanth, V.; Mcabee, A.; Tummala, M.; Mceachen, J. Collaborative Intrusion Detection leveraging Blockchain and Pluggable

Authentication Modules. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10
January 2020.

6. Dreger, H.; Feldmann, A.; Paxson, V.; Sommer, R. Predicting the Resource Consumption of Network Intrusion Detection Systems.
International Workshop on Recent Advances in Intrusion Detection. 2008. Available online: https://link.springer.com/chapter/
10.1007/978-3-540-87403-4_8 (accessed on 2 July 2022).

7. Golomb, T.; Mirsky, Y.; Elovici, Y. CIoTA: Collaborative IoT anomaly detection via Blockchain. arXiv 2018, arXiv:1803.03807.
8. Idé, T. Collaborative Anomaly Detection on Blockchain from Noisy Sensor Data. In Proceedings of the 2018 IEEE International

Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; pp. 120–127.
9. Kumari, R.; Catherine, M. Anomaly detection in Blockchain using clustering protocol. Int. J. Pure Appl. Math. 2018, 118, 391–396.
10. Dey, S. Securing majority-attack in blockchain using machine learning and algorithmic game theory: A proof of work. In Proceedings

of the 2018 10th Computer Science and Electronic Engineering (CEEC), Colchester, UK, 19–21 September 2018; pp. 7–10.

http://doi.org/10.1088/1742-6596/1000/1/012049
http://doi.org/10.1109/COMST.2021.3139052
https://blockgeeks.com/guides/what-is-hashing/
https://blockgeeks.com/guides/what-is-hashing/
http://doi.org/10.32604/csse.2022.017941
https://link.springer.com/chapter/10.1007/978-3-540-87403-4_8
https://link.springer.com/chapter/10.1007/978-3-540-87403-4_8

Sustainability 2023, 15, 2133 14 of 14

11. Signorini, M.; Pontecorvi, M.; Kanoun, W.; Di-Pietro, R. ADvISE: Anomaly Detection tool for Blockchain Systems. In Proceedings
of the 2018 IEEE World Congress on Services (SERVICES), San Francisco, CA, USA, 2–7 July 2018; pp. 65–66.

12. Steichen, M.; Homme, S.; State, R. ChainGuard—A firewall for blockchain applications using SDN with OpenFlow. In Proceedings
of the 2017 Principles, Systems and Applications of IP Telecommunications (IPTComm), Chicago, IL, USA, 25–28 September 2017;
pp. 1–8.

13. Zhu, L.; Wu, Y.; Gai, K.; Choo, K.R. Controllable and trustworthy blockchain-based cloud data management. Future Gener. Comput.
Syst. 2019, 91, 527–535. [CrossRef]

14. Hu, B.; Zhou, C.; Tian, Y.C.; Qin, Y.; Junping, X. A collaborative intrusion detection approach using Blockchain for multimicrogrid
systems. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1–11. [CrossRef]

15. Alexopoulos, N.; Vasilomanolakis, E.; Ivánkó, N.R.; Mühlhäuser, M. Towards Blockchain-based collaborative intrusion detection
systems. In Proceedings of the Critical Information Infrastructures Security 12th International Conference, CRITIS 2017, Lucca,
Italy, 8–13 October 2017; D’Agostino, G., Scala, A., Eds.; Springer: Cham, Switzerland, 2018.

16. Vasilomanolakis, E.; Karuppayah, S.; Mühlhäuser, M.; Fischer, M. Taxonomy and survey of collaborative intrusion detection.
ACM Comput. Surv. 2015, 47, 1–33. [CrossRef]

17. Liang, C.; Shanmugam, B.; Azam, S.; Karim, A.; Islam, A.; Zamani, M.; Kavianpour, S.; Idris, N.B. Intrusion Detection System for
the Internet of Things Based on Blockchain and Multi-Agent Systems. Electronics 2020, 9, 1120. [CrossRef]

18. Ghaleb, F.; Saeed, F.; Al-Sarem, M.; Ali Saleh Al-rimy, B.; Boulila, W.; Eljialy, A.E.M.; Aloufi, K.; Alazab, M. Misbehavior-Aware
On-Demand Collaborative Intrusion Detection System Using Distributed Ensemble Learning for VANET. Electronics 2020, 9, 1411.
[CrossRef]

19. Radoglou-Grammatikis, P.I.; Sarigiannidis, P.G.; Efstathopoulos, G.; Panaousis, E.A. A Novel Multivariate Intrusion Detection
System for Smart Grid. Sensors 2020, 20, 5305. [CrossRef] [PubMed]

20. Iwendi, C.; Anajemba, J.H.; Biamba, C.; Ngabo, D. Security of Things Intrusion Detection System for Smart Healthcare. Electronics
2021, 10, 1375. [CrossRef]

21. Kotecha, K.; Verma, R.; Rao, P.V.; Prasad, P.; Mishra, V.K.; Badal, T.; Jain, D.; Garg, D.; Sharma, S. Enhanced Network Intrusion
Detection System. Sensors 2021, 21, 7835. [CrossRef] [PubMed]

22. Aloqaily, M.; Otoum, S.; Al Ridhawi, I.; Jararweh, Y. An intrusion detection system for connected vehicles in smart cities. Ad Hoc
Netw. 2019, 90, 101842. [CrossRef]

23. Elrawy, M.F.; Awad, A.I.; Hamed, H.F. Intrusion detection systems for IoT-based smart environments: A survey. J. Cloud Comput.
2018, 7, 1–20. [CrossRef]

24. Elsaeidy, A.; Munasinghe, K.S.; Sharma, D.; Jamalipour, A. Intrusion detection in smart cities using Restricted Boltzmann
Machines. J. Netw. Comput. Appl. 2019, 135, 76–83. [CrossRef]

25. Saba, T. Intrusion Detection in Smart City Hospitals using Ensemble Classifiers. In Proceedings of the 13th International
Conference on Developments in eSystems Engineering (DeSE), Liverpool, UK, 14–17 December 2020. [CrossRef]

26. Zhu, B.; Joseph, A.; Sastry, S. A taxonomy of cyber attacks on scada systems. In Proceedings of the 2011 International Conference
on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing, Washington, DC, USA, 19–22
October 2011; pp. 380–388.

27. Debar, H.; Dacier, M.; Wespi, A. Towards a taxonomy of intrusion-detection systems. Comput. Netw. 1999, 31, 805–822. [CrossRef]
28. Proffitt, T. How Can You Build and Leverage SNORT IDS Metrics to Reduce Risk? SANS Institute. 2013. Available online:

https://www.sans.org/reading-room/whitepapers/tools/paper/34350 (accessed on 2 July 2022).
29. Hu, J. Host-Based Anomaly Intrusion Detection; Springer: Berlin/Heidelberg, Germany, 2010; pp. 235–255. [CrossRef]
30. Khan, A.R.; Kashif, M.; Jhaveri, R.H.; Raut, R.; Saba, T.; Bahaj, S.A. Deep Learning for Intrusion Detection and Security of Internet

of Things (IoT): Current Analysis, Challenges, and Possible Solutions. Secur. Commun. Netw. 2022, 2022, 1–13. [CrossRef]
31. Parwani, D.; Dutta, A.; Shukla, P.K.; Tahiliyani, M. Various Techniques of DDoS Attacks Detection & Prevention at Cloud:

A Survey. J. Comput. Sci. Technol. 2015, 8, 110–120.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.future.2018.09.019
http://doi.org/10.1109/TSMC.2019.2911548
http://doi.org/10.1145/2716260
http://doi.org/10.3390/electronics9071120
http://doi.org/10.3390/electronics9091411
http://doi.org/10.3390/s20185305
http://www.ncbi.nlm.nih.gov/pubmed/32948064
http://doi.org/10.3390/electronics10121375
http://doi.org/10.3390/s21237835
http://www.ncbi.nlm.nih.gov/pubmed/34883839
http://doi.org/10.1016/j.adhoc.2019.02.001
http://doi.org/10.1186/s13677-018-0123-6
http://doi.org/10.1016/j.jnca.2019.02.026
http://doi.org/10.1109/DeSE51703.2020.9450247
http://doi.org/10.1016/S1389-1286(98)00017-6
https://www.sans.org/reading-room/whitepapers/tools/paper/34350
http://doi.org/10.1007/978-3-642-04117-4_13
http://doi.org/10.1155/2022/4016073

	Introduction
	Blockchain
	Block Structure
	Consensus

	Literature Survey
	Proposed Methodology and Implementation
	Results Discussion
	CPU Utilization
	Login Attempts
	Detecting an Anomaly: Thwarting a Doorknob-Rattling Attack

	Conclusions and Future Work
	References

