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Abstract: Ecological restoration has great significance on cut rock slopes, which are considered ex‑
tremely degraded habitats. The development of moss–soil crusts on cut rock slopes as a critical path‑
way to ecological restoration in mountain areas has been poorly reported. A total of 335 quadrats
were selected on cut rock slopes with formation ages between 0 and 60 years to evaluate the evolu‑
tion characteristics of moss–soil crusts under various geographical conditions (e.g., aspect, lithology,
and altitude) in the mountainous area of western Sichuan, Southwest China. The results suggested
that moss growth decoupled from soil accumulation within the crusts and was controlled by mul‑
tiple factors. Moss growth depended on lithology, altitude, and age, while soil weight was mainly
influenced by slope aspect. The development of mosses on limestone was better than on sandstone.
Moss biomass varied with altitude, consistent with that of rainfall with respect to moss development
dependent on moisture. Furthermore, moss development under a semiarid climate was more dis‑
tinctly impacted by moisture with altitude relative to a humid region, likely owing to the higher
sensitivity of the mosses to moisture in the former than in the latter. Moss biomass increased with
recovery time, while the rate of moss biomass development was diverse in different geographical
areas. The vegetation developed rapidly in low‑altitude areas (~1000 m above sea level), resulting in
moss biomass increasing from 0 to 24.08 g·m−2 with formation time increasing from 0.5 to 1.5 years
and subsequently being restricted by the evolution of higher plants on cut rock slopes, leading to
an insignificant difference in moss biomass between 1.5 and 60 years. In high‑altitude areas, when
the altitude changed slightly (from 2024 to 2430 m above sea level), the moss biomass on cut rock
slopes increased linearly with increasing age from 5 to 27 years. Influenced by the surrounding fer‑
tile soils and moss bioaccumulation, there were high levels of soil major nutrient content, especially
the organic matter content, which reached 377.42 g·kg−1. More soils accumulated on south‑facing
slopes than on north‑facing slopes. This study provided field data to clearly reveal the influence of
geographic factors on moss–soil crust development in natural restoration processes in high‑altitude
mountainous areas.

Keywords: cut rock slope; natural recovery; moss–soil crust; biomass; soil accumulation;
mountainous area

1. Introduction
A large number of steep rocky slopes have been formed due to the construction of

roads (e.g., railways and highways), dams, andmining facilities [1]. On the high and steep
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cut rock slopes, the vegetation–soil system was partially or completely destroyed, and as
a resultant, abominable habitats were produced [1–3].

To rehabilitate areas suffering degradation, technologies such as hydroseeding, exter‑
nal soil spray seeding, and erosion control blankets have been widely used [4]. However,
most of these technologies were manually recovered using geotechnical techniques, and
less consideration was given to natural recovery [5]. Natural restoration was more impor‑
tant in mountainous areas with inconvenient traffic conditions, given the high cost and
technical content, large quantities required, potential for secondary damage, and other
problems of manual restoration [6,7]. It has been claimed that natural restoration could
be more efficient than human efforts in restoring degraded land and vegetation condi‑
tions [8,9].

Recently, the natural restoration of cut rock slopes has received increasing attention.
Numerous studies have demonstrated soil nutrient accumulation and vegetation commu‑
nity succession following the implementation of ecological restoration programs on cut
rock slopes [2,10,11]. Meanwhile, the influence of environmental factors, such as aspect,
gradient, and time, on the natural restoration of slope vegetation was discussed. For exam‑
ple, soil properties, e.g., the moisture and organic matter contents of soils on north‑facing
slopes, are significantly higher than those on south‑facing slopes [10,12]. However, these
studies have mainly concentrated on low‑ and middle‑altitude mountain areas, and cold
and high‑altitude regions—where the germination and growth of vegetation are limited
by low temperature, insufficient water, and nutrients—have rarely been reported [13].

In alpine and subalpine areas, the natural succession of cut rock slopes is close to the
primary succession [14]. As the pioneer species of primary succession and the dominant
species of biological soil crusts, mosses play an extremely important role in degraded habi‑
tats [15,16]. Moss–soil crusts are an organic complex resulting from an intimate association
between soil particles and cyanobacteria, algae, microfungi, lichens, and mosses, which
are the most advanced stage of biological soil crusts [17–19]. Due to their extensive adapt‑
ability and strong reproductive capacity, mosses can survive in grassland, cultivated land,
northern forest, mountain rainforest, alpine environments, tundra, desert, and other habi‑
tats [20]. The development of mosses in different habitats is heterogeneous in species com‑
position, growth rate, and community structure (coverage and biomass) [21–24]. Many
factors could be responsible for the difference, such as slope aspect, elevation, and time,
which have been shown to significantly affect moss development [24,25]. Previous studies
have shown that moss is of great significance in promoting restoration of cut rock slopes,
which is consistent with the periodic law of vegetation succession and conducive to long‑
term sustainable development [26]. Similarly, the dominant species and development de‑
gree of moss crusts would be different on slopes with different terrain, climate, and other
environmental conditions [27]. Nevertheless, the basic research of moss–soil crusts on cut
rock slopes—particularly in alpine areas, where the mosses are the main component of
ground cover plants—is still lacking.

Large mountainous areas are distributed in China, accounting for two‑thirds of the
national territory, particularly in western China [28]. The mountainous area in western
Sichuan, Southwest China is an ideal place to study natural ecological restoration, as many
exposed cut rock slopes exist due to engineering construction and it is difficult to imple‑
ment manual restoration on the steep slopes of high mountains. Furthermore, the varied
natural geographic features (e.g., climate, lithology, terrain, etc.) in this area might be
beneficial to explore the geographical effect on moss–soil crust restoration. In this paper,
moss coverage and biomass, soil weight, and major nutrient properties were investigated
during the restoration of moss–soil crusts on cut rock slopes in western Sichuan to under‑
stand the impact of aspect, elevation, lithology, and time on restoration. The aims of this
study are to (1) analyze the features of moss–soil crusts on cut rock slopes under differ‑
ent geographical conditions and (2) address the influence of geographical factors on the
development of moss–soil crusts on cut rock slopes in alpine and subalpine areas to pro‑
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vide a scientific basis for the implementation of ecological restoration on cut rock slopes in
mountainous regions.

2. Materials and Methods
2.1. Study Sites

This study was carried out in western Sichuan, the hinterland of Southwest China
(26◦03′–34◦19′ N, 97◦21′–108◦12′ E) (Figure 1). Since different geographic locations may
have different environmental conditions, a general research area related to climatic dif‑
ferences was defined according to geographic location within the study area: (1) In the
Baoxing sampling area, the altitude ranges from 1942 to 4166 m above sea level (a.s.l.). The
subtropical–cold temperate humid monsoon climate prevails in this area, with a mean an‑
nual temperature (MAT) of less than 10 ◦C and a mean annual precipitation (MAP) of less
than 1000 mm [29]. (2) In the Pengzhou–Shifang sampling area, the altitude lies within
~900 and 1200 m a.s.l. The subtropical humid monsoon climate controls this area, with
MAT of 12–14 ◦C and MAP of 1000 mm or higher. (3) In the Wenchuan–Lixian sampling
area, the altitude is between ~2000 and 2500 m a.s.l. This area is dominated by a warm
temperate continental semiarid monsoon climate, with a MAT of 6–10 ◦C and MAP of
540–610 mm [30]. Due to a wide range of altitude differences and complex terrains, the
climate obviously varies with increasing elevation in all sample areas. The altitude, rain‑
fall, and other environmental factors in each sampling area are shown in Table 1. In the
study area, a large area of cut rock slopes have been produced by the intensive and exten‑
sive construction of transportation and mining projects, characterized by high and steep
slopes with instability.
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Table 1. Climate, elevation, and vegetation of studied areas in west Sichuan’s mountainous re‑
gion, China.

Area Climate Elevation
(m a.s.l.)

Mean Annual
Precipitation

(mm)

Typical Natural
Vegetation Plant Topography

Baoxing
Subtropical–cold
temperate humid
monsoon climate

1942–4116 600–1000

Theropencedrymion,
subalpine

coniferous forest,
alpine shrubs and

meadows

Sedge,
purslane, pine,

cedar

Mountainous
terrain

Pengzhou–
Shifang

Subtropical
humid monsoon

climate
900–1200 1100–1500

Evergreen
broad‑leaved

forest

Dicranopteris
pedata, acorus
calamus, brich

Mountainous
terrain

Lixian–
Wenchuan

Warm temperate
continental
semi‑arid

monsoon climate

2013–2426 540–610 Bushwood, pinus
tabulaeformis

Coriaria sinica,
artemisia argyi,

cedar

Mountainous
terrain

2.2. Field and Laboratory Methodology
2.2.1. Sample Collection

After a pilot investigation of cut rock slopes in western Sichuan betweenOctober 2017
and October 2018, a total of 335 quadrats on 35 cut rock slopes were chosen for further de‑
tailed study (Figure 1), of which 250, 49, and 36 quadrats were surveyed in the Baoxing,
Pengzhou–Shifang and Wenchuan–Lixian areas, respectively (Table 2). On each cut rock
slope, the surrounding environment was investigated, and the basic conditions of the cut
rock slopes were also recorded, e.g., geographic coordinates, elevation, aspect, and height.
The formation age of the cut rock slopes was obtained through data review and field in‑
vestigation. This duration may also be regarded as the restoration age of those slopes
because the natural rebuild process started when the slopes were formed and human dis‑
turbance ended.

Within each cut rock slope, quadrats with an area of 20 cm × 20 cm were established,
and the number of quadrats was determined by the size of the cut rock slopes. Before
sample collection, each quadrat was imaged using a camera to estimate the area of the
crusts. The samples of moss–soil crusts were obtained with sterilized tweezers and col‑
lecting knives to separate the crusts from the rock surface. The dead branches and fallen
leaves on the surface of the crusts were picked out, while soil samples were separated from
mosses in the crusts. After collection, these samples were put into polyethylene bags and
then immediately transferred to the laboratory for sample processing.

2.2.2. Preparation and Analysis of Samples
ArcGIS10.2 and ENVI5.3 software were used to extract the moss–soil crust coverage

from the images for each quadrat, utilizing a supervised fuzzy clustering approach and
visual interpretation [31]. Moss biomass in the crusts was determined by the sievewashing
method. After cleaning with water, the mosses were dried to a constant weight at 65 ◦C for
48 h, and the dried mosses were weighed with a balance (model PTX‑FA110) to calculate
the moss biomass per unit area.

The air‑dried soil samples, after removing plant residue, were crushed and ground
in an agate mortar. The soils were passed through a 100‑mesh sieve and preserved for
use. More than 50% of the soil samples in the quadrats in this study were less than 10 g
in weight. The contents of soil organic matter (SOM), total nitrogen (TN), and total phos‑
phorus (TP) were measured by the potassium dichromate oxidation method, semimicro‑
Kjeldahl method, and sodium hydroxide melting–molybdenum antimony colorimetric
method [32]. Soil TN and TP in 132 and 75 quadrats could not be determined due to the
lack of soils.
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Table 2. General geographical description at sampling sites in western Sichuan’s mountainous re‑
gion, China.

Area Sample
Site ID

Number of
Sample
Quadrats

Latitude and
Longitude of
Sampling
Sites

Elevation
(m a.s.l.)

Restoration
Age
(Year)

Slope
Angle (◦)

Slope
Aspect

Slope
Length
(m)

Slope
Height
(m)

Baoxing

BX1 15 25◦07′90′ ′ N,
102◦46′45′ ′ E 2036 9 90 N 5 10

BXGL1 19 30◦47′50′ ′ N,
102◦43′40′ ′ E 2430 ~30 85 N 9 12

JJSA 18 30◦51′38′ ′ N,
102◦40′57′ ′ E 4116 3 70 S 35 3

JJSB 8 30◦51′16′ ′ N,
102◦41′32′ ′ E 3880 3 75 S 15 6

JJSC 25 30◦50′34′ ′ N,
102◦42′32′ ′ E 3716 8 76 S 35 8

JJS1 12 30◦50′20′ ′ N,
102◦41′54′ ′ E 3448 8 90 N 40 8

JJS2 14 30◦49′48′ ′ N,
102◦43′12′ ′ E 3187 8 80 N 200 15

JJS3 8 30◦50′26′ ′ N,
102◦43′50′ ′ E 2878 8 85 S 150 30

ZGX1 15 30◦44′14′ ′ N,
102◦46′27′ ′ E 2816 5 78 S 30 8

ZGX2 18 30◦43′55′ ′ N,
102◦46′01′ ′ E 2640 5 71 S 100 5

ZGX3 13 30◦43′35′ ′ N,
103◦46′08′ ′ E 2430 5 85 N 60 20

QQH2.1 10 30◦44′11′ ′ N,
102◦44′56′ ′ E 2166 13 85 S 13 9

QQH2.2 6 30◦44′04′ ′ N,
102◦44′51′ ′ E 2166 13 80 N 30 9

QQH3 12 30◦41′22′ ′ N,
102◦43′21′ ′ E 2182 15 70 N 60 50

QQH4 4 30◦40′18′ ′ N,
102◦44′54′ ′ E 2024 15 75 N 25 30

HDZ1.1 13 30◦38′37′ ′ N,
102◦52′30′ ′ E 2353 27 83 N 27 11

HDZ1.2 17 30◦38′37′ ′ N,
102◦52′30′ ′ E 2353 27 90 S 30 20

HDZ2 9 30◦38′14′ ′ N,
102◦52′06′ ′ E 2227 27 76 N 8 15

HDZ3.1 12 30◦38′05′ ′ N,
102◦51′51′ ′ E 1942 27 77 N 20 7.5

HDZ3.2 6 30◦38′07′ ′ N,
102◦51′51′ ′ E 1942 27 85 S 7 2.5

Pengzhou–

Shifang

XY1 11 31◦11′52′ ′ N,
103◦46′16′ ′ E 1043 2.5 88 S 10 2

XY2 9 31◦15′38′ ′ N,
103◦48′45′ ′ E 967 4 68 N 3 5

LMSZ1 12 31◦17′26′ ′ N,
103◦50′44′ ′ E 1177 >60 78 S 8 5

YHSZ1 14 31◦18′13′ ′ N,
103◦58′05′ ′ E 1003 1.5 64 N 10 6

YHSZ2 3 31◦18′08′ ′ N,
103◦55′38′ ′ E 1124 <0.5 85 S 12 7
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Table 2. Cont.

Area Sample
Site ID

Number of
Sample
Quadrats

Latitude and
Longitude of
Sampling
Sites

Elevation
(m a.s.l.)

Restoration
Age
(Year)

Slope
Angle (◦)

Slope
Aspect

Slope
Length
(m)

Slope
Height
(m)

Wenchuan–
Lixian

LBZ1 5 31◦30′08′ ′ N,
103◦40′36′ ′ E 2013 2 90 N 5 5

DSE1 3 31◦26′42′ ′ N,
103◦40′36′ ′ E 2032 7 80 N 3 20

DSE2 5 31◦26′35′ ′ N,
103◦08′35′ ′ E 2081 7 70 N 7 6

DSE3 6 31◦26′34′ ′ N,
103◦08′33′ ′ E 2145 7 50 N 12 8

BPG1 6 31◦23′48′ ′ N,
102◦56′03′ ′ E 2426 49 60 S 8 16

BPG2 5 31◦24′27′ ′ N,
102◦57′28′ ′ E 2350 49 84 S 7 8

BPG3 6 31◦24′54′ ′ N,
102◦58′54′ ′ E 2290 49 90 S 20 9

The soil nutrient stock (SNS) (g·m−2) is the product of soilweight and nutrient content.
Therefore, the SNT can be defined as:

SNSi= (Ci × SWi)/S (1)

where Ci, SWi, S, and i represent the nutrient content in the investigated soils (g·kg−1), the
soil weight in each quadrat (kg), the sampling area (0.04 m2), and the measured
nutrient, respectively.

2.2.3. Statistical Analysis
Correlation coefficient analysis was used to estimate the relationship between moss

and soil characteristics. Multivariate analysis of variance was used to test the significance
of variations inmoss biomass and soil major nutrients under different lithologies and slope
aspects. Principal component analysis (PCA) was used to reduce the dimension of recov‑
ery feature indicators of moss–soil crusts. There were several quadrats at each sample
point, and other geographical factors were fixed when discussing the influence of factor.
The data we tested are normally distributed. One‑way analysis of variance (ANOVA) was
used to test the significance of variations in moss biomass and soil major nutrients under
different elevations and formation ages. The criteria for significance in the procedures
were set at p < 0.05 (significance) and p < 0.01 (high significance). IBM SPSS 16.0 was used
for statistical analysis, andMicrosoft Excel 2010 andOrigin 2018were used for data editing
and visualization.

3. Results
3.1. Coverage and Biomass of Moss–Soil Crusts on Cut Rock Slopes

Across the study area, moss coverage of the crusts fluctuated greatly, ranging from
0 to 90% (Table 3). Moss coverage at the sampling sites in the Baoxing area ranged from
0.42% to 83.79%, with a mean value of 24.12%, and more than 60% of quadrats had less
than the mean value. Only at two sample sites (HDZ1.1 and HDZ2) with a formation age
of 27 years was the average moss–soil crust coverage greater than 50%. Moss coverage
at the sampling sites in the Pengzhou–Shifang area varied from 0 to 66.91%, with a mean
value of 15.64%. The maximum coverage appeared on the cut rock slope with a forma‑
tion age higher than 60 years (Site LMSZ1), and the cut rock slope with a restoration age
lower than 0.5 years had almost no moss crusts (Site YHSZ2). Moreover, moss crusts in
the Wenchuan–Lixian area varied between 5% and 90%.
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Table 3. Moss coverage and biomass within the crusts in three study areas.

Areas Baoxing Pengzhou–Shifang Wenchuan–Lixian

Variables
Moss

Coverage
(%)

Moss
Biomass
(g·m−2)

Moss
Coverage

(%)

Moss
Biomass
(g·m−2)

Moss
Coverage

(%)

Moss
Biomass
(g·m−2)

Maximum 83.97 888.50 66.91 210.44 90.00 220.00
Minimum 0.42 0.25 0 0 5.00 0.48
Mean 24.12 97.03 15.64 28.48 43.33 43.62

Standard
deviation 18.36 131.24 16.07 39.51 21.68 58.74

Sample number 250 250 49 49 36 36

The biomass of moss crusts in the study areas also changed dramatically, with a stan‑
dard deviation greater than the average value (Table 3). Especially in the Baoxing area,
the moss biomass value varied greatly within a range of 0.25 to 888.50 g·m−2. The mean
value of biomass in the Pengzhou–Shifang area was 28.48 g·m−2, with values between
0 and 210.44 g·m−2. Consistent with the coverage, the maximum biomass value appeared
on the same cut rock slopes, which were distributed at the sites (HDZ1.1 and HDZ2) with
a restoration age of 27 years in the Baoxing area and at the site (LMSZ1) with a restoration
age of more than 60 years in the Pengzhou–Shifang area. In the Wenchuan–Lixian area,
the biomass value oscillated from 0.48 to 220.00 g·m−2, with an average of 43.62 g·m−2.
Moss coveragewas highly positively correlatedwithmoss biomass in all quadrats (p < 0.01,
r = 0.502, n = 335, Figure 2).
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Figure 2. Plots between moss coverage and moss biomass in the natural restoration process on cut
rock slopes in west Sichuan’s mountainous region.

3.2. Soil Weight within Moss–Soil Crusts on Cut Rock Slopes
Due to human disturbance and relatively shorter weathering times (less than

100 years), cut rock slopes commonly lack soils derived from rock weathering [33]. In
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this study, the soil weight in moss–soil crusts was low, varying within 0 and 4.79 kg·m−2

(Table 4). Six percent of the quadrats were observed without soil in the crusts. The soil
weights in the Baoxing, Pengzhou–Shifang, and Wenchuan–Lixian areas ranged from 0 to
4.77 kg·m−2, 0 to 4.51 kg·m−2, and 0.02 to 4.79 kg·m−2, respectively. The standard devia‑
tion was greater than or close to the average value, indicating the uneven distribution of
soils on cut rock slopes. Soil weight was highly positively correlated with moss coverage
(p < 0.01, r = 0.218, Table 5) andmoss biomass (p < 0.01, r = 0.188, Table 5). Combinedwith the
correlation between moss coverage and biomass, the results showed interaction between
the mosses and soils which jointly promoted the development of the moss–soil crusts.

Table 4. Soil weight and major nutrient contents within the crusts in different areas of western
Sichuan’s mountainous region.

Areas Variables SW
(kg·m−2)

SOM
(g·kg−1)

TP
(g·kg−1)

TN
(g·kg−1)

SOM
(g·m−2)

SP
(g·m−2)

SN
(g·m−2)

Baoxing

Maximum 4.77 377.42 5.05 5.24 361.17 6.65 5.05
Minimum 0 5.24 0.02 0.07 0.04 0.01 0.01
Mean 0.43 86.32 0.72 1.69 24.87 0.33 0.91

Standard
deviation 0.67 71.96 0.59 0.90 34.01 0.61 1.00

Sample
number 250 211 182 125 211 182 125

Pengzhou–
Shifang

Maximum 4.51 206.84 1.37 5.99 574.99 4.10 19.92
Minimum 0 10.59 0.15 0.81 7.31 0.13 0.34
Mean 0.98 99.63 0.76 2.23 96.45 0.83 4.11

Standard
deviation 1.01 57.29 0.28 1.49 111.92 0.84 5.73

Sample
number 49 46 39 21 46 39 21

Wenchuan–
Lixian

Maximum 4.79 129.84 1.50 3.93 333.04 3.51 17.60
Minimum 0.02 7.70 0.41 0.13 5.28 0.02 0.07
Mean 0.84 62.19 0.84 2.07 47.49 0.70 2.02

Standard
deviation 1.03 34.61 0.23 1.09 66.45 0.83 3.68

Sample
number 36 32 28 25 32 28 25

SW: soil weight; SOM: soil organic content; TP: total phosphorus; TN: total nitrogen; SOM: total organic stock; SP:
total phosphorus stock; SN: total nitrogen stock.

Table 5. Pearson correlation coefficients for moss coverage, biomass, and major soil nutrients
within crusts.

CV MB SW SOM TP TN SOM SP SN
CV 1 � � � � � � � �
MB 0.502 ** 1 � � � � � � �
SW 0.218 ** 0.188 ** 1 � � � � � �
SOM 0.188 ** 0.141 * −0.282 ** 1 � � � � �
TP 0.076 0.032 −0.089 0.051 1 � � � �
TN 0.091 0.108 0.008 0.478 ** 0.074 1 � � �
SOM 0.141 * 0.143 * 0.675 ** 0.147 * −0.025 0.422 ** 1 � �
SP 0.263 ** 0.142 * 0.668 ** −0.160 * 0.468 ** 0.059 0.567 ** 1 �
SN 0.272 ** 0.128 0.716 ** 0.130 −0.012 0.491 ** 0.918 ** 0.604 ** 1

* p < 0.05; ** p < 0.01. CV: moss coverage; MB: moss biomass; SW: soil weight; SOM: soil organic content; TP: total
phosphorus content; TN: total nitrogen content; SOM: total organic stock; SP: total phosphorus stock; SN: total
nitrogen stock.

3.3. Soil Major Nutrient Contents within Moss–Soil Crusts
As shown in Table 4, the content of the soil’s major nutrients differed broadly. The

SOM content in the Baoxing area ranged from 5.24 to 377.42 g·kg−1, with an average
of 86.32 g·kg−1. The SOM content in the Pengzhou–Shifang area ranged from 10.59 to
206.84 g·kg−1. In addition, the SOM content in theWenchuan–Lixian area ranged between
7.7 and 129.84 g·kg−1.
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The mean TN contents in soils within the crusts sampled from the Baoxing,
Pengzhou–Shifang, and Wenchuan–Lixian areas were 1.69, 0.76, and 0.84 g·kg−1, respec‑
tively (Table 4). Specifically, the maximum TN content appeared on the cut rock slopes
with the longest formation ages, whichwere 30, 60, and 49 years in the Baoxing, Pengzhou–
Shifang, Wenchuan–Lixian regions, respectively. The TN content was highly positively
correlated with the SOM content (p < 0.01, r = 0.478, Table 5).

The TP content in the Baoxing, Pengzhou–Shifang, and Wenchuan–Lixian areas
ranged from 0.02 to 5.05 g·kg−1, 0.15 to 1.37 g·kg−1, and 0.41 to 1.50 g·kg−1, respectively
(Figure 4).

3.4. Major Soil Nutrient Stocks within Moss–Soil Crusts
The SOM stocks within the crusts varied broadly (Table 4). Particularly in the Baox‑

ing area, the stocks of SOM were between 0.04 and 361.17 g·m−2, with an average of
24.87 g·kg−1. The mean values of SOM stocks in the Pengzhou–Shifang and Wenchuan–
Lixian areas were 96.45 and 47.49 g·m−2, respectively. Themaximum stocks also appeared
on the cut rock slopes with the longest formation ages, which were 30 and 60 years in
the Baoxing and Pengzhou–Shifang areas, respectively. In particular, the maximum SOM
stock in the Wenchuan–Lixian area occurred on the cut rock slope with abnormally high
soil weight at the site DSE3.

The soil N stocks in the Baoxing, Pengzhou–Shifang, and Wenchuan–Lixian areas
ranged from 0.01 to 5.05 g·m−2, 0.34 to 19.92 g·m−2, and 0.07 to 17.60 g·m−2, respec‑
tively (Table 4). There was an insignificant difference in soil N stocks between the sam‑
pling sites in different areas, except for the two sites (i.e., QQH4 in Baoxing and DSE3 in
Wenchuan–Lixian). The differences at these two sites resulted from the abnormal TN con‑
tent or soil weight. The N stocks were highly positively correlated with the soil weight
(p < 0.01, Table 5).

The soil P stocks in the Baoxing, Pengzhou–Shifang, and Wenchuan–Lixian areas
ranged from 0.01 to 6.65 g·m−2, 0.13 to 4.10 g·m−2, and 0.02 to 3.51 g·m−2, respectively
(Table 4). There was no significant difference in soil P stocks between sampling sites in dif‑
ferent regions, except for one site (DSE3) in the Wenchuan–Lixian area, which was related
to the high soil weight.

3.5. Principal Component Analysis (PCA)
The PCA results for the nine characteristics of naturally restored moss–soil crusts are

shown in Table 6. The contributions of principal components PC1, PC2, PC3, and PC4 to
the variation were 42.75%, 18.25%, 13.85%, and 12.83%, respectively, accounting for 87.7%
of the total variation value, indicating that these four principal components could explain
themajority of the variation in the ecological restoration characteristics of moss–soil crusts.
The variables with the highest loading in PC1 were soil weight, SOM stock, P stock, and
N stock. Soil weight had a higher loading score in PC1, and was selected as the single
indicator of PC1, as all the other preselected variables were related to it (p < 0.01, Table 5).
For PC2 the selected indicator was TP content. In PC3 the variables, e.g., SOM and TN
contents, showed the highest loadings on this axis (Table 6). TN content was chosen as the
indicator since it was significantly correlated with the other preselected variables in PC3
(p < 0.01, r = 0.478, Table 5) and had the highest loading. Finally, in PC4moss coverage and
moss biomass had the highest loading, andmoss biomass was selected as the indicator due
to its significant correlation with moss coverage (p < 0.01, r = 0.502, Figure 2, Table 5) and
the higher loading in the PCA.
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Table 6. Loading coefficients of the variables analyzed for the principal components (PC) that comply
with the condition of λ > 1.

Variables
Principal Component (PC)

PC1 PC2 PC3 PC4

CV 0.48 0.13 0.01 0.68
MB 0.34 0.02 0.16 0.83
SW 0.84 −0.23 −0.40 0.01
SOM 0.10 −0.13 0.74 0.15
TP 0.22 0.93 0.18 −0.12
TN 0.29 −0.16 0.86 −0.13
SOM 0.87 −0.30 0.18 −0.18
SP 0.84 0.42 −0.17 −0.11
SN 0.89 −0.29 0.14 −0.21

Cumulative variance
(%) 42.75 18.25 13.85 12.83

In bold, for each PC, are the variables that comply with the condition of belonging to the range of loadings
between the maximum absolute value and 10%. The variables in italic and the underlined loading values identify
the indicators selected taking into account Pearson’s bivariate correlations (p < 0.05).

4. Discussion
Geographical variables, such as lithotype, microclimate, rainfall, and time—of which,

microclimatic factors, such as temperature and humidity, are more relevant than
others—exert substantial effects on the development of mosses [24,34,35]. In particular,
humidity is a key factor in moss development since water availability is an important com‑
ponent of the key ecophysiological processes in mosses [36]. Given that the environmental
variables in the field are difficult to define, the elevation and slope aspect—which are read‑
ily quantitatively characterized—might represent the changes in climate factors, such as
humidity and temperature. Due to the strong correlation between many environmental
variables, we try to fix other geographical factors, in addition to the factors discussed, to
better distinguish the influence of factors. Here, we would discuss the effect of elevation,
slope aspect, lithology, and formation age on the evolution of moss–soil crusts.

4.1. Influence of Aspect and Lithology on the Natural Restoration of Moss–Soil Crusts on Cut
Rock Slopes

An insignificant influence of slope aspect onmoss biomass was observed in this study
(Figure 3A), although higher moss biomass appeared on north‑facing slopes
(91.19± 136.90 g·m−2) than on south‑facing slopes (64.78± 86.34 g·m−2), consistent with a
previous report [37]. However, the aspect of cut rock slopes had a strong influence on soil
weight. The soil weight within the crusts on south‑facing slopes was significantly higher
than that on north‑facing slopes (Figure 3B), depending on the provenance of the soils. It
is well known that the development of soils on steep slopes derived from hard bedrock
is often very slow, and the estimated production rate of soils developed on granite was
1 m per 20,000 years [38]. At the initial stage of formation on cut rock slopes, the soils
in the crusts were absent due to artificial disturbance. In this study, there was little soil
on the cut rock slope by the restoration time of 0.5 years, whereas the soil weight reached
0.76 kg·m−2with the restoration time ranging to 1.5 years. This implied that the soils in the
crusts on the cut rock slopes likely came from trapping the existing soils, especially from
hill tops, other than in situ rock‑weathering products. Furthermore, driven by the higher
moisture content and temperature, theweathering intensity on the south‑facing slopeswas
much stronger, including physical weathering, relative to that on the north‑facing slopes,
resulting in more weathering products and cracks on the south‑facing slopes 40 [39]. More
weather products and weathering cracks might facilitate providing more soil mass and
trapping more grains, leading to the higher soil weight on the south‑facing slopes.
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Figure 3. Moss biomass (A) and soil weight (B) in moss–soil crusts on north‑facing and south‑facing
cut rock slopes inwest Sichuanmountainous region. Different letters represent significant difference
at p < 0.05 between two slope aspects.

The type of crust substrate might affect the development of mosses [40]. In this study,
the difference in lithological substrate (i.e., limestone and sandstone) appeared to be the
determining factor in moss growth and soil accumulation (Figure 4A). The mean value of
moss biomass on a cut rock slope of limestone (96.31 g·m−2) was 1.64 times higher than that
of sandstone (58.71 g·m−2). It was previously shown that more abundant mosses, includ‑
ing the number of species and coverage, were distributed on limestone than non‑limestone
(sandstone) at each site in Eastern Australia, which was attributed to the rockmoisture and
surface properties [41]. Deep crevices existed between massive limestone outcrops, allow‑
ing runoff and subsequent accumulation of water in hollows and crevices. Moreover, the
chemical properties of the rock surface also seemed to be a significant factor in the distri‑
bution of mosses on limestones. Calciophilic mosses prefer to grow on limestone but are
unable to survive on non‑limestone [42,43].
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Figure 4. Moss biomass (A) and soil weight (B) in moss–soil crusts of cut rock slopes developed on
limestone and sandstone in west Sichuan mountainous region. Different letters represent significant
difference at p < 0.05 between limestone and sandstone.
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The soil weight on sandstone was higher than that on limestone, especially on the
south‑facing slopes (Figure 4B). This could be related to the higher weathering intensity on
sandstone. The formation rate of theweathered soil layer in the limestone area is 0.1–0.4 cm
per thousand years in the humid region [44], in contrast with 0.7 to 1.8 cm per thousand
years on the vertical surfaces of sandstone even under the semiarid climate in southern
Jordan [45].

4.2. Influence of Elevation on Moss Development on Cut Rock Slopes
In fact, the altitude gradient, to a large extent, reflects the difference in climatic condi‑

tions, such as precipitation, temperature, and sunshine [46]. The results showed that there
was a significant difference in moss biomass among different altitudes (Figure 5). In this
study, we found that the variation in moss biomass with altitude was also consistent with
that of rainfall. In the humid area (e.g., Baoxing area), the moss biomass and rainfall in‑
creased gradually alongwith the elevation rise, from 1942 to 2353mon cut rock slopeswith
a formation age of 5 years and from ~2400 to ~2800 m on cut rock slopes with a restoration
age of 27 years (Figure 5A,B). Furthermore, the variation in moss biomass with altitude
was more obvious in semiarid climate regions (e.g., the Wenchuan–Lixian area). For cut
rock slopes with a formation age of 7 years, the moss biomass increased significantly when
the altitude changed by only ~50 m (increased from 2032 to 2081 m) (Figure 5C). Even if
the slope was restored for 49 years, the moss biomass also increased significantly with the
rising elevation of only 50 m from ~2350 to ~2400 m (Figure 5D).
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Previous studies have confirmed that the growth of moss is greatly affected by hu‑
midity [47], which is the most important environmental factor in the distribution of moss
species on limestone [42]. Relatively humid conditions help create a better growth environ‑
ment for vegetation, leading to better growth of mosses at altitudes with high rainfall [48].
A positive correlation between lichen andmoss abundance and higher moisture was previ‑
ously demonstrated [49]. It was also found that the moss coverage and biomass in Mount
Gongga in western Sichuan increased with altitude and precipitation, while the ground
moss coverage reached 95.64% at an altitude of 3750 m [50]. The moss development in the
semiarid climate area was more obvious with altitude relative to that in humid regions,
likely owing to the higher sensitivity of the mosses to moisture in the former than in the
latter [51].

4.3. Influence of Restoration Time on Moss Development on Cut Rock Slopes
Time is one of the critical factors that affect ecosystem succession. Considering that

the growth of moss is dependent on the climate and lithology, the selection of sampling
quadrats developed on the lithological substrate (i.e., limestone and sandstone) and in
different climatic regions (Baoxing, Pengzhou–Shifang, Wenchuan–Lixian areas) was set
when the impact of time on moss development was discussed.

According to the comparison of sample sites, the moss crust increased with restora‑
tion time, while the rate of moss biomass was diverse in different geographical areas. In
the Pengzhou–Shifang area, the moss reached stability quickly. After significant devel‑
opment of moss between the sandstone cut slope with restoration ages of 0.5 years and
1.5 years, with moss biomass increasing from 0 to 24.08 g·m−2 (Figure 6), there was an
insignificant difference in the moss biomass with the restoration age increasing from 1.5,
2.5, and 60 years within the slightly varied elevation (1003 to 1177 m) on the cut rock slope
of the same lithotype in the Pengzhou–Shifang area (p > 0.05) (Figure 7A). In the Baoxing
area, the moss biomass also increased with the formation age on the cut rock slope when
the altitude was similar. However, it would takemore time for moss to develop to stability
in the Baoxing area. For formation ages of 3 and 8 years (3880 and 3716m a.s.l., sandstone),
5 and 27 years (2430 and 2353 m a.s.l., limestone), and 15 and 27 years (2182 and 2227 m
a.s.l., limestone), the moss biomass on the cut rock slope increased significantly with in‑
creasing age (p < 0.05) (Figure 7B,C). Our pilot study showed that, on limestone cut slopes
in Baoxing, after 5 to 27 years of natural restoration the linear pattern between time (T, year)
and moss biomass (MB, g·m−2) might be established (Figure 7C); the fitting formula was
defined as follows:

MB = 6.4091 T + 14.4742 (r = 0.83, n = 7, p < 0.05) (2)
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Figure 7. Variation of moss biomass with restoration age on cut rock slopes. (A) The altitude within
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The reason for the different times to reach stability of crust development between
these two areas was attributed to the environmental conditions triggered by different alti‑
tudes. Due to the rapid vegetation succession in the relatively low‑altitude mountainous
region (~1000 m), and the growth of higher vascular plants limiting the development of
moss, a stable level was quickly reached in 1.5 years (Figure 5B). However, in alpine and
subalpine areas (over 2000 m a.s.l.), primitive succession is dominant; thus, the mosses are
staple plants on the surface, which develop slowly and accumulate continuously [16]. For
example, the biomass of lichen symbionts might reach 1892 g·m−2 after hundreds of years
of accumulation on rocks in the polar region [52]. In Alaskan forests, moss abundance
also showed an increasing tendency with time following the occurrence of fire, peaking at
30–70 years post‑fire [53].

4.4. Irregular Soil Characteristics in Moss–Soil Crusts on Cut Rock Slopes during
Natural Recovery

As mentioned above, the development of mosses on cut rock slopes was obviously
affected by lithology, altitude, and time. However, the soil properties (e.g., soil weight
and major nutrient content) in moss–soil crusts was irregular with these factors of cut
rock slopes.

4.4.1. Soil Weight
The soil weight values varied with formation time of cut rock slopes. For example,

the average soil weight on the cut rock slopes with the restoration age of 15 and 27 years
(2024 and 1942m a.s.l., limestone) was 0.74 kg·m−2 and 0.61 kg·m−2, respectively (Table 7).
Comparison with the values of soil weight on the cut rock slopes with different formation
ages, the weight of the soils sampled from the crusts varied insignificantly (p > 0.05) be‑
tween 2 years and 7 years (2013 and 2032 m a.s.l., limestone), 9 and 15 years (2036 and
2024 m a.s.l., limestone), 13 and 15 years (2166 and 2182 m a.s.l., limestone), 5 and 27 years
(2430 and 2353 m a.s.l., limestone), 15 and 27 years (2182 and 2227 m a.s.l., limestone), 15
and 27 years (1942 and 2024m a.s.l., limestone), and 2.5 and 60 years (1043 and 1177m a.s.l.,
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sandstone) (Table 7), implying the indistinctive effect of restoration age on soil accumula‑
tion. Similarly, the influence of altitude on soil weight also seemed unsystematic. This re‑
sult indicates that soil weight was mainly controlled by (1) the soils on the cut rock slopes
from existing mature surface soil near the crusts, especially from hill tops [33], and the
slow and weakened soil development on cut rock slopes [54]; and (2) soil loss caused by
multiple factors, such as water and wind erosion, microtopography, and the density and
biomass moss crusts, other than restoration time and elevation [33,51,55].

Table 7. Soil weight variation with formation time under the similar altitude in different areas.

Area Elevation (m) Formation Age (Year) Soil Weight (kg·m−2)

Baoxing

2036 9 0.18 ± 0.16 a
2024 15 0.74 ± 0.60 a
1942 27 0.61 ± 0.96 a
2166 13 0.16 ± 0.08 a
2182 15 0.49 ± 0.67 a
2430 5 0.17 ± 0.25 a
2353 27 0.22 ± 0.18 a
2181 15 0.49 ± 0.66 a
2227 27 0.18 ± 0.22 a

Pengzhou–Shifang 1043 2.5 1.43 ± 1.19 a
1177 60 1.49 ± 1.37 a

Wenchuan–Lixian
2013 2 1.45 ± 1.03 a
2032 7 0.16 ± 0.05 a

Different letters denote significant difference at p < 0.05 at different recovery times. The same letter denotes no
significant difference at p < 0.05 at different recovery times. The contrast only occurs between two points with
similar altitude.

4.4.2. Soil Major Nutrient Content
In this study, the nutrient contents in the soils on cut rock slopes were fairly high. The

highest SOC and TP contents reached 377.42 g·kg−1 and 5.05 g·kg−1, respectively (Table 4).
However, the nutrient contents were less relevant to the factors such as lithology, aspect,
altitude, and restoration time, possibly constrained by thematerial source of soil on the cut
rock slope and features of moss crusts. As mentioned above, the soils within the crusts on
the cut rock slopes came dominantly from the soils surrounding the crusts, which are rich
in the fertility by nature [33]. Moss coverage and biomass showed significant correlations
with soil nutrient contents (Table 5). In the process of natural recovery, moss development
further prompts the major nutrient content of the soils within the crusts by fixing carbon
and nitrogen and with self‑decomposition [49,56,57].

5. Conclusions
Affected by the climate in mountainous areas, especially in alpine and subalpine ar‑

eas, the natural restoration of moss–soil crusts on cut rock slopes is a long‑term process
with a slow rate of action. These findings unequivocally show that lithology, altitude and
recovery time exerted a great impact onmoss coverage and biomass, while the slope aspect
had a great impact on soil weight in the crusts.

Specific selection of calciophilic mosses may lead to better adaptation of moss crusts
on limestone than sandstone. The development of moss was greatly affected by water;
thus, the variation trend of moss biomass with altitude was consistent with that of moss
biomasswith rainfall. The changes inmoss development in semiarid climate areas, such as
the Wenchuan–Lixian area, were more prominent with altitude. Moss biomass increased
with increasing restoration age, while the restoration rate varied in different geographical
areas. Vegetation succession was rapid in low‑altitude areas (~1000 m); thus, there was
no significant difference in moss biomass at restoration ages between 1.5 and 60 years.
However, the moss biomass increased slowly in high‑altitude mountain areas (~2000 m)
because the areas mainly experienced primary succession with slow and sustainable de‑
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velopment of mosses. The soils within the moss–soil crusts were affected predominantly
by the surrounding soils and the crust features (moss biomass and coverage); thus, the soil
major nutrient contents were high. More soils accumulated on south‑facing slopes than on
north‑facing slopes.

The findings might offer guidance for the restoration of cut rock slopes in the future,
especially in alpine and subalpine regions. Different cut rock slope faces have different ge‑
ographical features, such as lithotype, rainfall, and aspect, thus the impact of these factors
should be fully considered to propose appropriatemanagementmeasures. Given that time
is a very important factor in the natural restoration of moss–soil crusts on cut rock slopes
in mountainous areas, abandoned cut rock slopes should be protected from further distur‑
bance to shorten the ecological process of restoration. In addition, the proper increase in
humidity on the rock surface could be helpful for the development of moss–soil crusts.
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