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Abstract: The circular economy (CE) is a promising model in industrial waste management, offering
viable long-term resource sustainability. The rising costs of the oil and gas industry make circularity
a reliable approach for saving materials, money, and energy. In recent years, attention has risen
to the need to apply CE within oil and gas produced water (PW) treatment. The most common
treatment practice for PW is based on mechanical treatment, with optional disposal of treated water
into deep wells. However, this procedure consumes a lot of energy, increases operational costs,
and causes environmental risks. This research aims to propose sustainable treatment technology
promoting circularity by introducing a novel nature-based solution to treat PW. The main research
objective is to develop a circular model for PW treatment by investigating the treatment of PW
using constructed wetlands (CWs) to sustainably reduce the amount of waste in oil and gas fields.
Additionally, investigate the use of industrial wastes as filtration materials for CW systems. In this
study, eight different laboratory-scale CWs models were designed and tested. The CWS operated in
two different types of flow directions: vertical (VF) and horizontal flow (HF). The main filter media
for the CW system included aggregates, activated carbons, plastic, and shredded tires. The study
investigated the removal rates of Total suspended solids (TSS), Total dissolved solids (TDS), Oil and
Grease (OG), and Total Petroleum Hydrocarbon (TPH) from the PW. Testing the CWs, it was found
that the results of the PW treatment were promising, with the potential for more future shredded
tires and plastic applications. All systems were effective at removing contaminants from produced
water, with the highest recorded removal efficiencies of 94.8% TSS, 33.7% TDS, 90.2% OG, and 98.4%
TPH. The research results were efficient and promoted the circular use of CW in PW treatment in
addition to the possibility of reusing the treated effluent in agriculture and irrigation.

Keywords: produced water treatment; circular economy; sustainability; nature-based solutions;
constructed wetland; industrial waste management

1. Introduction

The linear economic model of take-make-dispose is a historical economic approach
that has been used in various industrial sectors since the industrial revolution, promoting
economic benefits over all other measures [1]. The literature revealed that this model
caused major environmental problems, including the depletion of natural resources, the
accumulation of waste, and climate change [2]. However, to avoid such consequences,
initiatives to develop alternative economic models emerged, introducing the circular econ-
omy (CE) [3]. CE is a sustainable management approach proposed in the 1960s with the
potential to reduce waste generation and mediate global warming [2]. CE is based on keep-
ing the used materials in the economy as long as possible by ensuring that the resulting
wastes of one process are not discarded directly but are restored or regenerated to become
resources for other applications [4–6]. Hence, in contradiction to the linear economy, in
a circular economy, waste does not exist and is considered a new raw material, as shown in
Figure 1 [7].
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Water plays a significant role in achieving CE, where it is a major resource in industrial
activities [8,9]. Additionally, the resulting wastewater that has been contaminated during
industrial use can, fortunately, be recycled and safely used after a variety of treatment
processes, including biological, physical, chemical, or a combination [10,11]. The appro-
priate treatment method is determined based on the source of wastewater, contaminants
constituents, and regulating standards [12,13]. Currently, there is a challenge to promote
sustainable treatment solutions that save energy at a lower cost while efficiently treating
industrial wastewater [14]. In the oil and gas industry, produced water (PW) is the water
associated with oil during the extraction process [15]. It is one of the largest streams of
wastewater generated, and its estimated global value reached 250 million barrels per day
in 2020 [16], resulting in an annual estimate for 1999 of 77 billion barrels of produced
water [17]. By volume, it is therefore the largest waste stream associated with oilfield
activities. Thus, CE application and PW proper management are imperative in the oil and
gas industry to avoid the risk of environmental degradation and damaging ecosystems.

1.1. Produced Water Composition and Treatment

PW originates from two main sources: the first is during the extraction of oil, which
usually provides a mixture of oil and water that comes from the seawater surrounding the
oil well [18]. The second involves water being injected into the oilfield to bring the deep oil
to the surface, and it ultimately becomes part of the PW, or wastewater [19]. Subsequently,
produced water can be classified as a substance derived from natural gas, oilfields, or
coal bed methane [20]. The environmental impact of dumping produced water is harmful
and a huge waste of valuable resources. PW is not a single product but one that ranges
from a simple to a complex composition that is variable and is deemed to be a mixture of
dissolved and particulate organic and inorganic chemicals [21]. Chemical and physical
properties of produced water vary considerably depending on several factors, such as
the location of the field; age and depth of the geological formation; hydrocarbon-bearing
formation geochemistry; extraction method, the type of the produced hydrocarbon; and
the chemical composition of the reservoir [16].

The toxicity of PW discharged from gas platforms is 10 times more dangerous than
the toxicity of oil wells’ discharge [22,23]. However, the amounts of oil that are produced
are much larger than gas production. Generally, the major constituents that are present in
produced water include salt (measured as salinity), total dissolved solids (TDS), oil and
grease (OG), total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene, and
xylenes (BTEX), phenols, organic acids, natural organic and inorganic compounds that
cause hardness and scaling (e.g., calcium, magnesium, sulfates, and barium); and chemical
additives such as biocides and corrosion inhibitors employed during drilling, fracturing
and operation of the well [16,24–26].
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Treatment of PW can be done through various methods, including physical (membrane
filtration, adsorption, etc.), chemical (precipitation, oxidation), and biological (activated
sludge, biological aerated filters, and others) methods. Since PW contains several different
contaminants with varying concentrations, numerous treatment technologies have been
devised for water treatment [17,22]. Subsequently, it is challenging to choose the type
of treatment system best able to remove most of the contaminants from produced water.
Generally, the cheapest method is the most preferable, and the cost of the produced water
treatment mainly depends on influent quality, the price of electricity, a plant’s capacity, and
the effluent’s desired quality [27,28].

1.2. Promoting Constructed Wetlands for Produced Water Treatment

Of the wide variety of PW treatment methods, filtration is a relatively simple technique
used in water and wastewater treatment processes, and it is based on employing porous
filter media to allow only the water and not the impurities to pass through them. Various
porous materials can serve as filter media, for instance, sand, crushed stone, and activated
carbon [29–32]. However, the most widely used material is sand due to its availability,
low cost, and efficiency. Hence, Constructed Wetlands (CWs) present an ideal, sustainable,
nature-based solution for PW treatment and reuse. CW uses gravitational flow and filtration
for wastewater treatment, simulating the naturally created wetlands [33–36]. CWs are
generally classified based on the presence or absence of water on the surface as free surface
flow or subsurface flow and based on flow direction as vertical (VF CW), horizontal (HF
CW), or hybrid (VF + HF CWs) [35,37–39]. Selecting the appropriate CW flow should
be according to the wastewater type (industrial or domestic) and the local economic and
environmental conditions, as shown in Figure 2 [40,41]. Vymazal [42,43] reported that the
application of the constructed wetlands CWS technology in various industrial wastewater
treatments has been tested since 1975. Stefanakis [35,44,45] confirmed that CWs present
a promising CE with proven high efficiency in the treatment of PW in addition to the
reduction of the energy consumed through the treatment process by 99% compared to the
conventional deep-well disposal site approach.
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Figure 2. Types of constructed wetlands based on wastewater flow and selection criteria (developed
by Vymazal [40]).

In this research, a novel CE proposal for PW is presented by designing and testing eight
lab-scale CWs using new filter materials that can be found in the oil and gas fields as wastes
like plastic and shredded tires to ensure circularity of both solid and water wastes, besides
using activated carbon and aggregates due to their known water treatment capabilities as
the control for the rest of the materials. Filtration materials play an important role in the sub-
surface flow of a constructed wetland [46,47]. The choice of filtration materials is crucial
for hydraulic conductivity and the removal of suspended solids and phosphorus [48].
Vymazal [47] summarized the different nonconventional filtration materials used in several
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pieces of research that investigated the use of different filter media materials in CW, such as
rice husk, waste bricks, shredded tires, alum slag, oyster shell, and plastic pipes as well as
crushed rock and gravel. Hence, implementing the proposed CE approach in the treatment
of PW using CWs with a novel filter medium can help facilitate additional options for
petroleum industry water management, including its reuse for agriculture and industry.

1.3. Study Objectives

The main aim of this study is to develop a circular model for PW treatment by investi-
gating the treatment of PW using CWs with the application of waste filtration materials. To
achieve this aim, the specific objectives of this research work are listed as follows:

1. Preliminary testing and determining the optimum configuration for the lab scale CWs;
2. Design and installation of a pre-treatment septic tank to decrease the percentage of oil

and grease in the effluent;
3. Design and fabrication of eight individual VF and HF CWs units to test four different

filter media materials;
4. Chemical analysis of the produced water effluent collected from the Kuwait oil fields;
5. Operation and monitoring of the CWs using main filter media from aggregates,

activated carbon, plastic, and shredded tires. The lab-scale wetlands were operated
unplanted first, then Bamboo plants were added to the systems, and finally, Bamboo
was replaced with Cyperus plants to test the efficiency of the different materials with
and without plants;

6. Examine the effectiveness of CWs for the treatment of petroleum-contaminated
wastewater concerning Total Petroleum Hydrocarbons (TPH), Oil and Grease (OG),
Total Suspended Solids (TSS), and Total Dissolved Solids (TDS).

2. Research Methodology

This section explains in depth the methods followed in this study. The initial stage
of the research was to determine the optimum depth of VF CWs; the same configurations
were applied to HF in the next stage; three different proposed depths were tested in treating
synthetic wastewater, and the optimum depth was selected based on the preliminary study
results. Following this was a full chemical analysis of real produced water collected from oil
fields based on Kuwait Environmental Public Authority (KEPA) guidelines for wastewater
treatment and reuse in irrigation. To evaluate the efficiency of the CW systems, the levels
of contaminants before and after the treatment process were compared against the KEPA
guidelines for wastewater reuse for irrigation.

Furthermore, a full chemical analysis of the collected PW from the oil field was
conducted at the beginning of the study to identify the most critical contaminants that
should be regularly tested during every treatment process. Of all the contaminants found
in the produced wastewater, the following four types proved to be significantly higher than
the KEPA permitted limits: TPH, OG, TDS, and TSS. The other types of contaminants were
evidently within the KEPA permitted limits. For this reason, only the above-mentioned
four contaminants were examined regularly before and after each treatment process.

2.1. Design and Materials
2.1.1. Lab-Scale Constructed Wetlands Prototype Design

The goal of the preliminary study is to: firstly, determine the best depth for the filter
media materials; and secondly, characterize the influent produced water to determine the
chemical analysis needed to test the wastewater before and after treatment. The design
profile views of the lab-scale prototypes are shown in Appendix A of Figure A1. It consisted
of three vertical columns with dimensions of 10 cm length × 10 cm width and varying
heights: 30 cm, 50 cm, and 70 cm, respectively. This scenario was tested for 3 weeks
using a continuous flow mixture of real waste and synthetic wastewater, with chemical
concentrations presented in the results section. It consisted of three VF CWs using the same
filter media (Bamboo plant, sand, and gravel) to study variations in heights of the gravel
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layer using 30 cm, 50 cm, and 70 cm. This helped to evaluate the impact of height on the
efficiency of treatment.

According to the chemical assessments of the resulting water from the three depths
used for the VF CW, the most efficient depth for treatment was 70 cm. Therefore, four
VF CW with dimensions of 10 cm length × 10 cm width × 135 cm height, plus four HF
CW with dimensions of 135 cm length × 10 cm width × 10 cm height were constructed
following the design are shown in Appendix A of Figure A2a,b.

2.1.2. Construction of the Grease Trap Tank

The focus of the major study was to evaluate the VF and HF CWs’ performance, using
different filter media made from waste materials, and efficiency in removing pollutants
from wastewater produced from the oil extraction process. The wastewater produced from
oil extraction contains a large amount of oil, grease, and heavy suspended particles. Conse-
quently, a grease trap, presented in Figure A2c, was designed and installed as a preliminary
step before the main treatment procedure commenced. This stage is very important to help
in separating oil, grease, and heavy suspended particles before introducing the wastewater
to the VF and HF CW systems.

The grease trap makes it possible for the oil and grease to float on the surface of the
wastewater, while the heavy suspended particles sink to the bottom of the trap. The walls’
openings allow only the wastewater to pass through after entrapping the oil, grease, and
suspended particles inside the tank. Figure 3 shows the eight VF and HF CW systems,
including the four different filter materials selected for the major study.
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2.1.3. Constructed Wetlands Filter Media Materials and Plants

Four types of filtration media materials were used (shown in Figure 4), and each
material was applied to one HF and one VF CW. These materials were rubber made from
shredded tires (gradation in Table 1), corrugated pieces of plastic flexible polyethene tubes
used in our experiment were 15–19 mm in length and 17 mm in diameter, coarse aggregates
media were stratified by coarse gravel 40–60 mm in diameter, and activated carbon with
a uniform length of 15 mm and a diameter of 4 mm. On the top and bottom of each cell,
a layer of fine sand of 8–15 mm was placed to facilitate planting and stabilizing the filter
media. The eight HF and VF CW systems were operated for three weeks with filtration
media only, and then Bamboo and Cyperus plants were cultivated in the lab-scale wetlands
for three weeks each.
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Table 1. Shredded rubber gradation.

Sieve Size Percent Retained Percent Passing

2.36 mm (No. 8) 0.0 100.0

2.0 mm (No. 10) 0.0 100.0

1.18 mm (No. 16) 0.0 100.0

0.600 mm (No. 30) 30.6 69.4

0.425 mm (No. 40) 65.0 35.0

0.300 mm (No. 50) 82.2 17.8

0.150 mm (No. 100) 95.6 4.4

2.2. Collecting, Sampling, and Characterizing Produced Water

The PW was collected weekly from KOC and chemically analyzed to assess the
parameters of contamination then compared to the acceptable limits determined by the
KEPA guidelines for reuse in agricultural purposes. Subsequently, the PW was injected
into the CWs once every week. Over a 7-day period, the efficiency of the CW systems in
reducing each parameter was continuously investigated. Each parameter was measured
three times, and the average values were recorded.

The Mass Removal Rate (MRR) is the main parameter that determines the removal
efficiency of contaminants concentration and difference in influent and effluent after subse-
quent stages of a constructed wetland using the following formula:

MMR = [( CinQin)− (Cout Qout)]/A [ g m−2d−1], (1)

where A is the area of the constructed wetland bed [m2], Qin and Qout are the average
influent and effluent flow rates, respectively [m3 d−1], and Cin and Cout are the average
influent and effluent contaminant concentrations, respectively [mg L−1] [49].

The removal performance of any CW is a function of the contaminant decay rate,
where a kinetic experiment is normally conducted to account for the rate that varies from
one contaminant to another. This, in turn, determines the detention time that the design of
the specific CW should provide to achieve full contamination decay at the designed rate [50].
The first-order decay rate is normally assumed in reference to other parameters. The CW
design parameters include the retention time, flow rates, surface bed area, contaminant
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concentrations, and the decomposition constant coefficients (k) for wastewater treated in
HF and VF beds, which are normally obtained by applying the first-order equation [51]:

(Cout/Cin = e−k T), (2)

where k is the contaminant decay rate in d−1, and T is the hydraulic retention time in days.

3. Results

This section describes the results obtained from the preliminary and major studies.

3.1. Preliminary Study and Determination of CW Configuration

To evaluate the impact of the height of the filter media on the efficiency of treatment,
three VF CWs with the same media consisting of Bamboo plants, sand, and gravel were
tested for three weeks. The filter media height was the only variable for testing the VF
CW’s treatment of synthetic wastewater with the composition given in Table 2. Based on
the evaluation shown in Table 3, the maximum contaminant removal percentages resulting
from the 70 cm filter media are as follows: Ammonium Nitrogen (54%); Chemical Oxygen
Demand improvement (74%); and Total Nitrogen (58%) by CW.

Table 2. Synthetic wastewater composition.

Chemical Components Amount/5 L of Wastewater

Sodium Acetate (CH3COONa) 4.75 g

Monopotassium Phosphate (KH2 PO4) 0.125 g

Dipotassium Phosphate (K2HPO4) 0.125 g

Potassium Chloride (KCl) 3.7 g

Sodium Chloride (NaCl) 2.9 g

Ammonium Chloride (NH4Cl) 1.0905 g

Magnesium Sulfate (MgSO4) 0.5 g

Calcium Chloride Dihydrate (CaCl2·2H2O) 0.5 g

Table 3. The efficiency of pollutants’ removal in the preliminary study.

Average Pollutant Removal Efficiency

Water Quality Parameters 30 cm Filter 50 cm Filter 70 cm Filter

Ammonium Nitrogen (NH3-N) 29.7% 41.3% 54.1%

Nitrite Nitrogen (NO2-N) 3.6% 4.6% 11.3%

Total Nitrogen (TN) 26.8% 42.0% 57.8%

Total Phosphate (TP) 1.1% 18.2% 28.0%

Chemical Oxygen Demand (COD) 38.9% 63.0% 73.7%

3.2. Produced Water First Sample Characterization

As mentioned earlier in the methodology section and confirmed by the attached
results, four levels of contaminants, highlighted in blue, have already exceeded the KEPA
limits. Therefore, as shown in Table 4 only the four parameters highlighted in blue (OG,
TPH, TSS, and TDS) were regularly tested for the raw produced water, the discharge of the
grease trap, and the effluent of all the CWs.
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Table 4. Summary of the first produced water sample analysis.

No. Test Method and
Parameters Standards KEPA

Limit Result Unit

1 pH APHA 4500 HB 6.5–8.5 6.9 -

2 BOD (5 days, 200 ◦C) APHA 5210 B 20 13.2 mg/L

3 COD APHA 5220 C 100 45 mg/L

4 Dissolved Oxygen (DO) APHA 4500-O G >2 3.2 mg/L

5 Residual Chlorine APHA 4500 CL B 0.5–1.0 0.12 mg/L

6 Floatables APHA 2530 Nil Nil mg/L
7 Oil and Grease APHA 5520 B 5 6.2 mg/L

8 Total Suspended Solids
(TSS) APHA 2540 D 15 450 mg/L

9 Total Dissolved Solids
(TDS) APHA 2540 C 1500 59,500 mg/L

10 Phosphates as PO4 APHA 4500-P D 30 1.59 mg/L

11 Ammonia APHA 4500 NH3 D 15 9.5 mg/L

12 Total Kjeldahl Nitrogen APHA 4500 NORG B 30 19.6 mg/L

13 Total Nitrogen APHA 4500 NORG B 65 46.5 mg/L

14 Total Recoverable Phenol APHA 5530 C 1 0.15 mg/L

15 Fluoride APHA 4500-F D 25 <0.05 mg/L

16 Sulfide APHA 4500-S2F 0.1 <0.05 mg/L

17 Aluminum as Al USEPA 6010B 5 <0.01 mg/L

18 Arsenic as As USEPA 6010B 0.1 <0.01 mg/L

19 Barium as Ba USEPA 6010B 2 1.1 mg/L

20 Boron as B USEPA 6010B 2 <0.01 mg/L

21 Cadmium as Cd USEPA 6010B 0.01 <0.01 mg/L

22 Chromium as Cr USEPA 6010B 0.15 <0.01 mg/L

23 Nickel as Ni USEPA 6010B 0.2 <0.01 mg/L

24 Mercury as Hg USEPA 6010B 0.001 0.001 mg/L

25 Cobalt as Co USEPA 6010B 0.2 <0.01 mg/L

26 Iron as Fe USEPA 6010B 5 0.3 mg/L

27 Antimony as Sb USEPA 6010B 1 <0.01 mg/L

28 Copper as Cu USEPA 6010B 0.2 0.05 mg/L

29 Manganese as Mn USEPA 6010B 0.2 0.1 mg/L

30 Zinc as Zn USEPA 6010B 2 0.2 mg/L

31 Lead as Pb USEPA 6010B 0.5 <0.01 mg/L

32 Total Petroleum
Hydrocarbon ASTM 1664 A 5 9.4 mg/L

33 Faecal Coliform APHA
92212017,23rd 100 90 CFU/100 mL

34 E.Coli USEPA 1603:2014 50 30 CFU/100 mL

35 Faecal Streptococci ISO 7899-2:2000 50 <1 CFU/100 mL

36 Egg Parasite APHAMICROSCOPIC Nil Nil -
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3.3. Major Study Results

The following Figure 5 highlights the results of the PW contamination analysis before
and after treatment. The results represent parameter reductions in mg/L (TSS, TDS, OG,
and TPH) from the influent (raw PW before and after grease trap) and observed in effluents
of the HF and CF CWs in three operation scenarios (unplanted filter media, Bamboo plant,
and Cyperus plant).
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4. Discussion and Analysis

In the results obtained in HF CWs, the highest removal of TSS from PW was achieved
using aggregates and plastic filtration with the Cyperus plant, where TSS average con-
centration dropped from 72.1 to 33.7 and 3.9 mg/L, respectively (removal percentages of
94.8% and 94.7%). Additionally, using the same operational scenario, activated carbon and
shredded tires also showed great TSS reduction, from 72.1 to 4.5 and 5.5 mg/L, respectively
(removal percentages of 93.7% and 92.4%). In the case of TDS, the highest concentration
reduction was achieved by activated carbon filtration media in the CWs scenario operating
unplanted, where TDS dropped from 147,533.3 to 97,861.7 mg/L (a removal percentage of
33.7%), followed by shredded tires and plastic, where TDS values dropped from 147,533.3
to 122,591.7 and 138,288.3 mg/L, respectively (a removal percentage of 16.9% and 6.3%).

The concentrations of PW distinctive pollutants expressed as OG and TPH and the HF
CWs combined with grease traps showed great performance in the parameters’ removal
percentages, with values over 90% in the filter material and Cyperus scenario. The grease
trap reduced a noticeable amount of OG by 26.2–81.6%. This was further reduced by
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various filter media, with the highest values recorded by shredded tires in all the operat-
ing scenarios, with reduction percentages of 59–98.4%, followed by activated carbon at
47.9–97.9%, plastic at 47.7–97.77%, and aggregates at 15.4–97.6%. Interestingly, the perfor-
mance of the HF CWs in TPH removal follows the same behavior as OG, where most of
the reductions occur in the grease trap phase. However, the filter media with the highest
TPH removal recorded was aggregates, with reduction percentages of 15.2–90.2%, followed
by activated carbon at 12.5–89.9%, plastic at 14.6–89.4%, and shredded tires at 15.2–87.2%.
For all filtration materials, the upper limit of removal percentages was achieved during the
scenario operating unplanted.

In VF CWs, the highest removal of TSS from PW was achieved using plastic and
activated carbon filtration with the Cyperus plant, where TSS average concentration dropped
from 72.1 to 5.2 and 6.5 mg/L, respectively (removal percentages of 92.8% and 91%). During
the same operational scenario, shredded tires and aggregate showed TSS reductions from
72.1 to 8 and 10.2 mg/L, respectively (removal percentages of 88.9% and 85.8%). In the
analysis of TDS, the highest concentration reduction was achieved by activated carbon
filtration media in the CWs scenario operating unplanted, where TDS dropped from
152,929.7 to 92,166.7 mg/L (a removal percentage of 39.7%) followed by plastic, aggregates,
and shredded tires with values of 104,802.7, 107,201.0, and 108,951.7 mg/L, respectively
(removal percentages of 31.5%, 29.9%, and 28.8%, respectively).

Regarding PW distinctive pollutants reduction, the VF CWs combined with the grease
trap showed similar performance in the OG and TPH decay rates with HF CWs results,
where most of the reduction was by the grease trap. The grease trap reduced OG per-
centages by 35–98.7%. This was further reduced by various filter media, with the highest
values recorded by shredded tires with reduction percentages of 44.2–98.7%, aggregates at
63.1–98.77%, plastic at 60.2–98.6%, and activated carbon at 35.0–98.0%. Lastly, the highest
TPH removal recorded by VF CWs was by shredded tires and plastic during the unplanted
filter medium scenario with reduction percentages of 86.2% and 85.8%, respectively, fol-
lowed by aggregates and activated carbons with reduction percentages of 84.4% and 83.4%,
respectively, using filtration materials and a Cyperus plant.

This may indicate that the removal of petroleum water compounds depends not only
on the conditions occurring in the wetland, such as the filtration materials, plant of the
system, and configuration, but also on the pretreatment and the presence of a septic tank.

The data presented in Table 5 below offers an attempt to perform a data regression
to extract a trend of the treatment efficiency after using the MRR equation for the three
treatment scenarios for various materials.

Although some of the results showed a high regression coefficient R2 for the four
materials with most of the values nearly equal to 1, this correlation may not precisely reflect
the actual test due to the limited number of sampling points for each material. Nevertheless,
the data presented for the four filter materials proved good potential for the addressed
contaminants. However, from the R2 results, the waste materials showed potential as soil
amendments and filters for CWs.

The TSS, TDS, OG, and TPH removal k-rates in horizontal and vertical flow with
different bed filter mediums were calculated and given separately for each operating
scenario. Based on the graph shown in Figure 6, reasonable TSS, TDS, OG, and TPH
removal efficiency by plastic and shredded tires in comparison to the control materials
aggregates and activated carbon. The contaminants’ decay rate results were also found to
agree with the MRR and regression coefficient R2 results. The low efficiency of the shredded
tires compared to the other materials in TSS and TDS could be due to the tire materials’
properties, which might not be fully utilized for such applications [52]. More research on
the waste materials in the same field could be taken to further understand their behaviour.
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Table 5. Correlation coefficient (R2) of CW models using different filter materials for PW parameters.

R2 HCW VCW

TSS TDS OG TPH TSS TDS OG TPH

Activated
Carbon Effluent

No Plant 0.995 0.795 0.315 0.875 0.922 0.650 0.818 0.819

Bamboo Plant 0.595 0.999 0.956 0.579 0.512 0.696 0.999 0.509

Cyperus Plant 0.901 0.792 0.934 0.655 0.901 0.792 0.943 0.635

Aggregates
Effluent

No Plant 0.720 0.147 0.588 0.886 0.809 0.397 0.953 0.866

Bamboo Plant 0.580 0.945 1.000 0.617 0.632 0.986 0.379 0.298

Cyperus Plant 0.944 0.820 0.915 0.650 0.915 0.820 0.940 0.701

Plastic
Effluent

No Plant 0.663 0.019 0.977 0.871 0.147 0.358 0.897 0.875

Bamboo Plant 0.953 0.378 0.844 0.298 0.295 0.922 0.999 0.579

Cyperus Plant 0.647 0.745 0.958 0.958 0.957 0.745 0.939 0.659

Shredded
Tires
Effluent

No Plant 0.216 0.216 0.891 0.887 0.546 0.994 0.514 0.877

Bamboo Plant 0.216 0.216 0.891 0.886 0.994 0.546 0.514 0.878

Cyperus Plant 0.935 0.680 0.918 0.686 0.918 0.680 0.935 0.686
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5. Conclusions and Recommendations
5.1. Conclusions

The preliminary results showed that the best possible depth of the VF CW systems,
70 cm depth, was found to be the most efficient in wastewater treatment. Chemical
analysis of the produced water effluent collected from the oil field showed that Total
Petroleum Hydrocarbons (TPH), Oil and Grease (OG), Total Suspended Solids (TSS), and
Total Dissolved Solids (TDS) were the contaminants exceeding the KEPA allowable limits for
wastewater. Adding a grease trap oil separator system combined with the VCW materials
removes a high percentage of oil, grease, and hydrocarbon chemical materials from the
produced water. The combined system proved effective at removing contaminants, with the
highest removal percentages of 94.8% for TSS, 33.7% for TDS, 90.2% for OG, and 98.4% for
TPH over the 7 day retention time. The analysis involved particularly mass removal rates
(MRR) and first-order removal rate coefficients of TSS, TDS, OG, and TPH for HF and VF
CWs using different filters (aggregates, activated carbon, plastic, and shredded tires). On
the basis of the charts presented in Figures 5 and 6, both HF and VF constructed wetlands
showed similar efficiency in PW treatment. Additionally, it was found that the waste
materials used (plastic and shredded tires) proved to have a good potential in comparison
to conventional materials (aggregates and activated carbon) for the removal efficiency of
contaminants. Based on the previous conclusions, CW succeeded in presenting circular
treatment technology for both solid waste and wastewater.

5.2. Recommendations

The extravagant use of finite water resources and materials is not sustainable in the
long term. A current growing concern now is discussing the applications of nature-based
solutions in wastewater treatment. Additionally, there is great interest in promoting CE in
the industrial sector and water management to ensure a sustainable future for the coming
generations. Hence, more efforts and further research should cover the applications of CE
in different industrial activities and processes.

Investing in CW implementations will increase water resources, prevent further global
pollution, and boost the social and economic benefits. The performance of CW in the
treatment of PW proved, in practice, its high treatment capacity. Furthermore, to support
CE in the petroleum industry, we encouraged the use of waste recycling applications in
wetland technology. The research has shown potential for new CWs filter materials (plastic
and shredded tires), although their treatment efficiency has not been fully investigated due
to testing one source of wastewater (PW). The use of other alternative influents such as
municipal, agricultural, and other industrial wastewater is among the research areas that
can be investigated in the future. The presented CWs were tested on a laboratory scale,
and it is recommended to consider the analysis of PW treatment by CWs in experiments
at field scale to check the CWs’ operational efficiency with continuous PW extraction and
filling processes.
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Appendix A

The experimental layout of the laboratory constructed wetlands are presented in
this section.
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