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Abstract: The benefits of 3D concrete printing (3DCP) include reducing construction time and costs,
providing design freedom, and being environmentally friendly. This technology is expected to be
effective in addressing the global house shortage. This review highlights the main 3DCP applications
and four critical challenges. It is proposed to combine 3D concrete printing with Digital Twin (DT)
technology to meet the challenges the 3DCP faces and improve quality and sustainability. This paper
provides a critical review of research into the application of DT technology in 3DCP, categorize the
applications and directions proposed according to different lifecycles, and explore the possibility of
incorporating them into existing 3DCP systems. A comprehensive roadmap was proposed to detail
how DT can be used at different lifecycle stages to optimize and address the four main challenges of
3DCP, providing directions and ideas for further research.
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1. Introduction

Global housing shortage, the effects of global climate change, and rising labor costs
due to a shortage of skilled workers are driving the construction industry to question
traditional construction methods and push the limits of innovation. In this quest, additive
manufacturing (AM) technology (in particular 3D concrete printing) is gaining ground in
the construction industry to respond to the urgent demand for acceleration and mechaniza-
tion [1].

The method of automating construction by reading digital models of buildings will
undoubtedly blaze a new path for the construction industry to achieve cost reduction [2],
environmental protection [3], and realize complex shaped designs [4]. Additive manufac-
turing, such as 3D concrete printing, is well suited for adopting digital technologies and
achieving automating construction. The method of 3D concrete printing is also suitable for
creating structural elements with complex geometries, which allows building structures of
non-traditional architecture [5]. In addition, this technology can significantly improve sus-
tainability and reduce energy consumption, with reduced construction time and waste [6],
and use short fiber reinforced filaments from recycled plastics and fibers (such as polypropy-
lene and basalt) as a printing material [7]. Despite existing beliefs that 3D printing is a
difficult alternative to traditional construction methods, there are cases when 3D printing
can provide an extremely effective solution [5]. In addition to its ability to create complex
shapes, it can also be effective in response to disasters [4]. Whenever a natural disaster
such as a hurricane or earthquake destroys infrastructure and leaves people homeless,
3D concrete printing can be used to quickly rebuild bridges, roads, and houses. Finally,
based on its low cost and high efficiency, it can be a practical option for social housing
projects [8]. The past few years have seen a proliferation of 3D-printed buildings, including
administrative buildings in Dubai, residential houses in various European countries [9],
and apartments and bridges in China [10]. The method of 3D printing even underpins
NASA’s proposals for a Mars habitat [4]. This shows that this new technology, which
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previously seemed rather far-fetched and fantastical, is rapidly developing. However, like
any other innovation, it has a long way to go before it becomes a viable, sustainable, and
widely used technology [11]. Material limitations, scale limitations, high initial investment,
lack of competent personnel, and environmental sensitivities all pose challenges to the
development of 3D concrete printing in the construction industry [12,13].

Recently, a new construction technology of mortarless construction based on topologi-
cal interlocking producing demountable structures is emerging, thus reducing construction
time and waste as well as being capable of the reduction of CO2 print by reducing ce-
ment consumption [14–16]. Topological interlocking can also be effective in extraterrestrial
construction [17,18]. As topological interlocking is based on blocks of complex shapes,
Figure 1, 3D concrete printing can be a technology of choice in manufacturing topological
interlocking blocks [19]. Considering that the structure needs special edge, corner, lintel,
etc., blocks, digital technology could be incorporated to improve design and buildability.
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Efficient construction requires proper planning synchronization and optimization of all
technological and logistic elements of construction. Digital twin (DT) technology, an analog-
based planning and optimization concept, has begun to make its mark on the construction
industry in recent years [20]. DT could facilitate the communication of information and the
monitoring and optimization of physical entities by enabling the seamless transfer of data
between physical and virtual worlds [21]. It is expected to have the potential to minimize
the challenges faced by 3D printing technology during different phases.

Research related to the application of digital twin technology to 3DCP is still in its
infancy. Some theoretical considerations and experiments have been conducted by the
construction industry to explore the potential directions and benefits that digital twin
technology can bring to 3D concrete printing. However, these studies are fragmented.
Therefore, a critical review of the current state of 3D concrete printing and the development
of current DT applications in it is needed. The aim of this paper is to (1) review the benefits
and applications of 3D printing in the construction industry; (2) review the barriers and
challenges in the application of 3D concrete printing; (3) review the current status and
benefits of digital twin technology in 3D concrete printing; and (4) discuss the challenges of
using digital twin technology in 3DCP and the direction of its application, and hopefully,
by providing potential directions and solutions, it can be better utilized in the future to
develop 3DCP.
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2. Methodology

Given the wide coverage of scientific publications and the good performance of
Scopus [22], this paper mainly uses it for the initial search of the literature. The search was
also supplemented by other databases such as ScienceDirect and Google Scholar.

As the aim of this study was to review the current state of 3D concrete printing in the
construction industry and the use of digital twin technology in 3D concrete printing, the
search was conducted in two stages. The first stage was to review 3D concrete printing, so
the keywords were divided into two main parts, the first including “3D concrete printing”
or “3DCP”, while the second part included “construction”, “construction industry”, “con-
struction engineering”, or “AEC”. As the current 3DCP status is to be explored, the data
range was set ranging from 2018 to 2022. A total of 296 documents were searched and then
filtered according to their abstracts. In addition, some of the important and highly relevant
references mentioned in the selected papers were also reviewed carefully as a supplement.

The second stage (Figure 2) was to review digital twins in 3D concrete printing and the
search string also consisted of two parts. The first part includes keywords related to “digital
twins”, “virtual twins” or “DT”. The second part includes keywords such as “3D concrete
printing” or “3DCP”. Only one publication was retrieved from this search query, while
14 and 87 publications were retrieved from ScienceDirect and Google Scholar respectively.
After removing duplicates and those with the irrelevant abstract contents, 15 publications
were selected for further analysis.
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3. The Status of 3D Concrete Printing in the Construction Industry
3.1. Benefits and Construction Applications

The method of 3D concrete printing (3DCP) has been increasingly used in the construc-
tion industry in recent years where concrete is the main construction material employed [13].
Khoshnevis proposed Contour Crafting (CC) in the early 1990s, which is a workable system
for 3DCP and particularly applicable for large building structures [23]. Current 3D concrete
printing processes include binder jetting, material extrusion [24], and robotic shotcrete [25].
Binder jetting is a process according to which the material particles are selectively joined
using a binder, while the material extrusion used is suitable for the conventional materi-
als. The process extrudes the materials on a predefined path that solidifies later (layer by
layer) [4]. Shotcrete shows higher mechanical properties and enhanced interlayer bonding
than extrusion-based printing, but also faces many challenges such as precision of the
control, as well as pumpability and shootability of the material.

Although it is too early to say whether 3D concrete printing can completely replace
the current concrete construction methods such as cast-in-situ and pre-fabrication, many
studies have argued that this emerging technology can be used to eliminate some of the
complexities and negative effects of current construction methods [2,26,27]. Currently, the
concrete construction industry faces scores of challenges, including the cost of formwork,
the physical labor involved in setting up the formwork and placing the rebar, and the
limitations on the shape of the structure [11,26]. Formwork is an important component of
in situ concrete construction projects, accounting for 35–50% of the total cost of a concrete
structure and about 50–75% of the total construction time [28]. Complex projects accentuate
the significant negative impact of formwork on time and the environment [29]. The
method of 3D printing minimizes the need for formwork use and labor involvement [30],
thereby reducing costs [31], eliminating many construction hazards [32], and reducing
environmental hazards such as waste and noise pollution during construction [33]. In
addition, freedom of design and improved quality are also important benefits that 3D
printing can bring. Without the limitations of formwork, 3DCP can easily print curved
walls and other structural elements, allowing architects to conceive complex geometries
that go beyond traditional rectilinear design concepts [2]. Digitization is another advantage
of 3D printing, meaning that designs can be converted into printer instructions, which
minimizes the unnecessary errors and waste that may arise from interpreting drawings
during construction, as well as site operation, hence enhancing the quality.

The construction industry has a high environmental impact worldwide, and 3D
printing is expected to mitigate the environmental impact of traditional construction by
reducing energy use, resource demand and CO2 emissions over the product lifecycle [34].
A study consisting of designing a two-story building by different construction methods
found that 3DCP was the most economical and sustainable method, reducing construction
time by approximately 95% (not considering prefabrication), providing the greatest cost
savings, and generating approximately 32% less CO2 emissions [35].

Figure 3 compares conventional construction (CC) and prefabricated construction
(PC) relative to 3DCP in terms of the total weight of the structure, construction time, final
cost, and total CO2 emissions. It shows that 3D printing is not only more sustainable and
environmentally friendly than the other two construction methods but also has significant
advantages in respect of construction time and cost. These advantages also highlight its
promising potential for affordable housing for low-income people, and for local housing
reconstruction after natural disasters like earthquakes, hurricanes, and floods [4].
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As the construction industry becomes increasingly interested in 3D printing, more and
more projects using this technology are emerging and revealing its benefits and promises.
Until 2014, 3DCP was mostly used in small projects including landscape architecture, street
furniture, and non-structural components, with few large-scale demonstration projects
being implemented. After that, the number of projects employing 3DCP in housing has
increased dramatically [10]. The use of 3DCP in the project of the farmhouse in Wujiazhuang
village saved 62.4% of labor cost and reduced on-site construction time by 24.5% compared
to traditional reinforced concrete (RC) methods [38]. The advantage of 3DCP is that it
succeeds in bringing more flexibility and efficiency, as well as environmental benefits, when
employed in printing structures with complex designs and right-angle walls [4]. In addition
to single building structures, this technology has also shown its superiority in large-scale
construction. WinSun has successfully printed multi-unit houses in a short period of time
and at a low cost ($4800 USD per unit), showing the promise of 3D printing in building low-
cost houses [6]. The company also built an exhibition hall in 2021 with a total area of about
2400 square meters consisting of 3D printed modular components which demonstrates
the feasibility of using 3DCP in combination with prefabricated assemblies for large-scale
construction [10]. Furthermore, the development of 3D printing is not limited to Earth as it
is increasingly being considered as a means of building space habitats, especially a viable
option for building a permanent base on the Moon because of the advantage of being able
to use in situ resources [5,39].

3.2. Barriers and Challenges

Using 3D printing is becoming increasingly popular and enjoys many benefits, but as
any new technology, it is not perfect [1]. Barriers and challenges can also become important
issues as they could point to the direction of technological development and accelerate
its growth.

The method of 3DCP is typically suitable for single-story structures, as concrete slabs
poured on-site are necessary for multi-story construction projects. In addition, the larger the
structure to be printed, the larger the 3D printer needed, and thus the less accurate it will
be. Therefore, the major challenge is how to print tall and complex structures. Considering
that 3D printing is more limited in terms of the size of the structure, printing multi-story
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buildings requires a combination of prefabrication and assembly techniques [10], which
means that each floor will be printed in a factory and then transported to the site for
floor-by-floor installation which can bring another challenge: the lack of proper external
support and the removal of it after construction [40].

Reinforcement is important for the bearing capacity and robustness of the structure,
but remains one of the challenges of 3D concrete printing [41]. There are currently two main
solutions to this challenge. The first one is to manually place the reinforcement between
the layers before or during printing, but this method increases the difficulty of moving the
print head as well as the labor cost [2]. The other is the use of fiber-reinforced concrete
as a printing material, which enhances structural stability by increasing the strength and
ductility of the printed part [1]. Chemical additives also play an important role in regulating
the properties of the print concrete, such as setting time, fluidity, and mechanical strength,
etc. [4]. Therefore, the development of appropriate materials that meet both printability
and acceptable mechanical properties is also an important challenge for 3DCP [42].

The layer-by-layer appearance is one of the unavoidable features of 3DCP given the
nature of additive manufacturing [13]. In the case of special application scenarios, such
as emergency housing, where the need for speed and scale of construction is much higher
than the appearance, a layer-by-layer appearance is acceptable. However, for consumer
dwellings, some chemical or physical post-treatment methods like sintering are important
to mitigate this defect since a flat appearance of architecture is more aesthetically pleasing
to the public [12,43]. Dimensional errors and improper control of deposited material
(insufficient or excessive) are the main factors that lead to 3DCP buildings having poor
surfaces, so the printing speed and material output are required to be controlled, otherwise,
expensive surface post-treatment needs to be considered [44,45].

The lack of information on the long-term durability and longevity of 3D printed struc-
tures is also a challenge; as 3DCP is a relatively new concept, the duration of its earliest
applications is still very short and not all materials used are standardized. Some features of
3DCP such as the lack of templates to prevent air exposure may lead to accelerated evapo-
ration of moisture from the printed structure, therefore increasing the risk of shrinkage and
cracking [13]. It also remains to be determined whether the durability, stiffness, strength,
load-bearing limit values and other important indicators of their materials can meet the
code requirements within the construction industry due to a lack of specific standardization.
Therefore, further research to explore and develop guidelines and standards, as well as
more refined and targeted maintenance methods are urgently needed [46]. In addition, 3D
concrete printing requires attention to the environment in which it works, as the properties
of the concrete materials needed for printing can be affected by a range of environmental
factors including dust, temperature, and humidity.

4. Digital Twin Application in 3DCP
4.1. Overview

The complexity of 3D printing technology is evident as it is a multidisciplinary and
cross-border integrated technology system, including the digitization of building models,
structural design, concrete materials, intelligent printing systems, and assembly technology.
Considering the use of digital technologies in 3DCP, some of its barriers and limitations,
including the large investment in R&D, the complexity of quality control, and the lack of life-
cycle information management, can be expected to be improved by integrating advanced
digital twin (DT) technologies. In general, DT refers to the virtual twin representation
of the objects or systems using the best available data, and so far a typical application of
the DT concept in the construction industry would be the building information modeling
(BIM) technique [47]. BIM involves creation and the use of a model (digital twin) for
managing the digital information of the buildings and extending traditional 3D modeling
as it provides seamless integration and management of the entire lifecycle, including
scheduling (the fourth dimension, so-to-speak), cost estimating (the fifth dimension) [48,49],
and sustainability (carbon emission), leading to a 6D representation of a construction
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process. The method of 6D BIM was investigated as a method to guide large construction
projects (e.g., railway stations), optimizing the construction process, sustainability, and
logistics through efficient information management [50]. The digital twin is essentially a
transparent information hub, providing digital resources for the design, manufacturing,
construction, operation and maintenance, demolition, and recycling of the architectures
(i.e., the life cycle of buildings). It plays a key role in sharing information among engineers,
project managers, and technicians in different life cycle stages of the buildings, meaning
that different stakeholders can communicate technical complexities and arrive at a smart
decision, hopefully improving the sustainability and reducing the risk and cost of the
buildings. The digital twin (BIM model) has been designed for the lifecycle management of
different systems including social housing [51], railway turnover system [52], and subway
system [50]. The integration of the BIM models has dramatically lowered carbon emissions
and capital costs over the whole lifecycle of systems. However, the potential of DT in
lifecycle management for 3DCP systems has not been well studied. Current research on
the use of digital twins in 3DCP is fragmented, with some publications just mentioning
their expectations of integrating DT technology to improve 3D printing and their proposed
application directions for the different stages of 3DCP in a few sections.

4.2. Applications and Benefits in Different Lifecycle Stages

Currently, DT is rarely considered and applied in the construction industry [22], and
the concept of DT and its capabilities have not been distinguished from the commonly
used computational or virtual models and simulations [53]. Unlike static BIM, DT is
expected to be “self-aware” and self-optimizing to enable dynamic two-way conversation
and control [54]. DT facilitates the connection of the physical environment and digital
ecosystem through many self-operating features that are expected to further enhance the
performance and sustainability of 3D printing.

Figure 4 shows an interactive system of physical assets with a data model that explores
integrated digital delivery across whole lifecycles. The digital models enable engineers to
validate designs and accurately determine and address defects in manufactured compo-
nents (3D printed modules, etc.), thereby improving the quality and performance of the
project. The application and role of digital twin technology in 3D printing projects vary in
different lifecycles, and the direction of DT application was discussed below in each of the
three critical lifecycle stages.
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4.2.1. Planning and Design Phase

BIM integrates various kinds of key data, such as dimensions, material management,
equipment utilization, resources, etc., which does not only facilitates communication and
cooperation between different stakeholders but also allows for a higher level of automation
in the planning process [56]. Information sharing and updating on the BIM platform
can effectively minimize the lead time; for example, design modifications can be made
directly in 3D printing, reducing unnecessary intermediate processes [57]. In addition,
BIM as a data integration plays many other important roles in the initial phase. Different
expertise, such as engineering knowledge, can be embedded in the BIM platform to help
architects to improve design feasibility and reduce modification costs in the initial design
process [58]. Detailed information about each project will be stored in the BIM database
for future projects or as a base for further design, supporting decision-making regarding
material selection, energy management, procurement, and the like. This feature is especially
useful in large-scale or modular 3D printing projects, where the high reusability of digital
data (databases as well as algorithms, etc.) reduces unit costs and minimizes planning
costs. Moreover, adding wireless sensor networks (WSN) to BIM creates dynamic real-time
models that embody DT concepts, providing designers with effective information to make
informed decisions during the project design process [59]. The digital twin can be used to
study the structural behavior during the 3D printing process [60] to reduce the amount
of trial and error testing and defects and therefore reduce design time [61]. It could also
effectively reduce the cost of diagnostic tests by creating a DT model to simulate 3DCP
structures [62].

4.2.2. Construction Phase

BIM excels at storing and arranging material delivery data, printer control data, and
post-finishing operations data, facilitating automation in 3D concrete printing [30,49]. The
method of 5D BIM integrates project quantity information, progress information, and cost
information, which can both evaluate the project cost and enable managers to better control
the project schedule and cost inputs by monitoring the breakdown progress during the
construction period and using digital models to simulate the construction process. The use
of various equipment including large printers, conveying pipes, and pumping machines
impose certain requirements on the site safety of 3DCP projects. In this case, DT can come
into play to achieve human-machine interaction for intelligent safety solutions through
real-time location sensing (RTLS) and two-way conversation between the physical and
digital environments [44]. The digital twin allows the development of a real-time control
system that combines physical space and cyberspace so that problems that occur during the
printing process like fluctuations in material properties or pumping would be immediately
identified and responded to without interrupting the process; this greatly improves its
robustness [63]. The DT model can initiate the correct actions for the upcoming printing
process based on real-time data sets and it is considered to be effective in improving the
automation of 3DCP as well as machine learning techniques [64].

DT is necessary for 3D printing modularization projects, where real-time networking
of products, processes, and systems can increase the efficiency of modularization efforts
and reduce waste. In addition, DT can be used to assist various management activities,
including resource management, material management, schedule management, quality
management, etc., to try to follow up on the construction progress and ensure project
quality [22] and safety [61].
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4.2.3. Operation and Maintenance Phase

In this phase, the project goes through different stakeholders, which causes difficulties
in integrating data between different phases and stakeholders. Subsequently, DT can be
used as a platform to enhance the flow of information between different stakeholders for
facility and maintenance management, monitoring, and energy simulation of the project.
Digital twin technology aids analysis and decision-making by collecting real-time data to
manage building operations and maintenance and building energy consumption [21]. The
life-cycle performance of 3D printing technology has yet to be determined and requires
more attention during the construction and maintenance phases, especially if the use of ma-
terials and construction methods differ from the traditional ones [13]. By using information
from monitoring devices such as sensors installed in the structure, DT can provide effective
means to monitor the comfort level and maintenance needs of the structure, improving
sustainability and refining the long-term performance data of 3D-printed buildings.

The demolition and recovery phases are usually bypassed in the research work. To
the best of the authors’ knowledge, DT applications for these phases (especially for 3DCP
projects) have not been studied in the existing literature, which represents a research gap.

The different lifecycle phases have demonstrated that digital twin can have a sig-
nificant impact on 3D printing projects, providing the opportunity to effectively address
challenges before they occur. Overall, DT-based 3D printing will be beneficial with respect
to quality improvement, cost and labor savings, and stakeholders of construction projects
will benefit from the application of DT. However, DT is still in its infancy in the construction
industry and in 3D printing projects, and more research is needed to bridge the gap between
3D printing and digital twin.

5. Discussion

As mentioned in Section 3, the four main challenges of current 3D concrete printing in
the construction industry were investigated: limitations of the size of the structures, the
robustness of the structure, layer-by-layer appearance, and lack of standardization. The
corresponding potential solutions were also summarized, and it was found that many of
them could be optimized using digital twin technology.

Existing research presents potential applications and benefits of digital twins in 3D
concrete printing from different lifecycles, as described in Section 4. The current research
on the use of digital twins in 3DCP is quite scarce and the ideas proposed are scattered
and fragmented. Through reviewing and summarizing, the applications of DT have been
divided into three main lifecycle phases: planning and design phase, construction phase
and operation and maintenance phase. In the initial stages, DT can optimize the design
and reduce the trial and error costs through the integration of information and real-time
model simulations. During the construction phase, real-time bi-directional information
interaction improves the accuracy of scheduling and control of printing systems on site,
reducing problems and disruptions. In the maintenance phase, DT can be primarily used
to monitor the status of the structure and share the information for long-term analysis
and maintenance. Figure 5 describes how the digital twin can be used at three different
lifecycle stages to optimize or solve the challenges that 3D concrete printing faces, and
shows targeted directions and pathways for further research.



Sustainability 2023, 15, 2124 10 of 13

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 14 
 

 

will benefit from the application of DT. However, DT is still in its infancy in the construc-

tion industry and in 3D printing projects, and more research is needed to bridge the gap 

between 3D printing and digital twin. 

5. Discussion 

As mentioned in Section 3, the four main challenges of current 3D concrete printing 

in the construction industry were investigated: limitations of the size of the structures, the 

robustness of the structure, layer-by-layer appearance, and lack of standardization. The 

corresponding potential solutions were also summarized, and it was found that many of 

them could be optimized using digital twin technology.  

Existing research presents potential applications and benefits of digital twins in 3D 

concrete printing from different lifecycles, as described in Section 4. The current research 

on the use of digital twins in 3DCP is quite scarce and the ideas proposed are scattered 

and fragmented. Through reviewing and summarizing, the applications of DT have been 

divided into three main lifecycle phases: planning and design phase, construction phase 

and operation and maintenance phase. In the initial stages, DT can optimize the design 

and reduce the trial and error costs through the integration of information and real-time 

model simulations. During the construction phase, real-time bi-directional information 

interaction improves the accuracy of scheduling and control of printing systems on site, 

reducing problems and disruptions. In the maintenance phase, DT can be primarily used 

to monitor the status of the structure and share the information for long-term analysis and 

maintenance. Figure 5 describes how the digital twin can be used at three different lifecy-

cle stages to optimize or solve the challenges that 3D concrete printing faces, and shows 

targeted directions and pathways for further research. 

 
Figure 5. DT applications in response to 3DCP challenges. 

6. Conclusions 

The method of 3D concrete printing technology and digital twin are both technolo-

gies and concepts that have been popular in the construction industry recently. Given that 

3D printing projects face scores of challenges and barriers to development, including scale 

Figure 5. DT applications in response to 3DCP challenges.

6. Conclusions

The method of 3D concrete printing technology and digital twin are both technologies
and concepts that have been popular in the construction industry recently. Given that 3D
printing projects face scores of challenges and barriers to development, including scale lim-
itations, high initial investment, environmental sensitivities, complexity in quality control,
and lack of lifecycle management, the concept of a digital twin (DT) is being considered for
introduction into the full lifecycle of 3D printing projects, utilizing different application
methods to function at various stages. Specific applications and future directions of DT in
different stages of 3D printing projects were discussed. It was found that the validation
of its mechanism of action and specific effects is needed. The applications focus on the
planning to the operation and maintenance phases. On the one hand, DT can form an infor-
mation platform to facilitate the communication and cooperation of various stakeholders
and to promote construction management and database management. Furthermore, it
provides a two-way data exchange, linking physical reality and virtual models, to monitor
and observe the development of the project at all stages in a targeted manner and thus
make early response decisions. The study also presents a roadmap detailing the main
challenges that 3D concrete printing faces and how potential solutions can be optimized
by introducing the technology of the digital twin which provides potential directions and
pathways for future research to develop 3DCP. Future research could explore the design
of 3DCP project cases incorporating DT to demonstrate its effectiveness in reducing chal-
lenges and improving quality and sustainability as well as its application in non-standard
situations such as extraterrestrial construction.
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